Academic literature on the topic 'AR gene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'AR gene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "AR gene"
Brayman, Melissa J., Patricia A. Pepa, Sara E. Berdy, and Pamela L. Mellon. "Androgen Receptor Repression of GnRH Gene Transcription." Molecular Endocrinology 26, no. 1 (January 1, 2012): 2–13. http://dx.doi.org/10.1210/me.2011-1015.
Full textIlaslan, Erkut, Renata Markosyan, Patrick Sproll, Brian J. Stevenson, Malgorzata Sajek, Marcin P. Sajek, Hasmik Hayrapetyan, et al. "The FKBP4 Gene, Encoding a Regulator of the Androgen Receptor Signaling Pathway, Is a Novel Candidate Gene for Androgen Insensitivity Syndrome." International Journal of Molecular Sciences 21, no. 21 (November 9, 2020): 8403. http://dx.doi.org/10.3390/ijms21218403.
Full textHolycross, Bethany J., Monica Kukielka, Yoshinori Nishijima, Ruth A. Altschuld, Cynthia A. Carnes, and George E. Billman. "Exercise training normalizes β-adrenoceptor expression in dogs susceptible to ventricular fibrillation." American Journal of Physiology-Heart and Circulatory Physiology 293, no. 5 (November 2007): H2702—H2709. http://dx.doi.org/10.1152/ajpheart.00763.2007.
Full textDaniel, Mark, Todd P. Knutson, Jamie M. Sperger, Yingming Li, Anupama Singh, Charlotte N. Stahlfeld, Courtney Passow, Benjamin Auch, Joshua M. Lang, and Scott M. Dehm. "AR gene rearrangement analysis in liquid biopsies reveals heterogeneity in lethal prostate cancer." Endocrine-Related Cancer 28, no. 9 (September 1, 2021): 645–55. http://dx.doi.org/10.1530/erc-21-0157.
Full textXavier, Basil Britto, Anupam J. Das, Guy Cochrane, Sandra De Ganck, Samir Kumar-Singh, Frank Møller Aarestrup, Herman Goossens, and Surbhi Malhotra-Kumar. "Consolidating and Exploring Antibiotic Resistance Gene Data Resources." Journal of Clinical Microbiology 54, no. 4 (January 27, 2016): 851–59. http://dx.doi.org/10.1128/jcm.02717-15.
Full textAgoulnik, Irina U., William E. Bingman, Manjula Nakka, Wei Li, Qianben Wang, X. Shirley Liu, Myles Brown, and Nancy L. Nancy L. "Target Gene-Specific Regulation of Androgen Receptor Activity by p42/p44 Mitogen-Activated Protein Kinase." Molecular Endocrinology 22, no. 11 (November 1, 2008): 2420–32. http://dx.doi.org/10.1210/me.2007-0481.
Full textShiota, Masaki, Akira Yokomizo, and Seiji Naito. "Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target." Journal of Molecular Endocrinology 47, no. 1 (April 19, 2011): R25—R41. http://dx.doi.org/10.1530/jme-11-0018.
Full textXia, Tingting, Hongru Sun, Hao Huang, Haoran Bi, Rui Pu, Lei Zhang, Yuanyuan Zhang, et al. "Androgen receptor gene methylation related to colorectal cancer risk." Endocrine Connections 8, no. 7 (July 2019): 979–87. http://dx.doi.org/10.1530/ec-19-0122.
Full textRossi, R., P. Franceschetti, I. Maestri, E. Magri, L. Cavazzini, E. C. degli Uberti, and L. del Senno. "Evidence for androgen receptor gene expression in human thyroid cells and tumours." Journal of Endocrinology 148, no. 1 (January 1996): 77–85. http://dx.doi.org/10.1677/joe.0.1480077.
Full textZhang, Lu, Ying Huang, Yang Zhou, Timothy Buckley, and Hua H. Wang. "Antibiotic Administration Routes Significantly Influence the Levels of Antibiotic Resistance in Gut Microbiota." Antimicrobial Agents and Chemotherapy 57, no. 8 (May 20, 2013): 3659–66. http://dx.doi.org/10.1128/aac.00670-13.
Full textDissertations / Theses on the topic "AR gene"
Melo, Caroline Oliveira Araujo. "ANÁLISE MOLECULAR DO GENE DO RECEPTOR DE ANDRÓGENOS EM HOMENS COM SUSPEITA DE INFERTILIDADE." Pontifícia Universidade Católica de Goiás, 2010. http://localhost:8080/tede/handle/tede/2338.
Full textThe androgen is a generic term usually applied to describe a group of sex steroid hormones. Androgens are produced primarily by a male's testes. However, some small amounts are also produced by the ovaries in females and by the adrenal gland, in both sexes. Androgens are responsible for the male sex differentiation during embryogenesis at the 6th or 7th week of gestation , triggering the development of the testes and penis in male fetuses and is directed by the testicular determining factor, the gene SRY (sex determining region on Y chromosome), located on the short arm of chromosome Y. The differentiation of male external genitalia in penis, scrotum and penile urethra occurs between the 9th and 13th weeks of pregnancy and requires adequate concentration of testosterone and converting this to another more potent androgen dihydrotestosterone (DHT), through the action of 5α reductase in target tissues. The actions of testosterone and DHT require the presence of functional androgen receptors, which, after the connection with these hormones, activate the transcription of specific genes in target tissues. The AR gene is a protein coding gene located at Xq11.2-q12. It spans over 90 kb and codes for a protein that functions as a steroid-hormone activated transcription factor. The AR, like other members of the nuclear receptor superfamily, has three major functional domains: the AR is characterized by a modular structure consisting of four functional domains: an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region, and a ligand (androgen-) binding domain (LBD). Mutations in the AR gene cause the X-linked Androgen Insensitivity Syndrome (AIS) characterized by androgen unresponsiveness, which affects the proper male sexual development both at embryogenesis and puberty. As a genetic disorder, AIS presents a problem and a burden to the affected people and their families and a major medical challenge for the health providers. This impaired response to androgen results from the incapacity or reduced capacity of the androgen receptor (AR) to transactivate androgen-responsive genes in target cells, and leads to abnormal differentiation and development of male internal and external genitalia, and thus leading to male pseudohermaphroditism.
Andrógeno é um termo genérico geralmente utilizado para descrever um grupo de hormônios esteroides sexuais. Os andrógenos são produzidos no homem primariamente pelos testículos. No entanto, algumas pequenas quantidades são também produzidas pelos ovários nas mulheres e pelas glândulas adrenais, em ambos os sexos. Os andrógenos são responsáveis pela diferenciação sexual masculina durante a embriogênese na 6ª ou 7ª semana de gestação, desencadeando o desenvolvimento dos testículos e pênis em fetos masculinos e é dirigido pelo fator determinante testicular, o gene SRY (região determinante do sexo no cromossomo Y), localizado no braço curto do cromossomo Y. A diferenciação da genitália externa masculina em pênis, escroto e uretra peniana ocorre entre a 9ª e 13ª semana de gravidez e requer concentração adequada de testosterona e a conversão para um outro andrógeno mais potente, a dihidrotestosterona (DHT), através da ação da 5 α- redutase em tecidos alvos. As ações da testosterona e DHT requerem a presença dos receptores androgênicos funcionais. O gene AR é uma proteína codificada para o gene localizado no Xq11.2-q12. Ele abrange mais de 90 kb e codifica pra a proteína que funciona como um hormônio esteroide que ativa o fator de transcrição. O AR, como outros membros da superfamília de receptores nucleares, tem três domínios principais: o AR é caracterizado por uma estrutura modular consistindo de quatro domínios funcionais: o domínio N-terminal (NTD), um domínio de ligação ao DNA (DBD), a região de dobradiça, e um domínio de ligação ao ligante (LBD). Mutações no gene AR causam a Síndrome de Insensibilidade aos Andrógens ligada ao cromossomo X (AIS) caracterizada pela insensibilidade androgênica, que afeta o desenvolvimento sexual adequado tanto na embriogênese quanto na puberdade. Como uma desordem genética, o AIS apresenta um problema e um fardo para as pessoas afetadas e suas famílias e um grande desafio médico para os provedores de saúde. Essa resposta prejudicada aos andrógenos resulta na incapacidade ou redução da capacidade do receptor de andrógeno (AR) de transativar os genes responsivos aos andrógenos em células alvo, e leva à diferenciação e desenvolvimento anormais da genitália masculina interna e externa, e assim, levando ao pseudohermafroditismo masculino.
Petroli, Reginaldo José 1980. "Analise molecular do gene do receptor de androgenos em pacientes 46, XY com ambiguidade genital e produção normal de testosterona." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317126.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-15T17:10:17Z (GMT). No. of bitstreams: 1 Petroli_ReginaldoJose_M.pdf: 2303670 bytes, checksum: 1836c8a6df94a76ee177d830781dc293 (MD5) Previous issue date: 2010
Resumo: Considera-se que insensibilidade androgênica seja a causa mais freqüente dos distúrbios da diferenciação do sexo em pacientes com cariótipo 46,XY. Trata-se de uma anomalia recessiva ligada ao cromossomo X, que pode se manifestar de forma branda, parcial ou completa, com um amplo espectro de variação fenotípica. O gene do receptor de andrógenos (AR) está localizado no cromossomo X, na região Xq11-12, sendo organizado em oito exons separados por introns de até 26 kb. Sua região codificante apresenta aproximadamente 2.757 pares de bases traduzindo uma proteína de 919 aminoácidos, cujo peso molecular é de aproximadamente 110 kDa. A proteína AR apresenta três domínios funcionais: domínio de regulação transcricional (amino-terminal), domínio de ligação ao DNA que contém dois dedos de zinco (zinc finger) e domínio de ligação ao esteróide (carboxi-terminal). O domínio amino-terminal possui repetições dos aminoácidos glutamina e glicina cujos números podem variar dentro da população normal. O domínio de ligação ao esteróide (carboxi-terminal), apresenta o maior número de mutações, cerca de 55% das descritas neste gene. Entre o domínio de ligação ao DNA e o domínio de ligação ao esteróide encontra-se a região hinge que contém um sinal responsável pela localização nuclear necessária para a translocação do complexo andrógeno/receptor do citoplasma para o núcleo da célula. Pacientes com cariótipo 46,XY e diagnóstico de insensibilidade androgênica geralmente apresentam fenótipo feminino ou ambigüidade genital, porém a produção de testosterona é normal. Nestes pacientes a investigação de mutações no gene do receptor de andrógeno é indicada para a identificação da alteração molecular relacionada à doença. Desta maneira, o presente estudo teve como objetivo a caracterização das alterações moleculares do gene AR, através da análise de seus oito exons e junções exons-introns por reação da cadeia da polimerase (PCR) seguida de sequenciamento dos fragmentos amplificados. Das 47 famílias que compõem a casuística deste trabalho, 14 apresentaram mutações no gene, sendo uma relacionada ao fenótipo brando da insensibilidade androgênica (p.P694S), sete relacionadas ao fenótipo parcial da insensibilidade androgênica (p.Q58L, p.A596T, p.S597R, p.M742V, p.Q798E, p.L830F e p.A896V) e seis relacionadas ao fenótipo completo da insensibilidade androgênica (p.R774H, p.P766S, p.C806F, p.R832Term, p.R855H e p.V866M). Uma paciente apresentou duas alterações, ambas no exon 6 deste gene. Quatro mutações estão sendo descritas pela primeira vez neste trabalho em pacientes com insensibilidade androgênica
Abstract: The androgen insensitivity syndrome (AIS) is considered the most frequent disorders of sex differentiation in patients with 46,XY karyotype. It is a recessive X linked disorder, which manifests as mild, partial or complete forms, with a broad spectrum of phenotypic variation. The androgen receptor gene (AR) is located on the X chromosome within Xq11-12 region. It is organized in eight exons separated by introns up to 26 kb in length. Its coding region comprises approximately 2,757 base pairs translating a protein of 919 amino acids, whose molecular weight is approximately 110 kDa. The AR protein has three functional domains: the transcriptional regulatory domain, the DNA binding domain which contains two zinc fingers and the steroid binding domain in the carboxy-terminal region. The amino-terminal domain presents repeats of glutamine and glycine whose numbers of residues vary within the normal population. The steroid-binding domain presents the highest number of mutations, around 55% of the mutations described in this gene are located in this region. Between the DNA-binding domain and the steroid-binding domain there is a hinge region that contains a signal responsible for nuclear localization required for translocation of the complex androgen/receptor from the cytoplasm to the cell nucleus. Patients with 46,XY karyotype and androgen insensitivity diagnosis usually have female or ambiguous genitalia, but normal testosterone production. In these patients the investigation of androgen receptor gene mutations is indicated to identify the molecular changes related with AIS. Therefore, the aim of this study was to characterize molecular alterations in the AR gene, by analysis of the eight exons and introns-exons junctions by polymerase chain reaction (PCR) followed by sequencing the amplified fragments. Fourteen out of 46 families comprised in this study had mutations identified. One mutation corresponded to the mild phenotype of androgen insensitivity (p.P694S), seven were related to the partial androgen insensitivity phenotype (p.Q58L, p.A596T, P. S597R, p.M742V, p.Q798E, p.L830F and p.A896V), and six were associated to the complete androgen insensitivity phenotype (p.R774H, p.P766S, p.C806F, p.R832Term, p.R855H and p.V866M). One patient presented two mutations, both located in exon 6 of the gene. Four mutations were described for the first time in this research in patients with androgen insensitivity
Mestrado
Genetica Animal e Evolução
Mestre em Genética e Biologia Molecular
Kim, Soojin. "Elucidation of AR impact on the paternally expressed Gene 10 (PEG10) in Enzalutamide-resistant prostate cancer." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59301.
Full textMedicine, Faculty of
Experimental Medicine, Division of
Medicine, Department of
Graduate
Alwi, Zilfalil B. "Pharmacogenetics of hypertension: a study of the single nucleotide polymorphisms of the CYP2D6 and Beta-2 AR gene." Thesis, Aston University, 2007. http://publications.aston.ac.uk/11069/.
Full textAndrade, Marcelo Souza de. "ANÁLISE MOLECULAR DO GENE RECEPTOR DE ANDRÓGENO EM PACIENTES E FAMILIARES COM SÍNDROME DA INSENSIBILIDADE AOS ANDRÓGENOS." Universidade Federal do Maranhão, 2012. http://tedebc.ufma.br:8080/jspui/handle/tede/72.
Full textFUNDAÇÃO DE AMPARO À PESQUISA E AO DESENVOLVIMENTO CIENTIFICO E TECNOLÓGICO DO MARANHÃO
Introduction. The androgen insensitivity syndrome (AIS) is a rare disease (1:20,000 to 1:64.000)-linked X chromosome, which generates a disorder of sexual differentiation of the male fetus (XY) with a spectrum of phenotypes ranging from females complete (CAIS) to a male phenotype with discrete signs of androgen insensitivity. An increasing number of mutations have been cataloged and nearly 500 mutations have been related to CAIS and 1000 to the androgen receptor gene. The AR gene is located on Xq11-12, with eight exons, about 919 amino acids. Objective. To characterize the mutations in the AR gene families in the region of the "Bico do Papagaio" in the southwestern state of Maranhao. Methodology. We used molecular biology techniques such as DNA extraction, PCR, electrophoresis, purification of PCR products and sequencing. In addition, we analyzed the clinical and hormonal characteristics of 14 patients and their families. Results. In one family (with two twin affected), we found the mutation R753X and the third molecular diagnosis of CAIS in twins described in the World. In another family, with 12 patients, was identified a new mutation in exon 8, as described P893A, protein AR. Conclusion. This work enabled the application of molecular techniques for the accurate diagnosis of AIS, genetic counseling for relatives of affected patients, and contribute to the formation of more qualified human resources, aiming at the development of biotechnology in the state of Maranhão.
Introdução. A Síndrome de Insensibilidade Androgênica (AIS) é uma doença rara (1:20.000 a 1:64.000), de transmissão ligada ao cromossomo X, que gera um distúrbio da diferenciação sexual do feto masculino (XY) com um espectro de fenótipo que varia desde o feminino completo (CAIS) até um fenótipo masculino com discretos sinais de insensibilidade androgênica. Um número crescente de mutações tem sido catalogadas e quase 500 mutações já foram relacionadas à CAIS e cerca de 1000 ao gene do receptor androgênico. O gene AR localiza-se em Xq11-12, com 8 exons, com cerca de 919 aminoácidos. Objetivo. Caracterizar as mutações no gene AR em famílias da região do Bico do Papagaio , no sudoeste do Estado do Maranhão. Metodologia. Foram utilizadas técnicas de biologia molecular como extração de DNA, PCR, Eletroforese, Purificação de produtos de PCR e Sequenciamento automático. Além disso, foram analisados o quadro clínico e hormonal de 14 pacientes e de seus familiares. Resultados. Em uma das famílias (com duas gêmeas afetadas), foi encontrada a mutação R753X, sendo o terceiro diagnóstico molecular de CAIS em gêmeas descrito no Mundo. Em outra família, com 12 pacientes, foi a identificada uma mutação nova no exon 8, descrita como P893A, na proteína AR. Conclusão. Este trabalho possibilitou a aplicação de técnicas moleculares para o diagnóstico preciso de AIS, aconselhamento genético aos familiares das pacientes afetadas, além de contribuir para a formação de recursos humanos mais qualificados, visando o desenvolvimento da biotecnologia no Estado do Maranhão.
Ma, Qiuping. "Role of FoxO Factors as the Nuclear Mediator for PTEN-AR Antagonism in Prostate Cancer Cells." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002559.
Full textSouza, Ol?via Maria Nascimento de. "Avalia??o demogr?fica, clinico-laboratorial e gen?tica de indiv?duos com lupus eritematoso sist?mico e artrite reumat?ide residentes em regi?o tropical." Universidade Federal do Rio Grande do Norte, 2006. http://repositorio.ufrn.br:8080/jspui/handle/123456789/12631.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
The aetiology of autoimmunes disease is multifactorial and involves interactions among environmental, hormonal and genetic factors. Many different genes may contribute to autoimmunes disease susceptibility. The major histocompatibility complex (MHC) genes have been extensively studied, however many non-polymorphic MHC genes have also been reported to contribute to autoimmune diseases susceptibility. The aim of the present study was to evaluate the influence of SLC11A1 gene in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Ninety-six patients with SLE, 37 with RA and 202 controls enrolled in this case-control study, were evaluated with regard to demographic, genetic, laboratorial and clinical data. SLE mainly affects females in the ratio of 18 women for each man, 88,3% of the patients aged from 15 to 45 years old and it occurs with similar frequency in whites and mulattos. The rate of RA between women and men was 11:1, with 77,1% of the cases occurring from 31 to 60 years. The genetic analysis of the point mutation -236 of the SLC11A1 gene by SSCP did not show significant differences between alleles/genotypes in patients with SLE or RA when compared to controls. The most frequent clinical manifestations in patients with SLE were cutaneous (87%) and joint (84.9%). In patients with RA, the most frequent out-joint clinical manifestation were rheumatoid nodules (13,5%). Antinuclear antibodies were present in 100% of the patients with SLE. There was no significant relation between activity of disease and presence of rheumatoid factor in patients with RA, however 55,6% of patients with active disease presented positive rheumatoid factor. Significant association between alleles/genotypes of point mutation -236 and clinical manifestations was not found
A etiologia das doen?as autoimunes ? multifatorial, resultando de intera??es complexas de fatores ambientais, hormonais e gen?ticos. Diversos genes contribuem para a suscetibilidade ?s doen?as autoimunes. Os genes do complexo principal de histocompatibilidade (MHC) tem sido amplamente estudados, por?m genes n?o-MHC tamb?m parecem contribuir para a suscetibilidade a autoimunidade. O presente estudo tem por objetivo avaliar a influ?ncia do gene SLC11A1 nas doen?as autoimunes lupus eritematoso sist?mico (LES) e artrite reumat?ide (AR). Foram arrolados 96 pacientes com LES, 37 com AR e 202 controles saud?veis, em estudo caso-controle, avaliando os dados demogr?ficos, gen?ticos e cl?nico-laboratoriais. LES afetou principalmente o sexo feminino na raz?o de 18 mulheres para 1 homem, sendo 88,3% na faixa et?ria entre 15 e 45 anos e ocorreu com freq??ncias semelhantes em brancos e pardos. A raz?o encontrada de AR entre mulheres e homens foi 11:1, com 77,1% dos casos ocorrendo entre 31 e 60 anos. A an?lise gen?tica do ponto de muta??o -236 da regi?o promotora do gene SLC11A1 por SSCP, n?o mostrou diferen?as significativas entre as freq??ncias de alelos ou gen?tipos de pacientes com LES ou AR em rela??o aos controles. As manifesta??es cl?nicas mais freq?entes nos pacientes com LES foram a cut?nea (87%) e articular (84,9%). Na AR a manifesta??o cl?nica extra-articular mais encontrada foi a presen?a de n?dulo reumat?ide (13,5%). A pesquisa do anticorpo anti-nuclear (FAN) foi positiva em 100% dos pacientes com LES. N?o houve rela??o significativa entre doen?a ativa e presen?a de fator reumat?ide em pacientes com AR, no entanto, 55,6% dos pacientes com doen?a ativa, apresentavam fator reumat?ide positivo. N?o foi encontrada associa??o significativa entre as manifesta??es cl?nicas ou achados laboratoriais e alelos/gen?tipos do ponto de muta??o -236
MESQUITA, Wyara Elanne de Jesus Castro. "Ánálise de alterações no gene receptor de andrógeno em homens com infertilidade idiopática." Universidade Federal de Goiás, 2009. http://repositorio.bc.ufg.br/tede/handle/tde/1272.
Full textMale idiopathic infertility is related to defects in normal spermatogenesis, due to genetic causes. The spermatogenesis is a dependent process on high levels of male sex hormones, the androgens. The androgen, in turn, perform its function when associated with the androgen receptor (AR), protein encoded by AR gene. Mutation in AR gene lead to a synthesis of non functional AR, which results in the failure of the process of spermatogenesis and, consequently, causes male infertility. This work has as its main objective the verification of the occurrence of mutation in the AR gene in patients with male idiopathic infertility who come from the HC-UFG Human Reproduction Center. Samples were analyzed from 206 patients. The result was that 95 patients were found to be normal while 111 with an altered result for the spermogram. The samples were amplified for exons 1, 4, 6, 7 and 8 of the AR gene and the results subjected to statistical analysis, Mann Whitney, logistic regression, and chi tests. The existence of the relationship between defects of sperm and AR gene mutation was verified. The analysis of the relationship between the spermogram and the AR gene mutation in five evaluated exons was significant only for exons 1 and 7. Patients with numerical unsettled spermogram had a higher frequency of mutations in exon 7, teratozoospermics in exon 1 and exon 7 in astenozoospermics patients. Exons 4, 6 and 8 showed no meaningful statistical relationship in reference to the alteration of the spermogram. Among results related to social custom, alcohol proved to be significant for mutation in the AR gene. This study has reaffirmed the relationship between the presence of mutation in AR genes as probable causes of defects in spermatogenesis. Consequently, male idiopathic infertility depends not only on the genetic factor, but also on the association between this factor and the environment where man inhabits
A infertilidade masculina idiopática está relacionada a defeitos na espermatogênese normal, devido a causas genéticas. A espermatogênese é um processo dependente de altos níveis de hormônios sexuais masculinos, os andrógenos. E os andrógenos, por sua vez, exercem sua função quando associados ao receptor androgênico (RA), proteína codificada pelo gene RA. Mutações no gene RA levam a síntese do RA não funcional, o que acarreta em falhas no processo de espermatogênese e consequentemente causam infertilidade masculina. O trabalho teve como principal objetivo verificar a ocorrência ou não de mutação no gene RA em pacientes com infertilidade masculina idiopática do Centro de Reprodução Humana do HCUFG. Foram analisadas 206 amostras de pacientes, sendo 95 normais e 111 alterados para o espermograma. As amostras foram amplificadas para os exons 1, 4, 6, 7 e 8 do gene RA e os resultados submetidos às análises estatísticas, teste U, quiquadrado e regressão logística. Foi verificada a existência de relação entre alteração no espermograma e mutação no gene RA. A análise da relação entre espermograma e mutação no gene RA dos cinco exons avaliados foi significativa somente para os exons 1 e 7. Os pacientes com alteração numérica para o espermograma apresentaram uma freqüência maior de mutações no exon 7, os pacientes teratozoospérmicos no exon 1 e os astenozoospérmicos no exon 7. Os exons 4, 6 e 8 não apresentaram relação estatística significativa para alterações no espermograma. Dentre os resultados referentes aos hábitos sociais, o etilismo mostrou-se significativo para mutações no gene RA. A realização desse estudo vem reafirmar a relação entre presença de mutações no gene RA como prováveis causas de defeitos na espermatogênese e, consequentemente, infertilidade masculina idiopática, não dependendo exclusivamente do fator gênico, mas da associação entre este fator e o meio ambiente onde o homem está inserido
Neves, Adriana Freitas. "Variações transcricionais dos genes AR, SRD5A2, KLK2, PCA3, KLK3 e PSMA e implicações no diagnóstico molecular do câncer de próstata." Universidade Federal de Uberlândia, 2007. https://repositorio.ufu.br/handle/123456789/15771.
Full textCHAPTER I - Prostate cancer is a common disease in the world and in some countries it is one of the main causes of male population mortality. Some molecular markers have been associated with prostate carcinogenesis. To observe changes in transcript levels of the AR, SRD5A2, KLK2, PSMA and PCA3 genes, the mRNA was analyzed in tissues with prostatic adenocarcinoma (PCa, N= 48) and benign prostatic hyperplasia (BPH, N= 25), performed through a differential multiplex RT-PCR assay. Significant differences were observed in the relative expression of these genes between cancerous and non-cancerous tissues. The optical density ratio of the cDNA amplicons between PCa and BPH for the AR gene was 1.6-fold higher for the prostatic adenocarcinoma. On the other hand, the SRD5A2 mRNA levels were associated with BPH and were 1.4-fold higher than that of PCa. For KLK2, PSMA and PCA3, the transcriptional levels were respectively, 1.9-, 1.9- and 5-fold higher in PCa than those in BPH tissues. Of the diagnostics tests carried through individually, the PCA3 gene was that presented higher sensitivity and accuracy, and the inclusion of the serum PSA improved the sensitivity (of 76 to 92%), positive preditive value (of 85 to 94%), negative preditive value (of 60 to 62%) and accuracy (of 74 to 78%). The results suggest that the higher AR, KLK2, PSMA, and PCA3 and/or reduced SRD5A2 genes expression in prostatic tissues may indicate the occurrence of prostate adenocarcinoma; however the PCA3 and serum PSA analysis together are highly promising as auxiliary method in the diagnosis of this cancer. CHAPTER II - Purpose: Prostate cancer (PCa) is the most commonly diagnosed malignancy in men, and it consists of multifactorial and multifocal events. Due to the complexity of the disease process, which includes genome alterations, local invasion, micrometastatic cell extravasations to circulation, invasion of secondary organ tissues, and resistance to hormonal blockage, many markers must be used to represent the multiple and variable events that lead to cancer development. The low specificity of the unique serum marker for prostate cancer diagnostics, PSA, has leaded us to investigate four potential markers in the peripheral blood of patients by detecting their mRNA levels and associating them to clinical parameters. Methods: The expression levels of the KLK2, KLK3, PCA3 and PSMA transcripts were determined by Nested RT-PCR. Patients with PCa (99) and with benign prostatic hyperplasia (BPH, 36), and healthy volunteers (104) were investigated. Results: Significant differences for the RNA relative levels have been found for the KLK2, PCA3 and PSMA transcripts between PCa and BPH patients or healthy volunteers. The KLK2 and PSMA levels also presented a positive association (P<0.05) with extra-prostatic disease (pT3). The combined positive RT-PCR Nested for the KLK2, PCA3, PSMA genes with serum PSA higher than 4ng/mL presented a 10-fold higher chance of cancer occurrence than healthy controls, with sensitivity, specificity and positive predictive value of 57%, 89% and 93%, respectively. Conclusions: The combined analysis of KLK2, PCA3 and PSMA transcripts may become a useful tool for the discrimination of PCa patients from those with benign disease or healthy individuals. Additionally, the KLK2 and PSMA transcripts may also be used as prognostic markers for the presence of extra-capsular disease and assisting in the prediction of the post-operative outcome. CHAPTER III - Purpose: Transcripts of PCA3/DD3 gene are at the moment the most specific molecule found in prostate cancer specimens. This mRNA can be detected in important sample targets for clinical analyses, such as prostatic tissues, urine after prostatic massage, and the peripheral blood. Methods: The present study evaluated the PCA3 gene expression in prostatic tissues and in peripheral blood of BPH and PCa patients, by RT-PCR assays, and based on its detection together with other clinical parameters, we proposed a model for molecular monitoring in order to improve diagnosis as an auxiliary technology. Results: The concomitant use of PCA3 transcript detection in the peripheral blood and in prostate tissues has improved diagnosis, with sensitivity and an accuracy of 77%. For the molecular staging, patients have been classified as: localized disease (PBL-; negative PCA3) and circulating tumors cells disease (PBL+; positive PCA3). The higher frequencies of PBL- had been observed in T1-T2 stages (75%); on the other hand, the higher PCA3 positivity was observed for the T3-T4 staging (43%), while the T1-T2 stages presented 25% positivity. A correlation was found between the molecular staging and serum PSA < 10ng/mL before surgery, and approximately 60% of patients with T3-T4 stages that presented biochemical failure after radical prostatectomy presented a positive PCA3 result (P= 0.05), with an odds ratio of 16-fold higher for the possibility of disease recurrence in relation to the T1-T2 patients, and an accuracy of 82%. Conclusion: These data demonstrated the importance of the PCA3 gene as an auxiliary method in prostate cancer diagnosis, by distinguishing PCa from BPH patients, and also demonstrated its prognostic value in recurrent disease for post-operative patients. CHAPTER IV - Approximately 98% of all the products transcribed in the human genome correspond to non coding RNAs (ncRNA). Many ncRNA functions are attributed to this structural particularity given mainly for the secondary structures formed from its linear sequence of bases. Among the ncRNA types are tRNA, rRNA, small nuclear RNA, small nucleolar RNA, small interference RNA (siRNA), microRNA (miRNA) and catalytic RNAs (ribozymes). The bioinformatics has supplied useful tools in the prediction of optimal or suboptimal secondary structures allowing the design of interference RNA as miRNAs or siRNAs. In human, miRNAs have been associated with the development of diverse complex diseases as cancer. The PCA3 (DD3) gene was molecularly characterized as cancer and prostate specific, and its transcripts are non-coding, once no peptide products have been found. Due to its structural characteristics, the PCA3 gene belongs thus to the increasing family of ncRNA. In the present work, four new variant molecules of the PCA3 gene have been sequence characterized and their frequencies demonstrated in prostate cancer and in benign prostatic hyperplasia patients, as well as in healthy individuals. We have also investigated and predicted the putative secondary structures formed in order to elucidate its role in prostate cancer biology. No association has been found between the frequency of these molecules and prostate pathologies (PCa or BPH). On the other hand, PCA3 variants were found in 10% (12/115) of cases in the general population. Similar analyses of the possible polypeptides of these molecules demonstrated that it remains as a non-coding RNA, and introns presents in the first, second and fourth variants suggesting a possible role as a miRNA with intracellular activity to these molecules to the PCA3 gene. In prostatic tissues, 100% of the prostate cancer cases presented the RNA molecule with an exon 2 splicing. However, further investigation must be carried out to demonstrate the true role of these splicing variants in prostate tumors and in other pathologies, once these molecules have been preferentially found in the peripheral blood.
CAPÍTULO I - O câncer de próstata é uma doença comum no mundo e já assumiu em alguns países uma das principais causas de mortalidade da população masculina. Vários marcadores moleculares têm sido associados à gênese do câncer de próstata. A fim de demonstrar a expressão diferencial dos níveis transcricionais dos genes AR, SRD5A2, KLK2, PSMA e PCA3 em doenças prostáticas, o RNAm foi analisado em tecidos com adenocarcinoma prostático (CaP, N= 48) e hiperplasia prostática benigna (HPB, N= 25) por meio da técnica RT-PCR multiplex semi-quantitativa. Foram observadas diferenças significativas na expressão relativa desses genes entre os tecidos cancerosos e nãocancerosos. A taxa de densidade ótica entre os amplicons para cDNA provenientes do gene AR foi 1.6 vezes maior no adenocarcinoma prostático. Por outro lado, os níveis de RNAm do gene SRD5A2 foi associado com a HPB e foi 1.4 vezes maior do que no CaP. Para os genes KLK2, PSMA e PCA3, os níveis transcricionais foram respectivamente, 1.9, 1.9 e 5 vezes maior no câncer comparado a tecidos benignos. Dos testes diagnósticos realizados, o gene PCA3 individualmente foi o que apresentou as melhores sensibilidade e acurácia, sendo que a inclusão das medidas de PSA sérico melhorou a sensibilidade (de 76 para 92%), o valor preditivo positivo (de 85 para 94%), o valor preditivo negativo (de 60 para 62%) e a acurácia (de 74 para 78%). Os dados sugerem que a maior expressão dos genes AR, KLK2, PSMA e PCA3 ou expressão reduzida do gene SRD5A2 em tecidos prostáticos podem indicar a ocorrência do adenocarcinoma da próstata, sendo que as análises do gene PCA3 juntamente aos do PSA sérico são altamente promissores como método auxiliar no diagnóstico desse tipo de câncer. CAPÍTULO II - O câncer de próstata (CaP) e o mais comumente diagnosticado na população masculina e consiste de eventos multifatoriais e multifocais. Devido a complexidade da doença, a qual inclui alterações genômicas, invasão local, liberação de células micrometastáticas para a circulação, invasão secundaria de tecidos de outros órgãos, e resistência ao bloqueio hormonal, muitos marcadores podem ser usados para representar os eventos múltiplos e variáveis que levam ao desenvolvimento do câncer. A baixa especificidade do único marcador para diagnostico do câncer de próstata, PSA, tem nos levado a investigar quatro potenciais marcadores no sangue periférico de pacientes pela detecção de seus níveis de RNAm e associá-los a parâmetros clínicos. Os níveis de expressão dos transcritos do KLK2, KLK3, PCA3 e PSMA foram avaliados pela RT-PCR Nested, em pacientes com CaP (99), com hiperplasia prostática benigna (HPB, 36) e voluntários saudáveis (104). Diferenças significativas foram encontradas para a expressão dos genes KLK2, PSMA e PCA3 entre os pacientes com CaP e os pacientes com HPB ou voluntários saudáveis. Os níveis do KLK2 e PSMA também apresentaram associação positiva (P<0.05) com doença extra-prostática (pT3). A RT-PCR Nested positiva combinada para os genes KLK2, PCA3 e PSMA com PSA sérico maior que 4ng/mL apresentou uma chance 10 vezes maior de ocorrência do câncer comparado aos controles saudáveis, com sensibilidade, especificidade e acurácia de 57%, 89% e 93%, respectivamente. A análise combinada dos genes KLK2, PCA3 e PSMA pode ser uma ferramenta útil na distinção de pacientes com CaP daqueles com doença benigna ou de indivíduos saudáveis. Ainda, a analise dos transcritos KLK2 e PSMA podem ser usados como marcadores prognósticos para a presença de doença extra-capsular e auxiliando na predição de recidiva da doença no pós-operatório. CAPÍTULO III - Os transcritos do gene PCA3/DD3 são até o momento as moléculas mais específicas encontradas em espécimes de câncer de próstata. Esses RNAm podem ser detectados em importantes alvos para a análise clínica como tecidos prostáticos, na urina após massagem prostática e em sangue periférico. O presente estudo avaliou a expressão do gene PCA3 em tecidos prostáticos e em sangue periférico de pacientes com HPB e CaP, por técnicas de RT-PCR, e baseado na sua detecção juntamente com os parâmetros clínicos, foi proposto um modelo de estadiamento molecular como técnica assessória para melhor o diagnóstico da doença. O uso concomitante da detecção dos transcritos do gene PCA3 no sangue periférico e no tecido prostático melhorou o diagnóstico, com sensibilidade e acurácia de 77%. Para o estadiamento molecular, os pacientes foram classificados como contendo a doença localizada (PBL-) e em doença com células tumorais circulantes (PBL +). Maiores freqüências de tumor localizado pelo estadiamento molecular foram observadas nos estadios T1-T2 (75%), enquanto que 25 e 43% dos cânceres T1-T2 e T3-T4, respectivamente, apresentaram PCA3 positivo (células circulantes). Uma correlação foi encontrada para o estadiamento molecular para doença localizada e PSA sérico pré-cirúrgico < 10ng/mL, e aproximadamente 60% dos pacientes TNM T3-T4 que apresentaram falha bioquímica após a cirurgia radical apresentaram RTPCR positiva do PCA3 (P= 0.05), com um Odds Ratio 16 vezes maior para a possibilidade de recorrência da doença em relação aos pacientes T1-T2 e uma acurácia de 82%. Esses dados demonstram a importância da detecção do gene PCA3 como método no diagnóstico do câncer de próstata, por distinguir pacientes com CaP daqueles com HPB, e também demonstrando seu valor prognóstico na doença recorrente no pósoperatório dos pacientes. CAPÍTULO IV - Aproximadamente 98% de todos os produtos transcritos do genoma humano correspondem a RNAs não codificantes (RNAnc). Muitas funções dos RNAnc são atribuídas a suas particularidades estruturais dadas principalmente pelas estruturas secundárias formadas a partir da sua sequência linear de bases. Dentre os tipos de RNAnc estão os RNAt, RNAr, small nuclear RNA, small nucleolar RNA, small interference RNA (siRNA), microRNA (miRNA) e RNAs catalíticos (ribozimas). A bioinformática tem fornecido ferramentas úteis na predição de estruturas secundárias ótimas ou subótimas permitindo o design de RNAs de interferência como os miRNAs ou siRNAs. Em humanos, os miRNAs tem sido associados ao desenvolvimento de diversas doenças complexas como o câncer. O gene PCA3 (DD3) foi molecularmente caracterizado como câncer- e próstata- específico e os seus RNAs são os responsáveis por essa característica, isso porque nenhum produto protéico tem sido encontrado para esse gene. Devido às suas características estruturais, o gene PCA3, pertence assim à crescente família de RNAnc. No presente trabalho foi analisado as freqüências de quatro moléculas variantes do gene PCA3, além das anteriormente reportadas, como também foram preditas as suas estruturas secundárias na tentativa de elucidar o seu papel na biologia do câncer de próstata. Nenhuma associação foi encontrada entre a freqüência dessas moléculas e as patologias da próstata como hiperplasia benigna ou câncer, sendo que na população geral analisada essas variantes foram encontradas em apenas 10% (12/115) dos casos. As análises de homologia de possíveis polipeptídeos para essas moléculas demonstram que permanece o papel de RNA não-codificante para o gene PCA3. Ainda, a presença de introns nas variantes 1, 2 e 4 podem sugerir um papel intracelular de miRNA para essas moléculas do gene PCA3. Nos tecidos prostáticos, 100% dos casos de câncer foi representando pela molécula com splicing do exon 2. Contudo, para as variantes de splicing, novas pesquisas deverão ser realizadas incluindo outras patologias além das doenças prostáticas e outros tipos tumorais para verificar o real impacto dessas moléculas, uma vez que foram encontradas preferencialmente no sangue periférico.
Doutor em Genética e Bioquímica
Souza, Daniel Santos. "Implementação de uma metodologia para genotipagem da região promotora do gene do TNF-a e sua aplicação em uma população exposta à sílica." reponame:Repositório Institucional da FIOCRUZ, 2010. https://www.arca.fiocruz.br/handle/icict/2412.
Full textA silicose é uma pneumoconiose provocada pela inalação da poeira de sílica e consiste em uma lesão pulmonar com participação de citocinas como o Fator de Necrose Tumoral alfa (TNF-a). Há dois polimorfismos nos sítios -238 e -308 do promotor do gene da TNF-a (substituição de uma guanina por uma adenina) que têm sido investigados como possíveis fatores de susceptibilidade para a silicose. A mutação na posição -308 tem sido associada com altos níveis da citocina no sangue, enquanto que a posição -238, com formas mais graves da doença. A exposição ocupacional à sílica continua sendo um problema de Saúde Pública no Brasil. O Centro de Estudos de Saúde do Trabalhador e Ecologia Humana (CESTEH)/FIOCRUZ acompanha trabalhadores do Rio de Janeiro expostos à sílica. Este trabalho teve como objetivo a implementação de uma metodologia para determinação do polimorfismo dos sítios -308 e -238 do promotor da TNF-a para futura utilização na avaliação da exposição à sílica. A genotipagem foi feita através da técnica de PCR-RFLP (Polymerase Chain Reaction Restricition Fragment Length Polymorphism) usando NcoI para -308 e BamHI para -238. Foram realizados ensaios para a implementação da metodologia, sendo esta aplicada em uma amostra populacional de 79 trabalhadores assistidos no ambulatório do CESTEH, sendo todos do sexo masculino e maiores de 18 anos. (...) Nesse estudo, demonstrou-se que a presença do alelo mutante (A) está associada a maiores quantidades da citocina no sangue. Não foram encontradas diferenças significativas entre as médias da enzima GST e a presença ou não do alelo mutante. A presença do alelo -308A apresentou ainda um risco relativo de 3,697 para o desenvolvimento de silicose. A implementação de um método toxico genético permite a identificação de possíveis determinantes de suscetibilidade individual ao desenvolvimento da doença, aumentando o alcanço das avaliações da saúde do trabalhador.
Silicosis is a pneumoconiosis caused by inhalation of silica dust and consists of a lung injury with participation of cytokines, such as Tumor Necrosis Factor alpha (TNF- ). There are two polymorphisms at sites -238 and -308 of the gene promoter in TNF- (replacement of a guanine-adenine), which have been investigated as possible factors of susceptibility for silicosis. The mutation at positon -308 has been associated with high levels of cytokine in the blood, while at -238 with severe forms of the disease. Occupational exposure to silica remains a public health problem in Brazil. The Center for Studies on Workers' Health and Human Ecology (CESTEH) / FIOCRUZ follows Rio de Janeiro's workers exposed to silica. This study aimed to implement a methodology for determining the polymorphism of sites -308 and -238 of the promoter of TNF- for future use in the assessment of exposure to silica. Genotyping was made by PCR-RFLP (Polymerase Chain Reaction – Restricition Fragment Length Polymorphism) using NcoI for -308 and BamHI for -238. Tests were performed for implementing the methodology, which was applied in 79 employees assisted by CESTEH, all male and aged over 18. After the tests, the following conditions were fixed for both sites: 100ng of DNA, extracted from 500μL of whole blood, were used as template for PCR with 1.5 U of Taq-DNA Polymerase Recombinant and a final volume of 50μL. The primers were: 5'AGGCAATAGGTTTTGAGGGCCAT and 5'TCCTCCCTGCTCCGATTCCG as sense and antisense to -308 and 5'AAACAGACCACAGACCTGGTC and 5'CTCACACTCCCCATCCTCCCGGATC to -238. The PCR parameters for -308 site were: 35 cycles using 94ºC/40s, 58ºC/90s and 72ºC/60, generating a fragment of 107 pb. The PCR parameters for -238 site were; 35 cycles using 94ºC/40s, 58ºC/90s and 72ºC/60s, generating a fragment of 165 pb. The digestion was made with 5U of endonuclease for 1mg of DNA incubated at 37°C for 1 hour. Individuals with the mutant allele lose the site which is attacked by the restriction enzyme. Workers genotyped for the -308 site showed 16.4% (n = 13) for the GA genotype, 82.3% (n = 65) for GG and 1.3% (n = 1) for the genotype AA. The -238 site showed the frequencies of 2.3% (n = 2) for GA, 97.7% (n = 77) for GG and zero for AA. This study shows that the presence of the mutant allele (A) is associated with greater amounts of cytokine in the blood. There were no significant differences between the means of the enzyme GST and the presence of the mutant allele. The presence of the -308 mutant allele also showed a relative risk of 3,697 for the development of silicosis. The implementation of a toxicogenetic method allows the identification of possible determinants of individual susceptibility to disease development, increasing the reach of the evaluations of occupational health.
Books on the topic "AR gene"
Alves, Ines Teles, Jan Trapman, and Guido Jenster. Molecular biology of prostate cancer. Edited by James W. F. Catto. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0059.
Full textBook chapters on the topic "AR gene"
Buchanan, Grant, Eleanor F. Need, Tina Bianco-Miotto, Norman M. Greenberg, Howard I. Scher, Margaret M. Centenera, Lisa M. Butler, Diane M. Robins, and Wayne D. Tilley. "Insights from AR Gene Mutations." In Androgen Action in Prostate Cancer, 207–40. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-69179-4_10.
Full textOgino, Yukiko, Gen Yamada, and Taisen Iguchi. "Diversified Sex Characteristics Developments in Teleost Fishes: Implication for Evolution of Androgen Receptor (AR) Gene Function." In Zebrafish, Medaka, and Other Small Fishes, 113–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1879-5_7.
Full textSicora, Cosmin Ionel, and Eva-Mari Aro. "Differential Expression of hoxY Gene, Encoding the Small Subunit of Bidirectional Hydrogenase, Under Ar-Induced Microaerobic Conditions in Synechocystis sp. PCC6803 and Anabaena sp. PCC7120." In Photosynthesis. Energy from the Sun, 19–22. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_5.
Full textUrbanucci, Alfonso, Kati K. Waltering, Ian G. Mills, and Tapio Visakorpi. "The Effect of AR Overexpression on Androgen Signaling in Prostate Cancer." In Androgen-Responsive Genes in Prostate Cancer, 187–200. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6182-1_12.
Full textNoushmehr, Houtan, Simon G. Coetzee, Suhn K. Rhie, Chunli Yan, and Gerhard A. Coetzee. "The Functionality of Prostate Cancer Predisposition Risk Regions Is Revealed by AR Enhancers." In Androgen-Responsive Genes in Prostate Cancer, 59–84. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6182-1_5.
Full textMendell, Jerry R., and Andra Miller. "Gene Transfer for Neurological Disease: Agencies, Policies, and Process**This work was supported in part by funding from National Institutes of Health, National Institute of Arthritis, Musculoskeletal, and Skin Diseases RFA: AR-03-001." In Gene Therapy of the Central Nervous System, 77–88. Elsevier, 2006. http://dx.doi.org/10.1016/b978-012397632-1/50008-3.
Full textButler, Gary, and Jeremy Kirk. "Differences of sex development (DSD)." In Paediatric Endocrinology and Diabetes, 335–50. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198786337.003.0011.
Full textMastergeorge, Ann M., and Jacky Au. "Fragile X: A Family of Disorders." In Cognitive and Behavioral Abnormalities of Pediatric Diseases. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195342680.003.0024.
Full textSchafer, Stephen Brock. "The Media-Dream Model." In Advances in Psychology, Mental Health, and Behavioral Studies, 159–90. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9065-1.ch009.
Full text"Chapter One. Reading 4QZodiacal Physiognomy (4q186) And 4QPhysiognomy Ar (4q561): Texts, Genre, And Structure." In Reading the Human Body, 17–67. BRILL, 2007. http://dx.doi.org/10.1163/ej.9789004157170.i-346.12.
Full textConference papers on the topic "AR gene"
Mudryj, Maria, Stephen J. Libertini, Alan P. Lombard, Salma Saddiqui, and Paramita M. Ghosh. "Abstract 2124: Analysis of FAM111A, a newly identified AR regulated gene, in prostate cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2124.
Full textWang, Fengtian, and Hari K. Koul. "Abstract 5287: Prostate-derived Etsfactor modulates AR-mediated gene expression and promotes luminal differentiation." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-5287.
Full textWang, Fengtian, and Hari K. Koul. "Abstract 5287: Prostate-derived Etsfactor modulates AR-mediated gene expression and promotes luminal differentiation." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-5287.
Full textElvin, Paul, Neil Pegg, Simone Daminelli, Izabela Eden, Barbara Young, Amy Prosser, Jenny Worthington, and Nigel Brooks. "Abstract 1019: P300/CBP inhibitor CCS1477 targets 22Rv1 prostate tumor AR and c-myc gene expressionin vivo." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1019.
Full textElvin, Paul, Neil Pegg, Simone Daminelli, Izabela Eden, Barbara Young, Amy Prosser, Jenny Worthington, and Nigel Brooks. "Abstract 1019: P300/CBP inhibitor CCS1477 targets 22Rv1 prostate tumor AR and c-myc gene expressionin vivo." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1019.
Full textVlachostergios, Panagiotis J., Vincenza Conteduca, Amy L. Hackett, Jyothi Manohar, Aileen Lee, Aidan Case, Michael Sun, et al. "Abstract 4865: Prognostic value of BRCA2 and AR gene alterations in advanced prostate cancer patients treated with PSMA-targeted radionuclide therapies." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4865.
Full textVlachostergios, Panagiotis J., Vincenza Conteduca, Amy L. Hackett, Jyothi Manohar, Aileen Lee, Aidan Case, Michael Sun, et al. "Abstract 4865: Prognostic value of BRCA2 and AR gene alterations in advanced prostate cancer patients treated with PSMA-targeted radionuclide therapies." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-4865.
Full textHao, Jun, Xinpei Ci, Hui Xue, Rebecca Wu, Xin Dong, Fang Zhang, Sifeng Qu, et al. "Abstract 1918: Patient-derived hormone-naive prostate cancer xenograft models revealGRB10as an AR-repressed gene driving the development of castration-resistant prostate cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1918.
Full textLong, Tiha M., Eva Y. Tonsing-Carter, Wen-Ching Chan, Donald Vander Griend, Suzanne D. Conzen, and Russell Z. Szmulewitz. "Abstract 944: Glucocorticoid receptor (GR)-mediated activation of cyclic-adenosine monophosphate (cAMP) pathway gene expression following androgen receptor (AR) antagonism of prostate cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-944.
Full textBaumgart, Simon J., Ekaterina Nevedomskaya, Ralf Lesche, Henrik Seidel, and Bernard Haendler. "Abstract 1798: A detailed comparison between second-generation AR antagonists reveals differences in the overall impact on gene regulation patterns in prostate cancer cells." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1798.
Full textReports on the topic "AR gene"
Peterson, Blake R. Anticar Inhibitors of AR-Mediated Gene Expression. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada446982.
Full textPeterson, Blake R. Anticancer Inhibitors of AR-Mediated Gene Expression. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada463403.
Full textRoss, Ronald R., Juergen Reichardt, Gerhard A. Coetzee, Richard Cote, and Brian E. Henderson. Molecular Determinants of Prostate Cancer Progression Across Race-Ethnicity. Project A - The Human 5RD5A2 Gene and Prostate Cancer Progression. Project B - Androgen Receptor (AR) Signaling in Prostate Cancer Progression. Project C - Cellular and Molecular Markers of Prostate Cancer Progression Core - Epidemiology Core. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada407343.
Full text