To see the other types of publications on this topic, follow the link: 010101 Algebra and Number Theory.

Journal articles on the topic '010101 Algebra and Number Theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '010101 Algebra and Number Theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

W., H. C., and Michael Pohst. "Algorithmic Methods in Algebra and Number Theory." Mathematics of Computation 55, no. 192 (1990): 876. http://dx.doi.org/10.2307/2008461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Passow, Eli, and Theodore J. Rivlin. "Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory." Mathematics of Computation 58, no. 198 (1992): 859. http://dx.doi.org/10.2307/2153227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Askey, Richard. "CHEBYSHEV POLYNOMIALS From Approximation Theory to Algebra and Number Theory." Bulletin of the London Mathematical Society 23, no. 3 (1991): 311–12. http://dx.doi.org/10.1112/blms/23.3.311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borwein, Peter B. "Chebyshev polynomials: From approximation theory to algebra and number theory." Journal of Approximation Theory 66, no. 3 (1991): 353. http://dx.doi.org/10.1016/0021-9045(91)90038-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Charafi, A. "Chebyshev polynomials—From approximation theory to algebra and number theory." Engineering Analysis with Boundary Elements 9, no. 2 (1992): 190. http://dx.doi.org/10.1016/0955-7997(92)90065-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DOMOKOS, MÁTYÁS, and VESSELIN DRENSKY. "CONSTRUCTIVE NONCOMMMUTATIVE INVARIANT THEORY." Transformation Groups 26, no. 1 (2021): 215–28. http://dx.doi.org/10.1007/s00031-021-09643-2.

Full text
Abstract:
AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.
APA, Harvard, Vancouver, ISO, and other styles
7

Bezushchak, O. O., and B. V. Oliynyk. "Algebraic theory of measure algebras." Reports of the National Academy of Sciences of Ukraine, no. 2 (May 3, 2023): 3–9. http://dx.doi.org/10.15407/dopovidi2023.02.003.

Full text
Abstract:
A. Horn and A. Tarski initiated the abstract theory of measure algebras. Independently V. Sushchansky, B. Oliynyk and P. Cameron studied the direct limits of Hamming spaces. In the current paper, we introduce new examples of locally standard measure algebras and complete the classification of countable locally standard measure algebras. Countable unital locally standard measure algebras are in one-to-one correspondence with Steinitz numbers. Given a Steinitz number s such measure algebra is isomorphic to the Boolean algebra of s-periodic sequences of 0 and 1. Nonunital locally standard measure algebras are parametrized by pairs (s, r), where s is a Steinitz number and r is a real number greater or equal to 1. We also show that an arbitrary (not necessarily locally standard) measure algebra is embeddable in a metric ultraproduct of standard Hamming spaces. In other words, an arbitrary measure algebra is sofic.
APA, Harvard, Vancouver, ISO, and other styles
8

Charnow, A., and E. Charnow. "69.40 An Application of Algebra to Number Theory." Mathematical Gazette 69, no. 450 (1985): 292. http://dx.doi.org/10.2307/3617580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Бедратюк, Леонід Петрович, and Ганна Іванівна Бедратюк. "Computer algebra systems in the elementary number theory." Eastern-European Journal of Enterprise Technologies 6, no. 4(66) (2013): 10–13. http://dx.doi.org/10.15587/1729-4061.2013.18892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cheung, Y. L. "Learning number theory with a computer algebra system." International Journal of Mathematical Education in Science and Technology 27, no. 3 (1996): 379–85. http://dx.doi.org/10.1080/0020739960270308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yackel, C. A., and J. K. Denny. "Partial Fractions in Calculus, Number Theory, and Algebra." College Mathematics Journal 38, no. 5 (2007): 362–74. http://dx.doi.org/10.1080/07468342.2007.11922261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gaj, Kris, and Rainer Steinwandt. "Hardware architectures for algebra, cryptology, and number theory." Integration 44, no. 4 (2011): 257–58. http://dx.doi.org/10.1016/j.vlsi.2011.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Schultz, Kyle T. "Soft Drinks, Mind Reading, and Number Theory." Mathematics Teacher 103, no. 4 (2009): 278–83. http://dx.doi.org/10.5951/mt.103.4.0278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schultz, Kyle T. "Soft Drinks, Mind Reading, and Number Theory." Mathematics Teacher 103, no. 4 (2009): 278–83. http://dx.doi.org/10.5951/mt.103.4.0278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hartwig, Brian, and Paul Terwilliger. "The Tetrahedron algebra, the Onsager algebra, and the sl2 loop algebra." Journal of Algebra 308, no. 2 (2007): 840–63. http://dx.doi.org/10.1016/j.jalgebra.2006.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Adachi, Takahide, Osamu Iyama, and Idun Reiten. "-tilting theory." Compositio Mathematica 150, no. 3 (2013): 415–52. http://dx.doi.org/10.1112/s0010437x13007422.

Full text
Abstract:
AbstractThe aim of this paper is to introduce $\tau $-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field $k$ is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras $kQ$, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support) $\tau $-tilting modules, and show that an almost complete support $\tau $-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional $k$-algebra $\Lambda $, we establish bijections between functorially finite torsion classes in $ \mathsf{mod} \hspace{0.167em} \Lambda $, support $\tau $-tilting modules and two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$. Moreover, these objects correspond bijectively to cluster-tilting objects in $ \mathcal{C} $ if $\Lambda $ is a 2-CY tilted algebra associated with a 2-CY triangulated category $ \mathcal{C} $. As an application, we show that the property of having two complements holds also for two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$.
APA, Harvard, Vancouver, ISO, and other styles
17

Hadas, Ofer, Anne Henke та Amitai Regev. "ℤ2-Graded Number Theory". Communications in Algebra 34, № 8 (2006): 3077–95. http://dx.doi.org/10.1080/00927870600640086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gatermann, Karin, and Serkan Hosten. "Computational algebra for bifurcation theory." Journal of Symbolic Computation 40, no. 4-5 (2005): 1180–207. http://dx.doi.org/10.1016/j.jsc.2004.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Solberg, Øyvind. "Hopf algebra constructions and representation theory." Communications in Algebra 17, no. 7 (1989): 1775–86. http://dx.doi.org/10.1080/00927878908823819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Feldvoss, Jörg, and Daniel K. Nakano. "Representation Theory of the Witt Algebra." Journal of Algebra 203, no. 2 (1998): 447–69. http://dx.doi.org/10.1006/jabr.1997.7343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tang, Xin. "(Hopf) Algebra Automorphisms of the Hopf Algebra." Communications in Algebra 41, no. 8 (2013): 2996–3012. http://dx.doi.org/10.1080/00927872.2012.668992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gao, Jining. "L∞ algebra structures from Lie algebra deformations." Journal of Pure and Applied Algebra 208, no. 3 (2007): 779–84. http://dx.doi.org/10.1016/j.jpaa.2006.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Adin, Ron M., Alexander Postnikov, and Yuval Roichman. "Hecke Algebra Actions on the Coinvariant Algebra." Journal of Algebra 233, no. 2 (2000): 594–613. http://dx.doi.org/10.1006/jabr.2000.8441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Adamović, Dražen, and Ante Čeperić. "On Zhu's algebra and C2–algebra for symplectic fermion vertex algebra SF(d)+." Journal of Algebra 563 (December 2020): 376–403. http://dx.doi.org/10.1016/j.jalgebra.2020.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kleiner, Israel. "The Roots of Commutative Algebra in Algebraic Number Theory." Mathematics Magazine 68, no. 1 (1995): 3. http://dx.doi.org/10.2307/2691370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sobczyk, Garret. "The Missing Spectral Basis in Algebra and Number Theory." American Mathematical Monthly 108, no. 4 (2001): 336. http://dx.doi.org/10.2307/2695240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kleiner, Israel. "The Roots of Commutative Algebra in Algebraic Number Theory." Mathematics Magazine 68, no. 1 (1995): 3–15. http://dx.doi.org/10.1080/0025570x.1995.11996267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sobczyk, Garret. "The Missing Spectral Basis in Algebra and Number Theory." American Mathematical Monthly 108, no. 4 (2001): 336–46. http://dx.doi.org/10.1080/00029890.2001.11919757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Patil, D. P., C. R. Pranesachar, and Renuka Ravindran. "The work of lagrange in number theory and algebra." Resonance 11, no. 4 (2006): 10–25. http://dx.doi.org/10.1007/bf02835727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Varro, Richard. "Gonosomal algebra." Journal of Algebra 447 (February 2016): 1–30. http://dx.doi.org/10.1016/j.jalgebra.2015.09.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Szántó, Csaba. "A GENERIC HALL ALGEBRA OF THE KRONECKER ALGEBRA." Communications in Algebra 33, no. 8 (2005): 2519–40. http://dx.doi.org/10.1081/agb-200065132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nichols, Warren D., and M. Bettina Richmond. "The grothendieck algebra of a hopf algebra, i." Communications in Algebra 26, no. 4 (1998): 1081–95. http://dx.doi.org/10.1080/00927879808826185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Costa, R., L. S. Ikemoto, and A. Suazo. "On the multiplication algebra of a bernstein algebra*." Communications in Algebra 26, no. 11 (1998): 3727–36. http://dx.doi.org/10.1080/00927879808826369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ziplies, Dieter. "Abelianizing the divided powers algebra of an algebra." Journal of Algebra 122, no. 2 (1989): 261–74. http://dx.doi.org/10.1016/0021-8693(89)90215-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Parshall, Karen Hunger, A. N. Kolmogorov, and A. P. Yushkevich. "Mathematics of the 19th Century: Mathematical Logic, Algebra, Number Theory Probability Theory." American Mathematical Monthly 101, no. 4 (1994): 369. http://dx.doi.org/10.2307/2975639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Karve, Aneesh, and Sebastian Pauli. "GiANT: Graphical Algebraic Number Theory." Journal de Théorie des Nombres de Bordeaux 18, no. 3 (2006): 721–27. http://dx.doi.org/10.5802/jtnb.569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Granville, Andrew. "Pretentiousness in analytic number theory." Journal de Théorie des Nombres de Bordeaux 21, no. 1 (2009): 159–73. http://dx.doi.org/10.5802/jtnb.664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Graham, Ronald L., Jeffrey C. Lagarias, Colin L. Mallows, Allan R. Wilks, and Catherine H. Yan. "Apollonian circle packings: number theory." Journal of Number Theory 100, no. 1 (2003): 1–45. http://dx.doi.org/10.1016/s0022-314x(03)00015-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Hai Yan, and Xin Song Yang. "On Normal Sequence in Abelian Group Cn⊕Cn." Advanced Materials Research 981 (July 2014): 255–57. http://dx.doi.org/10.4028/www.scientific.net/amr.981.255.

Full text
Abstract:
Electronic information technology is based on expression, storage, transmission, and process of information. Information expression is usually generalized as information coding technology, one of whose heart theories is combinatorial number theory in algebra. In the process of storing, transmitting, and processing of electronic information technology, problems about encryption and safety need to use algebra theories of group, ring, and domain. It is thus clear that algebra is very important in electronic information theory. This paper makes use of abelian group basic theory of algebra, together with combination number theory, discusses construction problem of normal sequence in of abelian group, and gives several sufficient conditions for a guess establishment of W.D.Gao.
APA, Harvard, Vancouver, ISO, and other styles
40

Kanuni̇, Müge, and Murad Özaydin. "Cohn–Leavitt path algebras and the invariant basis number property." Journal of Algebra and Its Applications 18, no. 05 (2019): 1950086. http://dx.doi.org/10.1142/s0219498819500865.

Full text
Abstract:
We give the necessary and sufficient condition for a separated Cohn–Leavitt path algebra of a finite digraph to have Invariant Basis Number (IBN). As a consequence, separated Cohn path algebras have IBN. We determine the non-stable K-theory of a corner ring in terms of the non-stable K-theory of the ambient ring. We give a necessary condition for a corner algebra of a separated Cohn–Leavitt path algebra of a finite graph to have IBN. We provide Morita equivalent rings which are non-IBN, but are of different types.
APA, Harvard, Vancouver, ISO, and other styles
41

Murphy, Gerald J. "The C*-Algebra of a Function Algebra." Integral Equations and Operator Theory 47, no. 3 (2003): 361–74. http://dx.doi.org/10.1007/s00020-002-1167-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shomron, Noam, and Beresford N. Parlett. "Linear Algebra meets Lie Algebra: The Kostant–Wallach theory." Linear Algebra and its Applications 431, no. 10 (2009): 1745–67. http://dx.doi.org/10.1016/j.laa.2009.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Beidar, K. I., and M. A. Chebotar. "When Is a Graded PI Algebra a PI Algebra?" Communications in Algebra 31, no. 6 (2003): 2951–64. http://dx.doi.org/10.1081/agb-120021901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Costa, R., and A. Suazo. "The multiplication algebra of a bernstein algebra: basic results." Communications in Algebra 24, no. 5 (1996): 1809–21. http://dx.doi.org/10.1080/00927879608825673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Pu. "Indecomposables in the composition algebra of the kronecker algebra." Communications in Algebra 27, no. 10 (1999): 4633–39. http://dx.doi.org/10.1080/00927879908826720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Brown, Peter. "The Ext-Algebra of a Representation-Finite Biserial Algebra." Journal of Algebra 221, no. 2 (1999): 611–29. http://dx.doi.org/10.1006/jabr.1999.8001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fialowski, Alice, and Friedrich Wagemann. "Associative algebra deformations of Connes–Moscovici's Hopf algebra H1." Journal of Algebra 323, no. 7 (2010): 2026–40. http://dx.doi.org/10.1016/j.jalgebra.2009.12.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Angeltveit, Vigleik. "Uniqueness of MoravaK-theory." Compositio Mathematica 147, no. 2 (2010): 633–48. http://dx.doi.org/10.1112/s0010437x10005026.

Full text
Abstract:
AbstractWe show that there is an essentially uniqueS-algebra structure on the MoravaK-theory spectrumK(n), whileK(n) has uncountably manyMUor$\widehat {E(n)}$-algebra structures. Here$\widehat {E(n)}$is theK(n)-localized Johnson–Wilson spectrum. To prove this we set up a spectral sequence computing the homotopy groups of the moduli space ofA∞structures on a spectrum, and use the theory ofS-algebrak-invariants for connectiveS-algebras found in the work of Dugger and Shipley [Postnikov extensions of ring spectra, Algebr. Geom. Topol.6(2006), 1785–1829 (electronic)] to show that all the uniqueness obstructions are hit by differentials.
APA, Harvard, Vancouver, ISO, and other styles
49

Carter, R. W. "Representation theory of the 0-Hecke algebra." Journal of Algebra 104, no. 1 (1986): 89–103. http://dx.doi.org/10.1016/0021-8693(86)90238-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhu, Ping, and Yongzhi Cao. "Cyclotomic blob algebra and its representation theory." Journal of Pure and Applied Algebra 204, no. 3 (2006): 666–95. http://dx.doi.org/10.1016/j.jpaa.2005.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!