Journal articles on the topic 'Reverse Warburg effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Reverse Warburg effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xu, Xiao Dong, Shi Xiu Shao, Hai Ping Jiang, Yan Wei Cao, Yong Hua Wang, Xue Cheng Yang, You Lin Wang, Xin Sheng Wang, and Hai Tao Niu. "Warburg Effect or Reverse Warburg Effect? A Review of Cancer Metabolism." Oncology Research and Treatment 38, no. 3 (2015): 117–22. http://dx.doi.org/10.1159/000375435.
Full textSotgia, Federica, Ubaldo E. Martinez-Outschoorn, and Michael P. Lisanti. "The reverse warburg effect in osteosarcoma." Oncotarget 5, no. 18 (August 15, 2014): 7982–83. http://dx.doi.org/10.18632/oncotarget.2352.
Full textGonzalez, Claudio D., Silvia Alvarez, Alejandro Ropolo, Carla Rosenzvit, Maria F. Gonzalez Bagnes, and Maria I. Vaccaro. "Autophagy, Warburg, and Warburg Reverse Effects in Human Cancer." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/926729.
Full textBenny, Sonu, Rohan Mishra, Maneesha K. Manojkumar, and T. P. Aneesh. "From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy." Medical Hypotheses 144 (November 2020): 110216. http://dx.doi.org/10.1016/j.mehy.2020.110216.
Full textShan, Mengrou, David Dai, Arunodai Vudem, Jeffrey D. Varner, and Abraham D. Stroock. "Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors." PLOS Computational Biology 14, no. 12 (December 7, 2018): e1006584. http://dx.doi.org/10.1371/journal.pcbi.1006584.
Full textStrunová, Marie, David Pavlišta, Jitka Kobilková, Jiří Pokorný, Miloslav Janoušek, Lenka Bauerová, and Anna Jandová. "Is the Small Size of a Breast Cancer Tumor the Crucial Point for Successful Medical Treatment?" Prague Medical Report 115, no. 3-4 (2014): 134–40. http://dx.doi.org/10.14712/23362936.2014.44.
Full textPokorný, Jiří, Jan Pokorný, Jitka Kobilková, Anna Jandová, Jan Vrba, and Jan Vrba. "Targeting Mitochondria for Cancer Treatment – Two Types of Mitochondrial Dysfunction." Prague Medical Report 115, no. 3-4 (2014): 104–19. http://dx.doi.org/10.14712/23362936.2014.41.
Full textPokorný, Jiří, Jan Pokorný, Jitka Kobilková, Anna Jandová, and Robert Holaj. "Cancer Development and Damped Electromagnetic Activity." Applied Sciences 10, no. 5 (March 6, 2020): 1826. http://dx.doi.org/10.3390/app10051826.
Full textEvans, Laura A., Emilie I. Anderson, Xuan-Mai Petterson, Shaji Kumar, and Wilson I. Gonsalves. "Disrupting the Reverse Warburg Effect As a Therapeutic Strategy in Multiple Myeloma." Blood 138, Supplement 1 (November 5, 2021): 2649. http://dx.doi.org/10.1182/blood-2021-147970.
Full textMarshall, JL, J. Falconer, S. Kapoor, A. Filer, K. Raza, SP Young, and CD Buckley. "A3.04 Stromal cell metabolism; the reverse warburg effect in the inflamed synovium." Annals of the Rheumatic Diseases 75, Suppl 1 (February 2016): A33.3—A34. http://dx.doi.org/10.1136/annrheumdis-2016-209124.81.
Full textWitkiewicz, Agnieszka K., Diana Whitaker-Menezes, Abhijit Dasgupta, Nancy J. Philp, Zhao Lin, Ricardo Gandara, Sharon Sneddon, Ubaldo E. Martinez-Outschoorn, Federica Sotgia, and Michael P. Lisanti. "Using the “reverse Warburg effect” to identify high-risk breast cancer patients." Cell Cycle 11, no. 6 (March 15, 2012): 1108–17. http://dx.doi.org/10.4161/cc.11.6.19530.
Full textLiu, Wen, Benjamin H. Beck, Kedar S. Vaidya, Kevin T. Nash, Kyle P. Feeley, Scott W. Ballinger, Keke M. Pounds, et al. "Metastasis Suppressor KISS1 Seems to Reverse the Warburg Effect by Enhancing Mitochondrial Biogenesis." Cancer Research 74, no. 3 (December 18, 2013): 954–63. http://dx.doi.org/10.1158/0008-5472.can-13-1183.
Full textKeller, Florian, Roman Bruch, Richard Schneider, Julia Meier-Hubberten, Mathias Hafner, and Rüdiger Rudolf. "A Scaffold-Free 3-D Co-Culture Mimics the Major Features of the Reverse Warburg Effect In Vitro." Cells 9, no. 8 (August 13, 2020): 1900. http://dx.doi.org/10.3390/cells9081900.
Full textPOKORNÝ, JIŘÍ, JAN POKORNÝ, JITKA KOBILKOVÁ, ANNA JANDOVÁ, JAN VRBA, and JAN VRBA. "CANCER — PATHOLOGICAL BREAKDOWN OF COHERENT ENERGY STATES." Biophysical Reviews and Letters 09, no. 01 (March 2014): 115–33. http://dx.doi.org/10.1142/s1793048013300077.
Full textPavlides, Stephanos, Diana Whitaker-Menezes, Remedios Castello-Cros, Neal Flomenberg, Agnieszka K. Witkiewicz, Philippe G. Frank, Mathew C. Casimiro, et al. "The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma." Cell Cycle 8, no. 23 (December 2009): 3984–4001. http://dx.doi.org/10.4161/cc.8.23.10238.
Full textChoi, B. W., Y. J. Jeong, S. H. Park, H. K. Oh, and S. Kang. "Reverse Warburg effect-related mitochondrial activity and 18F-FDG uptake in invasive ductal carcinoma." Annals of Oncology 30 (November 2019): ix19. http://dx.doi.org/10.1093/annonc/mdz418.015.
Full textChoi, Byung Wook, Young Ju Jeong, Sung Hwan Park, Hoon Kyu Oh, and Sungmin Kang. "Reverse Warburg Effect-Related Mitochondrial Activity and 18F-FDG Uptake in Invasive Ductal Carcinoma." Nuclear Medicine and Molecular Imaging 53, no. 6 (October 28, 2019): 396–405. http://dx.doi.org/10.1007/s13139-019-00613-x.
Full textLee, Minjong. "Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication." World Journal of Biological Chemistry 6, no. 3 (2015): 148. http://dx.doi.org/10.4331/wjbc.v6.i3.148.
Full textSana, Sherjeel, Maria Navas-Mareno, Z. Valey Vardney, Mark Duros, Felipe R. Lorenzo V, Katarina Kapralova, Sabina Swierczek, and Josef Prchal. "Ph-Negative Myeloproliferative Neoplasms Exhibit Some Features Of Warburg Effect." Blood 122, no. 21 (November 15, 2013): 1604. http://dx.doi.org/10.1182/blood.v122.21.1604.1604.
Full textBonuccelli, Gloria, Diana Whitaker-Menezes, Remedios Castello-Cros, Stephanos Pavlides, Richard G. Pestell, Alessandro Fatatis, Agnieszka K. Witkiewicz, et al. "The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts." Cell Cycle 9, no. 10 (May 15, 2010): 1960–71. http://dx.doi.org/10.4161/cc.9.10.11601.
Full textMoir, J., J. Mann, D. Mann, and S. White. "Monocarboxylate transporter upregulation supporting the reverse warburg effect in the tumour microenvironment of pancreatic ductal adenocarcinoma." HPB 18 (April 2016): e773. http://dx.doi.org/10.1016/j.hpb.2016.01.298.
Full textPokorný, Jiří, Alberto Foletti, Jitka Kobilková, Anna Jandová, Jan Vrba, Jan Vrba, Martina Nedbalová, Aleš Čoček, Andrea Danani, and Jack A. Tuszyński. "Biophysical Insights into Cancer Transformation and Treatment." Scientific World Journal 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/195028.
Full textSchiliro, Chelsea, and Bonnie L. Firestein. "Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation." Cells 10, no. 5 (April 29, 2021): 1056. http://dx.doi.org/10.3390/cells10051056.
Full textDuda, Przemysław, Jakub Janczara, James A. McCubrey, Agnieszka Gizak, and Dariusz Rakus. "The Reverse Warburg Effect Is Associated with Fbp2-Dependent Hif1α Regulation in Cancer Cells Stimulated by Fibroblasts." Cells 9, no. 1 (January 14, 2020): 205. http://dx.doi.org/10.3390/cells9010205.
Full textMartinez-Outschoorn, Ubaldo E., Diana Whitaker-Menezes, Matias Valsecchi, Maria P. Martinez-Cantarin, Alina Dulau-Florea, Jerald Gong, Anthony Howell, et al. "Reverse Warburg Effect in a Patient With Aggressive B-Cell Lymphoma: Is Lactic Acidosis a Paraneoplastic Syndrome?" Seminars in Oncology 40, no. 4 (August 2013): 403–18. http://dx.doi.org/10.1053/j.seminoncol.2013.04.016.
Full textWilde, Lindsay, Megan Roche, Marina Domingo-Vidal, Katherina Tanson, Nancy Philp, Joseph Curry, and Ubaldo Martinez-Outschoorn. "Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development." Seminars in Oncology 44, no. 3 (June 2017): 198–203. http://dx.doi.org/10.1053/j.seminoncol.2017.10.004.
Full textFurlanello, Sara, Andrea Padoan, Thomas Brefort, Thomas Laufer, Carlo-Federico Zambon, Filippo Navaglia, Stefania Moz, Dania Bozzato, Giorgio Arrigoni, and Daniela Basso. "SMAD4 related transfer through exosomes of glycolytic enzymes and miR-1260a underlies the reverse Warburg effect in PDAC." Pancreatology 17, no. 3 (July 2017): S7. http://dx.doi.org/10.1016/j.pan.2017.05.022.
Full textManley, Sharon J., Wen Liu, and Danny R. Welch. "The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation." Journal of Molecular Medicine 95, no. 9 (June 8, 2017): 951–63. http://dx.doi.org/10.1007/s00109-017-1552-2.
Full textLi, Na, and Xianquan Zhan. "Multiomics-based energy metabolism heterogeneity and its regulation by antiparasite drug ivermectin." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e18080-e18080. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e18080.
Full textParkinson, E. Kenneth, Jerzy Adamski, Grit Zahn, Andreas Gaumann, Fabian Flores-Borja, Christine Ziegler, and Maria E. Mycielska. "Extracellular citrate and metabolic adaptations of cancer cells." Cancer and Metastasis Reviews 40, no. 4 (December 2021): 1073–91. http://dx.doi.org/10.1007/s10555-021-10007-1.
Full textMaués, Tábata, Táya Figueiredo de Oliveira, Kênia Balbi El-Jaick, Agnes Marie Sá Figueiredo, Maria De Lourdes Gonçalves Ferreira, and Ana Maria Reis Ferreira. "PGAM1 and TP53 mRNA levels in canine mammary carcinomas – Short communication." Acta Veterinaria Hungarica 69, no. 1 (June 5, 2021): 50–54. http://dx.doi.org/10.1556/004.2021.00008.
Full textKöpnick, Anna-Lena, Annika Jansen, Katharina Geistlinger, Nathan Hugo Epalle, and Eric Beitz. "Basigin drives intracellular accumulation of l-lactate by harvesting protons and substrate anions." PLOS ONE 16, no. 3 (March 26, 2021): e0249110. http://dx.doi.org/10.1371/journal.pone.0249110.
Full textReiter, Russel J., Ramaswamy Sharma, Qiang Ma, Sergio Rosales-Corral, Dario Acuna-Castroviejo, and Germaine Escames. "Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy." Melatonin Research 2, no. 3 (August 31, 2019): 105–19. http://dx.doi.org/10.32794/mr11250033.
Full textFu, Yaojie, Shanshan Liu, Shanghelin Yin, Weihong Niu, Wei Xiong, Ming Tan, Guiyuan Li, and Ming Zhou. "The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy." Oncotarget 8, no. 34 (May 25, 2017): 57813–25. http://dx.doi.org/10.18632/oncotarget.18175.
Full textZhang, G., J. Li, X. Wang, Y. Ma, X. Yin, F. Wang, H. Zheng, X. Duan, G. C. Postel, and X. F. Li. "The Reverse Warburg Effect and 18F-FDG Uptake in Non-Small Cell Lung Cancer A549 in Mice: A Pilot Study." Journal of Nuclear Medicine 56, no. 4 (February 26, 2015): 607–12. http://dx.doi.org/10.2967/jnumed.114.148254.
Full textOrdway, Bryce, Michal Tomaszewski, Samantha Byrne, Dominique Abrahams, Pawel Swietach, Robert J. Gillies, and Mehdi Damaghi. "Targeting of Evolutionarily Acquired Cancer Cell Phenotype by Exploiting pHi-Metabolic Vulnerabilities." Cancers 13, no. 1 (December 28, 2020): 64. http://dx.doi.org/10.3390/cancers13010064.
Full textEl-Sayed, Nahed N. E., Taghreed M. Al-Otaibi, Mona Alonazi, Vijay H. Masand, Assem Barakat, Zainab M. Almarhoon, and Abir Ben Bacha. "Synthesis and Characterization of Some New Quinoxalin-2(1H)one and 2-Methyl-3H-quinazolin-4-one Derivatives Targeting the Onset and Progression of CRC with SRA, Molecular Docking, and ADMET Analyses." Molecules 26, no. 11 (May 23, 2021): 3121. http://dx.doi.org/10.3390/molecules26113121.
Full textPavlides, Stephanos, Aristotelis Tsirigos, Iset Vera, Neal Flomenberg, Philippe G. Frank, Mathew C. Casimiro, Chenguang Wang, et al. "Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling"." Aging 2, no. 4 (March 31, 2010): 185–99. http://dx.doi.org/10.18632/aging.100134.
Full textPeng, Bo, Si-Yuan Zhang, Ka Iong Chan, Zhang-Feng Zhong, and Yi-Tao Wang. "Novel Anti-Cancer Products Targeting AMPK: Natural Herbal Medicine against Breast Cancer." Molecules 28, no. 2 (January 11, 2023): 740. http://dx.doi.org/10.3390/molecules28020740.
Full textHarrison, Mark A. A., Emily M. Hochreiner, Brooke P. Benjamin, Sean E. Lawler, and Kevin J. Zwezdaryk. "Metabolic Reprogramming of Glioblastoma Cells during HCMV Infection Induces Secretome-Mediated Paracrine Effects in the Microenvironment." Viruses 14, no. 1 (January 7, 2022): 103. http://dx.doi.org/10.3390/v14010103.
Full textAghakhani, Sahar, Sylvain Soliman, and Anna Niarakis. "Metabolic reprogramming in Rheumatoid Arthritis Synovial Fibroblasts: A hybrid modeling approach." PLOS Computational Biology 18, no. 12 (December 12, 2022): e1010408. http://dx.doi.org/10.1371/journal.pcbi.1010408.
Full textPavlides, Stephanos, Aristotelis Tsirigos, Iset Vera, Neal Flomenberg, Philippe G. Frank, Mathew C. Casimiro, Chenguang Wang, et al. "Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: A transcriptional informatics analysis with validation." Cell Cycle 9, no. 11 (June 2010): 2201–19. http://dx.doi.org/10.4161/cc.9.11.11848.
Full textPfeilstocker, Michael, Peter Wihlidal, Franz Varga, Elisabeth Pittermann, and Heidrun Karlic. "Imatinib Mesylate Induced Reversal of Leukemic Gene Phenotype in HL60 Cells Coincides with Stimulation of Oxidative Metabolism." Blood 110, no. 11 (November 16, 2007): 4190. http://dx.doi.org/10.1182/blood.v110.11.4190.4190.
Full textHuang, Kangyu, Bingqing Tang, Zihong Cai, Xianjun He, Qiuli Li, Nannan Liu, Dainan Lin, et al. "HDACi Targets IKZF1 Deletion High-Risk Acute Lymphoblastic Leukemia By Inducing IKZF1 Expression and Rescuing IKZF1 Function in Vitro and In Vivo." Blood 138, Supplement 1 (November 5, 2021): 514. http://dx.doi.org/10.1182/blood-2021-152926.
Full textCheng, Yao, Zhenchuan Ma, Shiyuan Liu, Xiaoping Yang, and Shaomin Li. "CircLPAR3 knockdown suppresses esophageal squamous cell carcinoma cell oncogenic phenotypes and Warburg effect through miR-873-5p/LDHA axis." Human & Experimental Toxicology 41 (January 2022): 096032712211436. http://dx.doi.org/10.1177/09603271221143695.
Full textSandforth, Leontine, Nourhane Ammar, Lisa Antonia Dinges, Christoph Röcken, Alexander Arlt, Susanne Sebens, and Heiner Schäfer. "Impact of the Monocarboxylate Transporter-1 (MCT1)-Mediated Cellular Import of Lactate on Stemness Properties of Human Pancreatic Adenocarcinoma Cells." Cancers 12, no. 3 (March 3, 2020): 581. http://dx.doi.org/10.3390/cancers12030581.
Full textYang, Ronghua, and Caihong Guo. "Discovery of potent pyruvate dehydrogenase kinase inhibitors and evaluation of their anti-lung cancer activity under hypoxia." MedChemComm 9, no. 11 (2018): 1843–49. http://dx.doi.org/10.1039/c8md00453f.
Full textKaiser, Alexander, Thomas Krüger, Gabriele Eiselt, Joachim Bechler, Olaf Kniemeyer, Otmar Huber, and Martin Schmidt. "Identification of PARP-1, Histone H1 and SIRT-1 as New Regulators of Breast Cancer-Related Aromatase Promoter I.3/II." Cells 9, no. 2 (February 12, 2020): 427. http://dx.doi.org/10.3390/cells9020427.
Full textColoff, Jonathan L., and Jeffrey C. Rathmell. "Metabolic regulation of Akt: roles reversed." Journal of Cell Biology 175, no. 6 (December 11, 2006): 845–47. http://dx.doi.org/10.1083/jcb.200610119.
Full textWang, Rui, Sheng-Yuan Wang, Yue Wang, Rui Xin, Bing Xia, Ye Xin, Tong Zhang, and Yong-Hui Wu. "The Warburg effect promoted the activation of the NLRP3 inflammasome induced by Ni-refining fumes in BEAS-2B cells." Toxicology and Industrial Health 36, no. 8 (August 2020): 580–90. http://dx.doi.org/10.1177/0748233720937197.
Full text