To see the other types of publications on this topic, follow the link: 5108 Quantum physics.

Journal articles on the topic '5108 Quantum physics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '5108 Quantum physics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fujita, Kazuue, Shinichi Furuta, Tatsuo Dougakiuchi, Atsushi Sugiyama, Tadataka Edamura, and Masamichi Yamanishi. "Broad-gain (Δλ/λ_0~04), temperature-insensitive (T_0~510K) quantum cascade lasers." Optics Express 19, no. 3 (January 27, 2011): 2694. http://dx.doi.org/10.1364/oe.19.002694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rullière, Claude, Alain Declemy, and Alexandru T. Balaban. "Corrélation entre possibilité d'effet laser et force oscillatrice de la transition fluorescente : cas des sels de pyrylium." Canadian Journal of Physics 63, no. 2 (February 1, 1985): 191–94. http://dx.doi.org/10.1139/p85-029.

Full text
Abstract:
Laser action is demonstrated to occur in seven pyrylium salts between 4100 and 5100 Å with quantum yields extending from 4% to 12%. Theoretical calculations of the energy and oscillator strength of S0 → Sn transitions confirm band assignments deduced from experimental results. These results allow detection of a weak hidden transition in the 2,6-dimethyl-4-phenyl-pyrylium cation where laser action is not observed. This shows how important the magnitude of the oscillator strength of the first transition S0 → S1 is in selecting candidates to laser action. [Traduit par le journal]
APA, Harvard, Vancouver, ISO, and other styles
3

Tegafaw, Tirusew, Wenlong Xu, Sang Hyup Lee, Kwon Seok Chae, Yongmin Chang, and Gang Ho Lee. "Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications." International Journal of Modern Physics B 31, no. 04 (February 6, 2017): 1750014. http://dx.doi.org/10.1142/s021797921750014x.

Full text
Abstract:
Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O[Formula: see text] nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; [Formula: see text] of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA–FA (FA = folic acid; [Formula: see text] of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI–fluorescein (PEI = polyethylenimine; [Formula: see text] of PEI = 1300 amu), Fe@Fe3O4@PEI ([Formula: see text] of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Tidrow, Meimei Z. "Device physics and state-of-the-art of quantum well infrared photodetectors and arrays." Materials Science and Engineering: B 74, no. 1-3 (May 2000): 45–51. http://dx.doi.org/10.1016/s0921-5107(99)00532-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dargys, Adolfas. "Control of two-dimensional electron spin by an abrupt change of physical parameters of a quantum well." Lithuanian Journal of Physics 51, no. 1 (2011): 53–63. http://dx.doi.org/10.3952/lithjphys.51108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Motta, Nunzio, Anna Sgarlata, Federico Rosei, P. D. Szkutnik, S. Nufris, M. Scarselli, and A. Balzarotti. "Controlling the quantum dot nucleation site." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 77–88. http://dx.doi.org/10.1016/s0921-5107(02)00657-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chichibu, S. F., A. C. Abare, M. P. Mack, M. S. Minsky, T. Deguchi, D. Cohen, P. Kozodoy, et al. "Optical properties of InGaN quantum wells." Materials Science and Engineering: B 59, no. 1-3 (May 1999): 298–306. http://dx.doi.org/10.1016/s0921-5107(98)00359-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Renevier, H., M. G. Proietti, S. Grenier, G. Ciatto, L. González, J. M. Garcı́a, J. M. Gérard, and J. Garcı́a. "Glancing angle EXAFS of encapsulated self-assembled InAs/InP quantum wires and InAs/GaAs quantum dots." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 174–80. http://dx.doi.org/10.1016/s0921-5107(02)00708-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Viale, Y., P. Gilliot, O. Crégut, J. P. Likforman, B. Hönerlage, R. Levy, L. Besombes, L. Marshal, K. Kheng, and H. Mariette. "Excitonic dynamics in CdTe/ZnTe quantum dots." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 55–59. http://dx.doi.org/10.1016/s0921-5107(02)00649-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hull, R., J. L. Gray, M. Kammler, T. Vandervelde, T. Kobayashi, P. Kumar, T. Pernell, J. C. Bean, J. A. Floro, and F. M. Ross. "Precision placement of heteroepitaxial semiconductor quantum dots." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 1–8. http://dx.doi.org/10.1016/s0921-5107(02)00680-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Simon, A., J. Scriba, C. Gauer, A. Wixforth, J. P. Kotthaus, C. R. Bolognesi, C. Nguyen, G. Tuttle, and H. Kroemer. "Intersubband transitions in InAs/AlSb quantum wells." Materials Science and Engineering: B 21, no. 2-3 (November 1993): 201–4. http://dx.doi.org/10.1016/0921-5107(93)90349-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Boucaud, P., V. Le Thanh, V. Yam, S. Sauvage, N. Meneceur, M. Elkurdi, D. Débarre, and D. Bouchier. "Aspects of Ge/Si self-assembled quantum dots." Materials Science and Engineering: B 89, no. 1-3 (February 2002): 36–44. http://dx.doi.org/10.1016/s0921-5107(01)00787-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Volpi, F., A. R. Peaker, I. D. Hawkins, M. P. Halsall, P. B. Kenway, A. Portavoce, A. Ronda, and I. Berbezier. "Hole trapping in self-assembled SiGe quantum nanostructures." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 338–44. http://dx.doi.org/10.1016/s0921-5107(02)00755-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wüllner, D., A. Schlachetzki, P. Bönsch, H. H. Wehmann, T. Schrimpf, R. Lacmann, and S. Kipp. "Characterization of quantum structures by atomic-force microscopy." Materials Science and Engineering: B 51, no. 1-3 (February 1998): 178–87. http://dx.doi.org/10.1016/s0921-5107(97)00256-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Merz, J. L., and P. M. Petroff. "Making quantum wires and boxes for optoelectronic devices." Materials Science and Engineering: B 9, no. 1-3 (July 1991): 275–84. http://dx.doi.org/10.1016/0921-5107(91)90186-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hamoudi, A., E. Ligeon, J. Cibert, Le Si Dang, and J. L. Pautrat. "Implantation-enhanced interdiffusion in CdTe/ZnTe quantum wells." Materials Science and Engineering: B 16, no. 1-3 (January 1993): 211–14. http://dx.doi.org/10.1016/0921-5107(93)90046-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kudrawiec, R., G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel. "Infrared photoreflectance spectroscopy of AlGaAsSb-, InGaSb-based quantum wells." Materials Science and Engineering: B 102, no. 1-3 (September 2003): 331–34. http://dx.doi.org/10.1016/s0921-5107(02)00648-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hipp, W., H. Karl, I. Großhans, and B. Stritzker. "Quantum confinement in CdSe-nanocrystallites synthesized by ion implantation." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 318–23. http://dx.doi.org/10.1016/s0921-5107(02)00732-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lee, Jia-Ren, Yo-Yu Chen, Chien-Rong Lu, Wei-I. Lee, and Shih-Chang Lee. "Electrooptical properties of GaNAs/GaAs multiple quantum well structures." Materials Science and Engineering: B 100, no. 3 (July 2003): 248–51. http://dx.doi.org/10.1016/s0921-5107(03)00112-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zaanen, Jan, Louis Felix Feiner, and Andrzej M. Oleś. "Classical frustration and quantum disorder in spin-orbital models." Materials Science and Engineering: B 63, no. 1-2 (August 1999): 140–46. http://dx.doi.org/10.1016/s0921-5107(99)00064-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ioannou-Sougleridis, V., V. Tsakiri, A. G. Nassiopoulou, F. Bassani, S. Menard, and F. Arnaud d’Avitaya. "Dielectric properties of nc-Si/CaF2 multi quantum wells." Materials Science and Engineering: B 69-70 (January 2000): 309–13. http://dx.doi.org/10.1016/s0921-5107(99)00293-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tönnies, D., G. Bacher, A. Forchel, A. Waag, and G. Landwehr. "Optical investigation of interdiffusion in CdTe/CdMnTe quantum wells." Materials Science and Engineering: B 21, no. 2-3 (November 1993): 274–76. http://dx.doi.org/10.1016/0921-5107(93)90365-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Marsh, J. H., and A. C. Bryce. "Fabrication of photonic integrated circuits using quantum well intermixing." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 272–78. http://dx.doi.org/10.1016/0921-5107(94)90063-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Daudin, B., F. Widmann, G. Feuillet, Y. Samson, J. L. Rouvière, and N. Pelekanos. "Self organization of nitride quantum dots by molecular beam epitaxy." Materials Science and Engineering: B 59, no. 1-3 (May 1999): 330–34. http://dx.doi.org/10.1016/s0921-5107(98)00377-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Evans, J. H., S. McQuaid, K. E. Singer, and B. Hamilton. "A study of strained InGaAs single quantum wells using photoreflectance." Materials Science and Engineering: B 5, no. 2 (January 1990): 211–15. http://dx.doi.org/10.1016/0921-5107(90)90056-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Amiotti, M., G. Guizzetti, M. Patrini, and G. Landgren. "Far-IR characterization of GaInAs/InP quantum wells and superlattices." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 337–40. http://dx.doi.org/10.1016/0921-5107(94)90078-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yang, H. W., J. T. Hsieh, S. F. Hong, and H. L. Hwang. "Reduction of etching damage in the fabrication of quantum wires." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 379–82. http://dx.doi.org/10.1016/0921-5107(94)90087-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Faradjev, F. E. "Extremely narrow photoluminescence from the ensemble of InAsP/InP quantum dots." Materials Science and Engineering: B 95, no. 3 (September 2002): 279–82. http://dx.doi.org/10.1016/s0921-5107(02)00267-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lim, Y. S., F. Bassani, A. Portavoce, A. Ronda, S. Nozaki, and I. Berbezier. "The effect of Sb on the oxidation of Ge quantum dots." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 190–93. http://dx.doi.org/10.1016/s0921-5107(02)00716-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Karavolas, V. C., and G. P. Triberis. "Thermopower of composite fermions in the fractional quantum Hall effect regime." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 329–33. http://dx.doi.org/10.1016/s0921-5107(02)00734-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Nomura, S., T. Iitaka, X. Zhao, T. Sugano, and Y. Aoyagi. "Electronic structure of nanocrystalline/amorphous silicon: a novel quantum size effect." Materials Science and Engineering: B 51, no. 1-3 (February 1998): 146–49. http://dx.doi.org/10.1016/s0921-5107(97)00248-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lefebvre, P., J. Allègre, and H. Mathieu. "Recombination dynamics of excitons in III-nitride layers and quantum wells." Materials Science and Engineering: B 59, no. 1-3 (May 1999): 307–14. http://dx.doi.org/10.1016/s0921-5107(98)00360-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ghezzi, C., A. Parisini, L. Tarricone, J. Filipowicz, and F. Genova. "Exciton transitions and photovoltaic spectra in GaAs/AlGaAs multiple quantum wells." Materials Science and Engineering: B 9, no. 1-3 (July 1991): 301–5. http://dx.doi.org/10.1016/0921-5107(91)90191-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Arena, C., A. Satka, and L. Tarricone. "Exciton transitions in InGaAs/InP quantum wells investigated by photocurrent spectroscopy." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 327–31. http://dx.doi.org/10.1016/0921-5107(94)90076-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Peyre, H., J. Camassel, W. P. Gillin, K. P. Homewood, and R. Grey. "Thermally induced change in the profile of GaAs/AlGaAs quantum wells." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 332–36. http://dx.doi.org/10.1016/0921-5107(94)90077-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yu, Yongqin, Xiaoyang Zhang, Baibiao Huang, Duxiang Wang, Jiyong Wei, Hailong Zhou, Jiaoqing Pan, et al. "Strain effect and characteristics of GaInP/AlGaInP strain-compensated multiple quantum wells." Materials Science and Engineering: B 97, no. 3 (February 2003): 211–16. http://dx.doi.org/10.1016/s0921-5107(02)00590-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Vaya, P. R., and R. Srinivasan. "Simulation study of strained layer CdxZn1−xTe–ZnTe quantum well laser structures." Materials Science and Engineering: B 57, no. 1 (December 1998): 71–75. http://dx.doi.org/10.1016/s0921-5107(98)00262-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Arena, C., L. Tarricone, F. Genova, and C. Rigo. "Absorption coefficient and exciton oscillator strengths in InGaAs/InP multi-quantum wells." Materials Science and Engineering: B 21, no. 2-3 (November 1993): 189–93. http://dx.doi.org/10.1016/0921-5107(93)90346-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Moloney, M. H., J. Hegarty, L. Buydens, P. Demeester, R. Grey, and J. Woodhead. "Strain effects on carrier lifetimes in InGaAs/(Al)GaAs multiple quantum wells." Materials Science and Engineering: B 21, no. 2-3 (November 1993): 253–56. http://dx.doi.org/10.1016/0921-5107(93)90360-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Camassel, J., K. Wolter, S. Juillaguet, R. Schwedler, E. Massone, B. Gallmann, and J. P. Laurenti. "Evidence for non-uniform interface thickness in strained InGaAs/InP quantum wells." Materials Science and Engineering: B 20, no. 1-2 (June 1993): 62–65. http://dx.doi.org/10.1016/0921-5107(93)90397-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nguyen, Lam H., V. Le Thanh, D. Débarre, V. Yam, and D. Bouchier. "Selective growth of Ge quantum dots on chemically prepared SiO2/Si(001) surfaces." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 199–203. http://dx.doi.org/10.1016/s0921-5107(02)00722-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shen, Mingrong, and Wenwu Cao. "Electronic band-structure engineering of GaAs/AlxGa1−xAs quantum well superlattices with substructures." Materials Science and Engineering: B 103, no. 2 (October 2003): 122–27. http://dx.doi.org/10.1016/s0921-5107(03)00159-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lawrence, I., G. Feuillet, H. Tuffigo, C. Bodin, J. Cibert, P. Peyla, and A. Wasiela. "Comparative reflectivity study of coupled and uncoupled CdTe/CdMnTe asymmetric double quantum wells." Materials Science and Engineering: B 16, no. 1-3 (January 1993): 235–38. http://dx.doi.org/10.1016/0921-5107(93)90051-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Y., N. Herron, and J. Caspar. "Bucky ball and quantum dot doped polymers: A new class of optoelectronic materials." Materials Science and Engineering: B 19, no. 1-2 (April 1993): 61–66. http://dx.doi.org/10.1016/0921-5107(93)90166-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Toivonen, Mika, Marko Jalonen, Markus Pessa, Kevin R. Lefebvre, and Neal G. Anderson. "Experimental and theoretical studies of multi-quantum well structures for unipolar avalanche multiplication." Materials Science and Engineering: B 21, no. 2-3 (November 1993): 237–40. http://dx.doi.org/10.1016/0921-5107(93)90356-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dunstan, David J., and Bernard Gil. "Electronic structure of (In,Ga) As(Ga, Al) As strained-layer quantum wells." Materials Science and Engineering: B 20, no. 1-2 (June 1993): 58–61. http://dx.doi.org/10.1016/0921-5107(93)90396-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ghisoni, M., G. Parry, S. Lycett, A. Dewdney, L. Hart, R. Murray, C. Button, and J. S. Roberts. "Observation of blue shift in GaAs/InGaP quantum well p-i-n diodes." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 323–26. http://dx.doi.org/10.1016/0921-5107(94)90075-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dickey, S. A., Z. H. Lu, E. Mao, E. G. Oh, and A. Majerfeld. "Determination of carrier and impurity profiles in doped n-type quantum well structures." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 341–45. http://dx.doi.org/10.1016/0921-5107(94)90079-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Keller, O. "Quantum interference effects in the optical second-harmonic response tensor of a metal surface." Materials Science and Engineering: B 5, no. 2 (January 1990): 183–89. http://dx.doi.org/10.1016/0921-5107(90)90052-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Holt, D. B., C. E. Norman, G. Salviati, S. Franchi, and A. Bosacchi. "Type II indirect and type I direct recombinations in GaAs/A1As single quantum wells." Materials Science and Engineering: B 9, no. 1-3 (July 1991): 285–88. http://dx.doi.org/10.1016/0921-5107(91)90187-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography