Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SECURING INDUSTRIAL IOT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SECURING INDUSTRIAL IOT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SECURING INDUSTRIAL IOT"
Chen, Chien-Ying, Monowar Hasan und Sibin Mohan. „Securing Real-Time Internet-of-Things“. Sensors 18, Nr. 12 (10.12.2018): 4356. http://dx.doi.org/10.3390/s18124356.
Der volle Inhalt der QuelleDhirani, Lubna Luxmi, Eddie Armstrong und Thomas Newe. „Industrial IoT, Cyber Threats, and Standards Landscape: Evaluation and Roadmap“. Sensors 21, Nr. 11 (05.06.2021): 3901. http://dx.doi.org/10.3390/s21113901.
Der volle Inhalt der QuelleMahmood, Mohammed, und Jassim Abdul-Jabbar. „Securing Industrial Internet of Things (Industrial IoT)- A Reviewof Challenges and Solutions“. Al-Rafidain Engineering Journal (AREJ) 28, Nr. 1 (01.03.2023): 312–20. http://dx.doi.org/10.33899/rengj.2022.135292.1196.
Der volle Inhalt der QuelleGeorge, Gemini, und Sabu M. Thampi. „A Graph-Based Security Framework for Securing Industrial IoT Networks From Vulnerability Exploitations“. IEEE Access 6 (2018): 43586–601. http://dx.doi.org/10.1109/access.2018.2863244.
Der volle Inhalt der QuelleDakhnovich, A. D., D. A. Moskvin und D. P. Zegzhda. „Approach for Securing Network Communications Modelling Based on Smart Multipath Routing“. Nonlinear Phenomena in Complex Systems 23, Nr. 4 (04.12.2020): 386–96. http://dx.doi.org/10.33581/1561-4085-2020-23-4-386-396.
Der volle Inhalt der QuelleYas, Harith, und Manal M. Nasir. „Securing the IoT: An Efficient Intrusion Detection System Using Convolutional Network“. Journal of Cybersecurity and Information Management 1, Nr. 1 (2020): 30–37. http://dx.doi.org/10.54216/jcim.010105.
Der volle Inhalt der QuelleKurdi, Hassan, und Vijey Thayananthan. „A Multi-Tier MQTT Architecture with Multiple Brokers Based on Fog Computing for Securing Industrial IoT“. Applied Sciences 12, Nr. 14 (16.07.2022): 7173. http://dx.doi.org/10.3390/app12147173.
Der volle Inhalt der QuelleElkanishy, Abdelrahman, Paul M. Furth, Derrick T. Rivera und Ahameed A. Badawy. „Low-overhead Hardware Supervision for Securing an IoT Bluetooth-enabled Device: Monitoring Radio Frequency and Supply Voltage“. ACM Journal on Emerging Technologies in Computing Systems 18, Nr. 1 (31.01.2022): 1–28. http://dx.doi.org/10.1145/3468064.
Der volle Inhalt der QuelleKristen, Erwin, Reinhard Kloibhofer, Vicente Hernández Díaz und Pedro Castillejo. „Security Assessment of Agriculture IoT (AIoT) Applications“. Applied Sciences 11, Nr. 13 (23.06.2021): 5841. http://dx.doi.org/10.3390/app11135841.
Der volle Inhalt der QuelleJuma, Mazen, Fuad AlAttar und Basim Touqan. „Securing Big Data Integrity for Industrial IoT in Smart Manufacturing Based on the Trusted Consortium Blockchain (TCB)“. IoT 4, Nr. 1 (06.02.2023): 27–55. http://dx.doi.org/10.3390/iot4010002.
Der volle Inhalt der QuelleDissertationen zum Thema "SECURING INDUSTRIAL IOT"
Milinic, Vasilije. „Investigating Security Issues in Industrial IoT: A Systematic Literature Review“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54980.
Der volle Inhalt der QuelleKadhum, Hamza. „Enhancing Zigbee Security for Industrial Implementation“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279559.
Der volle Inhalt der QuelleZigbee nätverk är ett populärt val vid uppsättning av ett nätverk med låg strömförbrukning. Zigbees användningsområde är olika men den är väldigt populär inom industriell områdesövervakning och hemautomation. Däremot har Zigbees säkerhet varit en nackdel, då det har framkommit att den inte möter kraven för industriell användning. Arbetet kom till genom ett samarbete med Ericsson och KTH för att undersöka Zigbee nätverks implementation och säkerhet. Arbetet bearbetar olika säkerhetslösningar för Zigbee nätverk och hur den kan implementeras för att uppnå långtidsanvändning utan batteribyte. Säkerhetslösningar bygger på public-key samt symmetric key kryptografi algoritmer för att förbättra och öka Zigbees säkerhet genom autentisering och tillåtelse av noder som ansluter sig till nätverket. Nätverkets konfiguration för långtidsanvändning redovisas genom att jämföra olika polling tidsintervaller mellan meddelanden. Långtidsanvändning utan batteribyte är viktigt för att nätverket kommer implementeras i ett avlägset område som är svåråtkomlig. Arbetet redovisar och jämföra olika lösningar för att öka säkerheten för Zigbee nätverk. Den optimala lösningen för att uppnå autentisering samt tillåtelse av noder som ansluter sig uppnås med nyckel skapande genom secret-splitting metoden. Metoden följer NIST rekommendationer och anses vara säker, därav uppfyller den kraven för industriell implementation. Nätverkets säkerhet ökar samt bibehåller ett nätverk med låg strömförbrukning.
Scata', Marialisa. „Security Analysis of ICT Systems based on Bio-Inspired Models“. Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1095.
Der volle Inhalt der QuelleArlotti, Luca. „Studio di fattibilità tecnico economico per l'automazione di un reparto presse tramite l'applicazione di cobot“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16184/.
Der volle Inhalt der QuelleBORA, NILUTPOL. „SECURING INDUSTRIAL IOT: GCN-BASED IDS IMPLEMENTATION AND A REVIEW OF TESTING FRAMEWORKS“. Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20410.
Der volle Inhalt der QuelleRasori, Marco. „Security & Privacy in Smart Cities and Industrial IoT“. Doctoral thesis, 2020. http://hdl.handle.net/2158/1200334.
Der volle Inhalt der QuelleGhufli, Suhail Mubarak Al. „Urban and industrial air pollution: engineering and strategic planning for environment security“. Thesis, 2011. http://localhost:8080/iit/handle/2074/6294.
Der volle Inhalt der QuelleRaposo, Duarte Miguel Garcia. „Monitoring Industrial Wireless Sensor Networks: A model to enhance Security and Reliability“. Doctoral thesis, 2020. http://hdl.handle.net/10316/88841.
Der volle Inhalt der QuelleA new generation of industrial systems are growing, in a new industrial evolution that connects wireless technologies with powerful devices, capable to make their own decisions. In the Industry 4.0 paradigm, industrial systems are becoming more powerful and complex in order to keep with the requirements needed to build Cyber Physical Systems (CPSs). To achieve such paradigm, Industrial Wireless Sensor Networks (IWSNs) are a key-technology capable to achieve micro-intelligence, with low-cost, and mobility, reducing even further today’s already short production cycles, and at the same time allowing new industrial applications. Specifically, in the last decade, more reliable and deterministic standards were proposed, all of them sharing the same base technology, the IEEE802.15.4 standard. At the same time, until now, Industrial Control Systems (ICSs) have remained disconnected from the Internet, relying in the airgap principle to ensure security. Nevertheless, there is a lack of post-deployment tools to monitor technologies like the WirelessHART, ISA100.11a, WIA-PA and the ZigBee standards, contrary to what happens with most common wired technologies. The lack of these tools can be explained by several characteristics present in current IoT devices like the fragmentation of the operating systems, the need to develop specific firmware for each application, different hardware architectures; etc. Thus, in this thesis, and looking for the current challenges of industrial IoT technologies, a monitoring model is proposed, capable not only to monitor current industrial networks based on the IEEE802.15.4 standard, but also the in-node components of sensor nodes, in several hardware and firmware architectures. The proposed architecture explores several techniques to obtain free monitoring metrics; agents in charge of processing these metrics; and relies in management standards to share all the monitoring information. To prove the performance of this proposal, a WirelessHART testbed was built, as well as the different components presented in the architectural model. Additionally, using representative anomalies, injected in a WirelessHART testbed, an Anomaly Detection system capable to detect network anomalies and security attacks was built, proving the effectiveness of the presented model in the network perspective. In the same way, in order to prove the effectiveness in the detection of firmware and hardware anomalies, an Anomaly Detection system for in-node components was also built. The two Anomaly Detection systems were able to detect with high recall and low false positive ratio the anomalies inserted in the systems, proving that the proposed model can be used as a post-deployment tool in real industrial scenarios.
Atualmente assiste-se a uma nova geração de sistemas industriais, numa evolução que junta tecnologias sem fios com dispositivos embebidos, cada vez mais inteligentes e capazes. No âmbito da Indústria 4.0, os sistemas industriais tornaram-se mais potentes e complexos, em resposta aos requisitos impostos pelos novos Sistemas Ciber-Físicos. No panorama atual, as Redes de Sensores Sem Fios Industriais são uma tecnologia-chave, capaz de fornecer micro-inteligência, e mobilidade, a um baixo-custo, reduzindo cada vez mais os ciclos de produção industrial, e permitindo novos tipos de aplicações. Por esta razão, durante a última década, várias tecnologias baseadas na norma IEEE802.15.4 foram desenvolvidas e propostas, oferecendo técnicas de transmissão mais fiáveis e determinísticas. Ainda, no domínio da segurança, assistimos também a uma mudança de paradigma neste tipo de sistemas. O paradigma utilizado até então, regia-se através de políticas de segurança que privilegiavam o isolamento. Porém, a conexão destes sistemas à Internet origina um novo conjunto de ameaças externas, que tem crescido progressivamente. De modo a manter a fiabilidade, as ferramentas de monitorização em ambiente de produção permitem uma constante monitorização dos sistemas, prevenindo eventuais falhas. Contudo, existe uma ausência de ferramentas para normas como o WirelessHART, ISA100.11a, WIA-PA e ZigBee, ao contrário do que acontece no caso das tecnologias legadas. Esta lacuna pode ser explicada pelas diferentes características presentes nos dispositivos IoT, como por exemplo, a fragmentação dos sistemas operativos, a necessidade de desenvolver firmware específico para cada aplicação, e os diferentes tipos de arquitecturas de hardware existentes. O trabalho desenvolvido nesta tese, apresenta um novo modelo de arquitetura de monitorização, não só capaz de monitorizar as tecnologias industriais baseadas na norma IEEE802.15.4, como também os próprios componentes internos dos nós-sensores (em diferentes arquiteturas de firmware e hardware). O modelo de arquitetura proposto apresenta técnicas que permitem obter métricas de estado sem custos, partilhadas através de protocolos de gestão, por agentes responsáveis pela respetiva aquisição. Para confirmar o baixo impacto da arquitetura proposta foi criada uma testbed utilizando a norma WirelessHART, com todos os agentes. Adicionalmente, para provar a eficácia e utilidade da arquitetura foram desenvolvidos dois sistemas de deteção de anomalias: o primeiro permite a deteção de anomalias de rede; e o segundo possibilita a deteção de anomalias no firmware e hardware nos nós-sensores. Estes sistemas foram avaliados, através da injeção de anomalias de rede, firmware e hardware. Os dois sistemas de deteção propostos conseguiram identificar os comportamentos anómalos com alto recall e baixo false positive ratio, provando assim, que o modelo proposto poderá ser utilizado como ferramenta de diagnóstico em redes de sensores sem fios industriais.
Manna, Michele La. „Applying Attribute-Based Encryption in IoT and Automotive Scenarios“. Doctoral thesis, 2022. http://hdl.handle.net/2158/1264303.
Der volle Inhalt der QuelleALSHAYA, SHAYA ABDULLAH. „A Comprehensive Cyber Security Enhancing Strategy for Industrial Control Systems in Oil Industry“. Doctoral thesis, 2017. http://hdl.handle.net/2158/1079706.
Der volle Inhalt der QuelleBücher zum Thema "SECURING INDUSTRIAL IOT"
Karimipour, Hadis, und Farnaz Derakhshan, Hrsg. AI-Enabled Threat Detection and Security Analysis for Industrial IoT. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76613-9.
Der volle Inhalt der QuelleElectronics, Maplin, Hrsg. Home security projects: [a collection of useful design ideas for security devices around the home]. Oxford: Butterworth-Heinemann, 1995.
Den vollen Inhalt der Quelle findenLobanov, Aleksey. Biomedical foundations of security. ru: INFRA-M Academic Publishing LLC., 2019. http://dx.doi.org/10.12737/1007643.
Der volle Inhalt der QuellePlaskova, Nataliya, und Natal'ya Prodanova. Economic analysis. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1069047.
Der volle Inhalt der QuelleGadzhiev, Nazirhan, Sergey Konovalenko und Mihail Trofimov. Theoretical aspects of the formation and development of the ecological economy in Russia. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1836240.
Der volle Inhalt der QuelleButun, Ismail. Industrial IoT: Challenges, Design Principles, Applications, and Security. Springer International Publishing AG, 2021.
Den vollen Inhalt der Quelle findenButun, Ismail. Industrial IoT: Challenges, Design Principles, Applications, and Security. Springer, 2020.
Den vollen Inhalt der Quelle findenLe, Dac-Nhuong, Souvik Pal und Vicente García Díaz. IoT: Security and Privacy Paradigm. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenLe, Dac-Nhuong, Souvik Pal und Vicente García Díaz. IoT: Security and Privacy Paradigm. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenIoT: Security and Privacy Paradigm. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "SECURING INDUSTRIAL IOT"
Kłos, Mateusz, und Imed El Fray. „Securing Event Logs with Blockchain for IoT“. In Computer Information Systems and Industrial Management, 77–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47679-3_7.
Der volle Inhalt der QuelleVijayalakshmi, S. R., und S. Muruganand. „Industrial Internet of Things (IIoT) and Smart Industries“. In Securing IoT in Industry 4.0 Applications with Blockchain, 51–79. Boca Raton: Auerbach Publications, 2021. http://dx.doi.org/10.1201/9781003175872-3.
Der volle Inhalt der QuelleSundaram, Saravana Kumari. „Industrial Internet of Things (IIoT) Applications“. In Securing IoT in Industry 4.0 Applications with Blockchain, 115–36. Boca Raton: Auerbach Publications, 2021. http://dx.doi.org/10.1201/9781003175872-5.
Der volle Inhalt der QuelleManzoor, Amir. „Securing Device Connectivity in the Industrial Internet of Things (IoT)“. In Computer Communications and Networks, 3–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33124-9_1.
Der volle Inhalt der QuelleNagarajan, G., R. I. Minu und T. Sasikala. „Intelligent Securing the Industrial IoT Data Based on Consensus Mechanism“. In Lecture Notes in Mechanical Engineering, 373–80. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7909-4_34.
Der volle Inhalt der QuelleVijayakumar, J., und R. Maheswaran. „PLC and SCADA as Smart Services in Industry 4.0 for Industrial Automation Techniques“. In Securing IoT in Industry 4.0 Applications with Blockchain, 297–318. Boca Raton: Auerbach Publications, 2021. http://dx.doi.org/10.1201/9781003175872-12.
Der volle Inhalt der QuelleMaji, Raghunath, Atreyee Biswas und Rituparna Chaki. „A Novel Proposal of Using NLP to Analyze IoT Apps Towards Securing User Data“. In Computer Information Systems and Industrial Management, 156–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84340-3_12.
Der volle Inhalt der QuelleAgrawal, Megha, Jianying Zhou und Donghoon Chang. „A Survey on Lightweight Authenticated Encryption and Challenges for Securing Industrial IoT“. In Security and Privacy Trends in the Industrial Internet of Things, 71–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12330-7_4.
Der volle Inhalt der QuelleAhmed, Monjur, Sapna Jaidka und Nurul I. Sarkar. „Security in Decentralised Computing, IoT and Industrial IoT“. In Industrial IoT, 191–211. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42500-5_5.
Der volle Inhalt der QuelleLedwaba, Lehlogonolo P. I., und Gerhard P. Hancke. „Security Challenges for Industrial IoT“. In Wireless Networks and Industrial IoT, 193–206. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51473-0_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SECURING INDUSTRIAL IOT"
Forsstrom, Stefan, Ismail Butun, Mohamed Eldefrawy, Ulf Jennehag und Mikael Gidlund. „Challenges of Securing the Industrial Internet of Things Value Chain“. In 2018 Workshop on Metrology for Industry 4.0 and IoT. IEEE, 2018. http://dx.doi.org/10.1109/metroi4.2018.8428344.
Der volle Inhalt der QuelleO'Raw, John, David Laverty und D. John Morrow. „Securing the Industrial Internet of Things for Critical Infrastructure (IIoT-CI)“. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT'19). IEEE, 2019. http://dx.doi.org/10.1109/wf-iot.2019.8767279.
Der volle Inhalt der QuelleUsman, Muhammad, und Nazar Abbas. „On the Application of IOT (Internet of Things) for Securing Industrial Threats“. In 2014 12th International Conference on Frontiers of Information Technology (FIT). IEEE, 2014. http://dx.doi.org/10.1109/fit.2014.16.
Der volle Inhalt der QuelleKolluru, Katyayani Kiranmayee, Cristina Paniagua, Jan van Deventer, Jens Eliasson, Jerker Delsing und Rance J. DeLong. „An AAA solution for securing industrial IoT devices using next generation access control“. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE, 2018. http://dx.doi.org/10.1109/icphys.2018.8390799.
Der volle Inhalt der QuelleMurray, Iain. „Keynote Address-2: Securing critical infrastructure and the IIoT“. In SLIIT 2nd International Conference on Engineering and Technology. SLIIT, 2023. http://dx.doi.org/10.54389/iqpv3890.
Der volle Inhalt der QuelleAsare, Bismark Tei, Kester Quist-Aphetsi und Laurent Nana. „A Hybrid Lightweight Cryptographic Scheme For Securing Node Data Based On The Feistel Cipher And MD5 Hash Algorithm In A Local IoT Network“. In 2019 International Conference on Mechatronics, Remote Sensing, Information Systems and Industrial Information Technologies (ICMRSISIIT). IEEE, 2019. http://dx.doi.org/10.1109/icmrsisiit46373.2020.9405869.
Der volle Inhalt der QuelleKumar, Rakesh, Bipin Kandpal und Vasim Ahmad. „Industrial IoT (IIOT): Security Threats and Countermeasures“. In 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA). IEEE, 2023. http://dx.doi.org/10.1109/icidca56705.2023.10100145.
Der volle Inhalt der QuelleNeville, Karen, und Philip Powell. „Securing Security through Education“. In 2003 Informing Science + IT Education Conference. Informing Science Institute, 2003. http://dx.doi.org/10.28945/2716.
Der volle Inhalt der QuelleNikolić, Vojkan, Zoran Stević, Stefana Janićijević und Dragan Kreculj. „Possibilities of IIOT application platforms in the electrical power systems“. In 8th International Conference on Renewable Electrical Power Sources. SMEITS, 2020. http://dx.doi.org/10.24094/mkoiee.020.8.1.255.
Der volle Inhalt der QuelleFabri, Vladimir, Miroslav Stefanović, Đorđe Pržulj, Teodora Vučković und Rogerio Dionisio. „INDUSTRIAL INTERNET OF THINGS (IIOT) - SECURITY WEAKNESSES AND MOST COMMON TYPES OF ATTACKS – A SYSTEMATIC LITERATURE REVIEW“. In 19th International Scientific Conference on Industrial Systems. Faculty of Technical Sciences, 2023. http://dx.doi.org/10.24867/is-2023-t4.1-9_05441.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "SECURING INDUSTRIAL IOT"
Falco, J., K. Stouffer, A. Wavering und F. Proctor. IT security for industrial control systems. Gaithersburg, MD: National Institute of Standards and Technology, 2002. http://dx.doi.org/10.6028/nist.ir.6859.
Der volle Inhalt der QuelleKelsey, Tom. When Missions Fail: Lessons in ‘High Technology’ From Post-War Britain. Blavatnik School of Government, Dezember 2023. http://dx.doi.org/10.35489/bsg-wp_2023/056.
Der volle Inhalt der QuelleHinojosa, Jorge Luis, Saúl Villamizar und Nathalia Gama. Green Hydrogen Opportunities for the Caribbean. Inter-American Development Bank, Januar 2023. http://dx.doi.org/10.18235/0004621.
Der volle Inhalt der QuelleCarlile, Rachel, Matthew Kessler und Tara Garnett. What is food sovereignty? TABLE, Mai 2021. http://dx.doi.org/10.56661/f07b52cc.
Der volle Inhalt der QuelleTorvikey, Gertrude Dzifa, und Fred Mawunyo Dzanku. In the Shadow of Industrial Companies: Class and Spatial Dynamics of Artisanal Palm Oil Processing in Rural Ghana. Institute of Development Studies (IDS), März 2022. http://dx.doi.org/10.19088/apra.2022.010.
Der volle Inhalt der QuelleHrytsenko, Olena. Sociocultural and informational and communication transformations of a new type of society (problems of preserving national identity and national media space). Ivan Franko National University of Lviv, Februar 2022. http://dx.doi.org/10.30970/vjo.2022.51.11406.
Der volle Inhalt der QuelleZholdayakova, Saule, Yerdaulet Abuov, Daulet Zhakupov, Botakoz Suleimenova und Alisa Kim. Toward a Hydrogen Economy in Kazakhstan. Asian Development Bank Institute, Oktober 2022. http://dx.doi.org/10.56506/iwlu3832.
Der volle Inhalt der QuelleHarangozó, Dániel. Serbia and the Russia–Ukraine War: Implications and Challenges II. Külügyi és Külgazdasági Intézet, 2022. http://dx.doi.org/10.47683/kkielemzesek.ke-2022.65.
Der volle Inhalt der QuelleWendt-Lucas, Nicola, und Ana de Jesus. The Role of 5G in the Transition to a Digital and Green Economy in the Nordic and Baltic Countries: Analytic Report. Nordregio, Juni 2023. http://dx.doi.org/10.6027/r2023:7.1403-2503.
Der volle Inhalt der QuelleLazonick, William, und Matt Hopkins. Why the CHIPS Are Down: Stock Buybacks and Subsidies in the U.S. Semiconductor Industry. Institute for New Economic Thinking Working Paper Series, September 2021. http://dx.doi.org/10.36687/inetwp165.
Der volle Inhalt der Quelle