Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Durable materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Durable materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Durable materials"
Nickels, Liz. „Durable materials“. Reinforced Plastics 61, Nr. 5 (September 2017): 274–75. http://dx.doi.org/10.1016/j.repl.2017.01.047.
Der volle Inhalt der QuelleXUE, Xiao, Hui ZHANG, HongWei ZHU und Zhong ZHANG. „Durable superhydrophobic nanocomposite materials“. SCIENTIA SINICA Physica, Mechanica & Astronomica 48, Nr. 9 (09.08.2018): 094605. http://dx.doi.org/10.1360/sspma2018-00195.
Der volle Inhalt der QuelleTrebin, Hans Rainer. „Cracked Crystals — Durable Materials“. German Research 23, Nr. 2-3 (Mai 2001): 46–47. http://dx.doi.org/10.1002/1522-2322(200105)23:2/3<46::aid-germ46>3.0.co;2-j.
Der volle Inhalt der QuelleBurns, David M., Norbert L. Johnson und Lee A. Pavelka. „Colorimetry of durable fluorescent retroreflective materials“. Color Research & Application 20, Nr. 2 (April 1995): 93–107. http://dx.doi.org/10.1002/col.5080200205.
Der volle Inhalt der QuelleBeatty, Danielle N., Sarah L. Williams und Wil V. Srubar. „Biomineralized Materials for Sustainable and Durable Construction“. Annual Review of Materials Research 52, Nr. 1 (01.07.2022): 411–39. http://dx.doi.org/10.1146/annurev-matsci-081720-105303.
Der volle Inhalt der QuelleQu, Mengnan, Jinmei He, Sun Zhe, Kanshe Li, Xiangrong Liu und Chunxia Yu. „Fabrication of Mechanical Durable Polysiloxane Superhydrophobic Materials“. Journal of Nanomaterials 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/284685.
Der volle Inhalt der QuelleKondo, Hirofumi, Lee Sungkil und Hideaki Hanaoka. „Durable Anti-Smudge Materials for Display Terminals“. Tribology Transactions 52, Nr. 1 (22.12.2008): 29–35. http://dx.doi.org/10.1080/10402000802044357.
Der volle Inhalt der QuelleWu, Lei, Junping Zhang, Bucheng Li, Ling Fan, Lingxiao Li und Aiqin Wang. „Facile preparation of super durable superhydrophobic materials“. Journal of Colloid and Interface Science 432 (Oktober 2014): 31–42. http://dx.doi.org/10.1016/j.jcis.2014.06.046.
Der volle Inhalt der QuelleStoddart, Alison. „Durable delivery“. Nature Materials 13, Nr. 7 (20.06.2014): 664. http://dx.doi.org/10.1038/nmat4024.
Der volle Inhalt der QuelleTheodore, Ares N., Marsha A. Samus und Paul C. Killgoar. „Environmentally durable elastomer materials for windshield wiper blades“. Industrial & Engineering Chemistry Research 31, Nr. 12 (Dezember 1992): 2759–64. http://dx.doi.org/10.1021/ie00012a020.
Der volle Inhalt der QuelleDissertationen zum Thema "Durable materials"
Minardi, Lisa M. „Of massive stones and durable materials architecture and community in eighteenth-century Trappe, Pennsylvania /“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 1.51 Mb., 132 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:1435853.
Der volle Inhalt der QuelleJin, Yanya. „Development of materials criticality profiling methodology at product level“. Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0004/document.
Der volle Inhalt der QuelleRare earth crisis in 2010 showed the importance of some materials and whipped up interest in the research on material criticality. A review work was first conducted in order to get a better understanding of the existing work in this research area and to see where more work is needed. Based on this review, three research gaps were identified (lack of a comprehensive diagnosis of criticality; lack of evaluation methodology at the product level; lack of links between the mechanism of criticality, the evaluation methodology and the solutions offered. This thesis focuses on the two first research gaps and offers several ideas for the last one. Regarding diagnosis of criticality, the mechanism is illustrated under four dimensions: imbalance between supply and demand, importance of the material to product, supply accessibility and dynamic factors. A definition of criticality is also put forward. Considering the established mechanism as research core, a methodology to evaluate the criticality of materials at the product level has been developed and is completed with a concrete and quantitative model. The methodology offers guidance on how to assess criticality and sets a framework for evaluation. The model illustrates a way to use this methodology through a tool that assigns a ‘criticality score’ to materials and shows how the score is contributed. The calculations were automated in Excel. Two applications, one for permanent magnet and the other for light emitting diode, were conducted to demonstrate and improve the methodology and the model
Nicholls, J. C. „Extending the range of durable road surfacings that both provide safety and minimise environmental impact“. Thesis, University of Ulster, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299083.
Der volle Inhalt der QuelleManley, Alan H. G. „Attitudinal perception of cosmetic wear and damage of materials within the use phase of portable electronic products“. Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/36225.
Der volle Inhalt der QuelleLin, Shun Yuk. „Synthesis and characterization of nano-emulsion for the enhancement of mechanical properties of durable press finishing cotton apparels /“. View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CENG%202005%20LIN.
Der volle Inhalt der QuelleMonsaingeon, Baptiste. „Le déchet durable : éléments pour une socio-anthropologie du déchet ménager“. Thesis, Paris 1, 2014. http://www.theses.fr/2014PA010654/document.
Der volle Inhalt der QuelleOver the past forty years, household waste and its management have been assimilated to a global environmental issue. While sustainable development is becoming a pressing issue, the number of our garbage bins is increasing. So what is it that we aim to preserve when we are dutifully sorting out our garbage? Between the very local gesture of discarding and the global environmental issue, there is a tremendous gap. The link between everyday practices of waste and environmental issues is so underdetermined that it has to be analysed. The main claim of this dissertation is that despite a growing concern with environment and the increasing time and space devoted to waste management, we remain unaware of the social, technological and material issues at stake. Because of this individual and collective blindness waste is not seen as a clue: as its memorial function is neglected waste is still perceived as what has to disappear, as a material quantity that has to be controlled and eliminated. The en-durable waste is an oxymoron that leads to further investigate the multiple modes of presence of waste in today’s life. Inspired by the personae of the ragman and of the archaeologist, this socio-anthropological investigation follows household waste from uncertain oceans of plastic to few Parisian vermicompost bins. Based on this confrontation to the materiality of waste, to the territories and to practices of wasting, this dissertation claims that where the unavoidable presence of waste is described as a problem, it is question of our presence to waste that is at stake
Zhu, Honggang. „Development of epoxy-organoclay nanocomposite as high performance coating and as matrix material of durable GFRP composite for civil engineering applications /“. View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202009%20ZHU.
Der volle Inhalt der QuelleYao, Yuan. „Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts“. Scholarly Commons, 2012. https://scholarlycommons.pacific.edu/uop_etds/155.
Der volle Inhalt der QuelleChen, Tao. „UTILIZATION OF BIO-RENEWABLE LIGNIN IN BUILDING HIGH CAPACITY, DURABLE, AND LOW-COST SILICON-BASED NEGATIVE ELECTRODES FOR LITHIUM-ION BATTERIES“. UKnowledge, 2017. http://uknowledge.uky.edu/cme_etds/75.
Der volle Inhalt der QuelleGlogic, Edis. „Vers des matériaux énergétiques durables : élargissement de l'analyse du cycle de vie pour le développement de technologies émergentes et des choix économes en ressources“. Thesis, Bordeaux, 2019. https://tel.archives-ouvertes.fr/tel-02869841.
Der volle Inhalt der QuelleEnergy materials are particularly important from a sustainability perspective for advancing renewable energy systems, including energy production and storage. Their appropriate use and development require quantitative assessment methods. Life Cycle Assessment (LCA) is a method to support sustainable development that can be used to identify environmental hotspots and compare different technologies. The purpose of this research is to support development of several energy materials and make LCA a more relevant tool for sustainability assessment by extending its use in two emerging directions: assessment of technologies at the early stage of development, and by supporting more resource-effective choices for a circular economy.The research objectives focus on informing the development of technologies and identifying methodological challenges and opportunities by applying LCA to three energy-technology case studies, each at a different technological maturity level. In the first case study, alkaline batteries, currently at a high maturity level (incumbent products), are evaluated using LCA in combination with a circular economy indicator, the Material Circularity Indicator (MCI). The aim was to investigate opportunities to combine the two methods, while considering trade-offs between indicators for different strategies for battery design and management. In the second case study, nickel-cobalt hydroxide charge storage electrodes, currently at a low maturity level (laboratory-scale), are evaluated to investigate environmental hotspots and preferred synthesis route. In the third case study, organic photovoltaic portable chargers for small electronics, currently at a medium maturity level (pilot-scale), are evaluated for replacing conventional electricity grid for charging a mobile phone
Bücher zum Thema "Durable materials"
Binders for durable and sustainable concrete. London: Taylor & Francis, 2008.
Den vollen Inhalt der Quelle findenSAE Commercial Aircraft Composite Repair Committee., Hrsg. Design of durable, repairable, and maintainable aircraft composites. Warrendale, Pa: Society of Automotive Engineers, 1997.
Den vollen Inhalt der Quelle findenCanada. Public Works Canada. Technology, Architectural & Engineering Services, Hrsg. Durable buildings phase II: Performance and durability of building materials. [Ottawa]: Public Works Canada, 1992.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Test plans, lightweight durable TPS tasks, 1,2,4,5, and 6. [Downey, Calif.]: Rockwell Aerospace, Space Systems Division, 1994.
Den vollen Inhalt der Quelle findenLéon-Etienne, Parent, und Ilnicki Piotr, Hrsg. Organic soils and peat materials for sustainable agriculture. Boca Raton, Fla: CRC Press, 2003.
Den vollen Inhalt der Quelle findenBuclet, Nicolas. Écologie industrielle et territoriale: Stratégies locales pour un développement durable. Villeneuve d'Ascq, France: Presses universitaires du Septentrion, 2011.
Den vollen Inhalt der Quelle findenInterior finish materials for health care facilities: A reference source for all installations where durable surfaces are needed. Springfield, Ill., U.S.A: Thomas, 1988.
Den vollen Inhalt der Quelle findenJoshi, Ramesh C. Durable and high strength concrete with 40% or more fly ash in place of cement. [Edmonton, Alta.]: Alberta Municipal Affairs, Innovative Housing Grants Program, 1991.
Den vollen Inhalt der Quelle findenDéveloppement durable et intelligence des matériaux: Regards croisées franco-brésiliens sur les pratiques du bâtiment et de la construction. Paris: Harmattan, 2011.
Den vollen Inhalt der Quelle findenAbbas, Ala R. Nighttime visibility of 3M AWP and 3M 380WR ES durable tape under dry, wet, and rainy conditions. Columbus]: Ohio Dept. of Transportation, Research & Development, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Durable materials"
Nicholls, Cliff, Kathrin Kubanek, Carsten Karcher, Andreas Hartmann, Adewole Adesiyun, Aleksander Ipavec, Jozef Komačka und Erik Nielsen. „Durable Pothole Repairs“. In Materials and Infrastructures 1, 317–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119318583.ch23.
Der volle Inhalt der QuelleFerreira, A. J. M., P. P. Camanho, M. Cristina Fernandes, M. A. V. Figueiredo und A. A. Fernandes. „Highly Durable Precast Special Concrete“. In Materials for Buildings and Structures, 41–47. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606211.ch7.
Der volle Inhalt der QuelleLewis, Keith L., Andrew M. Pitt, Desmond R. Gibson und Ewan M. Waddell. „Ultra-Durable Coatings Using Phosphide Materials“. In Protective Coatings and Thin Films, 553–64. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5644-8_43.
Der volle Inhalt der QuelleMorsy, Rana, und Sohair Ghoniem. „Using Waste Materials in Durable Environmentally Friendly Concrete“. In RILEM Bookseries, 305–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76551-4_28.
Der volle Inhalt der QuelleBrüggemann, Oliver. „Molecularly Imprinted Materials — Receptors More Durable than Nature Can Provide“. In Advances in Biochemical Engineering/Biotechnology, 127–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45345-8_4.
Der volle Inhalt der QuelleBalabekov, O. S., A. I. Ainabekov und Ye P. Sukhenko. „Steels Durable Strength in the Presence of Cavitational Wear“. In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials—3, 853–58. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2860-5_135.
Der volle Inhalt der QuelleHalloran, John W., und Zuimdie Guerra. „Carbon Building Materials from Coal Char: Durable Materials for Solid Carbon Sequestration to Enable Hydrogen Production by Coal Pyrolysis“. In Ceramic Transactions Series, 61–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118019467.ch6.
Der volle Inhalt der QuelleFrauzel, Flavia. „Epigraphic Stratigraphy: is There Any Trace of the Ostrogoths in Early Medieval “Layers” (6th-9th Century)?“ In Reti Medievali E-Book, 149–88. Florence: Firenze University Press, 2022. http://dx.doi.org/10.36253/978-88-5518-664-3.11.
Der volle Inhalt der QuelleSoman, Ranjith K., Dragana Nikolić und Benjamin Sanchez. „Extended Reality as a Catalyst for Circular Economy Transition in the Built Environment“. In Circular Economy and Sustainability, 171–93. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-39675-5_10.
Der volle Inhalt der QuelleWan Ramli, Wan Syahira, Mohd Isyraf Irfan Mat Zin, Mohd Shaiful Zaidi Mat Desa und Azizan Ramli. „“Return-To-Work”: Application of New Materials to Develop the Durable and Low Cost of Solid Ankle Cushion Heel (SACH) Prosthetic Foot“. In Human-Centered Technology for a Better Tomorrow, 475–83. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4115-2_38.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Durable materials"
WoIlam, John S., und Brian W. Murray. „Space-Durable Beryllium Baffle Materials“. In SPIE 1989 Technical Symposium on Aerospace Sensing, herausgegeben von Robert R. Hale. SPIE, 1989. http://dx.doi.org/10.1117/12.960950.
Der volle Inhalt der QuelleBrock, L. „Renewable and durable building materials“. In ECO-ARCHITECTURE 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/arc100291.
Der volle Inhalt der QuelleSarles, Stephen A., und Donald J. Leo. „Encapsulated Interface Bilayers for Durable Biomolecular Materials“. In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3752.
Der volle Inhalt der QuelleWerner, Thomas R., J. Allen Cox, Bernard S. Fritz, Jon K. Nisper und Gina R. Kritchevsky. „Replicated hybrid optics in durable materials: test results“. In Optoelectronics and High-Power Lasers & Applications, herausgegeben von Ivan Cindrich und Sing H. Lee. SPIE, 1998. http://dx.doi.org/10.1117/12.310572.
Der volle Inhalt der QuelleThomas, M. E. „Low-level background absorption in durable window materials“. In SPIE Defense + Security, herausgegeben von Brian J. Zelinski. SPIE, 2017. http://dx.doi.org/10.1117/12.2263570.
Der volle Inhalt der Quelle„Durable Concrete Containing Three or Four Cementitious Materials“. In SP-170: Fourth CANMET/ACI International Conference on Durability of Concrete. American Concrete Institute, 1997. http://dx.doi.org/10.14359/6828.
Der volle Inhalt der QuelleZorica, Jelizaveta, Maris Sinka, Genadijs Sahmenko und Diana Bajare. „Improved Magnesium Cement for Durable Hemp Composite Boards“. In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.413.
Der volle Inhalt der QuelleJankowski, Piotr, und Dorota Kijowska. „Water-thinnable polymers for durable coatings for different materials“. In TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876784.
Der volle Inhalt der QuelleBackhouse, Andrew, und Sukanya Hägg Mameng. „Duplex stainless steels: sustainable materials for highly durable structures“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1619.
Der volle Inhalt der QuelleVerdier, S., E. Rohart, H. Bradshaw, D. Harris, Ph Bichon und G. Delahay. „Acidic Zirconia Materials for Durable NH3-SCR deNOx Catalysts“. In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-1022.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Durable materials"
Barnes, Teresa, Laura Schelhas, Cliff Hansen, Lindsay Steinman und Anubhav Jain. Durable Module Materials (DuraMAT) Consortium Final Technical Report. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1962808.
Der volle Inhalt der QuelleLarimer, Curtis, Raymond Addleman, Wilaiwan Chouyyok und Samuel Pennell. Durable Super-Repellant Materials for Stretchable and Flexible Personal Protective Equipment. Office of Scientific and Technical Information (OSTI), März 2022. http://dx.doi.org/10.2172/1985029.
Der volle Inhalt der QuelleJo, Hyungyung, Hyeyoung Son, Mitchell Rencheck, Jared Gohl, Devin Madigan, Hugh Grennan, Matthew Giroux, Trevor Thiele-Sardina, Chelsea S. Davis und Kendra A. Erk. Mechanical Properties of Durable Pavement Marking Materials and Adhesion on Asphalt Surfaces. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317357.
Der volle Inhalt der QuelleZhu, Jiahong. Development & Validation of Low-Cost, Highly-Durable, Spinel-Based Materials for SOFC Cathode-Side Contact. Office of Scientific and Technical Information (OSTI), Januar 2023. http://dx.doi.org/10.2172/1922229.
Der volle Inhalt der QuelleSeo, Han Gil, und Harry Tuller. Robust highly durable solid oxide fuel cell cathodes – Improved materials compatibility & self-regulating surface chemistry. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1960547.
Der volle Inhalt der QuelleLaw, C. C., und M. J. Blackburn. Rapidly Solidified Lightweight Durable Disk Material. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1987. http://dx.doi.org/10.21236/ada191697.
Der volle Inhalt der QuelleCheng, DingXin, Gary Hicks und Roger D. Smith. Manual for Asphalt Pavement Repair and Resurfacing Preparation. Mineta Transportation Institute, Juli 2022. http://dx.doi.org/10.31979/mti.2022.2103.
Der volle Inhalt der QuelleWi, Jungyeon. Preventing Styrofoam in Marine Environment through Eco-friendly, Durable Bivalve Buoys of Reduced Impact through structural modification. Intellectual Archive, September 2022. http://dx.doi.org/10.32370/iaj.2729.
Der volle Inhalt der QuelleMoore, Peter, Bethany Hannah, Jasper de Vries, Marijn Poortvliet, Ron Steffens und Cathelijne R. Stoof. Gestión de Incendios Forestales durante COVID-19. Informe 1, Revisión de materiales. Wageningen: Universidad de Wageningen, 2020. http://dx.doi.org/10.18174/521686.
Der volle Inhalt der QuelleWhisler, Daniel, Rafael Gomez Consarnau und Ryan Coy. Novel Eco-Friendly, Recycled Composites for Improved CA Road Surfaces. Mineta Transportation Institute, Juli 2021. http://dx.doi.org/10.31979/mti.2021.2046.
Der volle Inhalt der Quelle