Academic literature on the topic 'Ai-Driven'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ai-Driven.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ai-Driven"

1

Vyshnavi, D., and Dr Gousiya Begum. "AI-Driven Material Selection." International Journal of Research Publication and Reviews 6, no. 5 (2025): 13469–75. https://doi.org/10.55248/gengpi.6.0525.1930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Çakır, Ahmet Mert. "AI Driven Cybersecurity." Human Computer Interaction 8, no. 1 (2024): 119. https://doi.org/10.62802/jg7gge06.

Full text
Abstract:
The advent of Artificial Intelligence (AI) has revolutionized the field of cybersecurity by introducing advanced mechanisms for detecting, preventing, and mitigating cyber threats. This research explores the intersection of AI and cybersecurity, highlighting the transformative potential of AI-driven solutions in combating increasingly sophisticated cyberattacks. By leveraging machine learning, deep learning, and neural network algorithms, AI enhances real-time threat detection, predictive analytics, and anomaly detection across diverse digital infrastructures. This study evaluates current AI-driven cybersecurity frameworks, emphasizing their efficacy in handling dynamic threat landscapes and addressing the limitations of traditional methods. Additionally, it examines ethical considerations, such as the potential misuse of AI by malicious actors and the need for transparent AI systems. Through comprehensive analysis, this research underscores the importance of developing resilient AI models to secure critical data and infrastructure in an era of rapidly evolving cyber risks. The findings provide actionable insights for policymakers, organizations, and technology developers, advocating for collaborative efforts to harness AI’s potential while addressing its inherent challenges.
APA, Harvard, Vancouver, ISO, and other styles
3

Shubham, Kumar, and Sharma Rahul. "AI Car Driven." Research and Applications: Embedded System 7, no. 1 (2024): 27–33. https://doi.org/10.5281/zenodo.10926378.

Full text
Abstract:
<em>This project report aims to provide a sophisticated explanation of the fundamental idea of mechatronics. The design, production, and upkeep of a wide range of engineering products and processes increasingly depend on the blending of technology and electronic engineering. As a result, engineers with associate degrees in technology may need to embrace an integrated approach to engineering and a knowledge base. This strategy has the effect of making engineers and technicians demand knowledge and abilities that don't seem to be limited to a single topic of study. They must be able to collaborate with others who possess more specific abilities and perform both operational and human actions across a range of engineering specialties. The goal is to design and build an Automatic Rain actuated Wiper System, which is based largely on an electronically controlled automobile rain actuated motor. The management unit, electric motor, glass frame, conductive device (tough sensor) circuit, and rain-operated motor are all included. The instrument is used to detect water flow or rain. When precipitation falls inside the category, the device detects it and sends management signals to the electric motor.</em>
APA, Harvard, Vancouver, ISO, and other styles
4

Hasan, Rakibul, Syeda Farjana Farabi, Md Kamruzzaman, Md Khokan BHUYAN, Sadia Islam Nilima, and Atia Shahana. "AI-Driven Strategies for Reducing Deforestation." American Journal of Engineering and Technology 6, no. 6 (2024): 6–20. http://dx.doi.org/10.37547/tajet/volume06issue06-02.

Full text
Abstract:
Recent advancements in data science, coupled with the revolution in digital and satellite technology, have catalyzed the potential for artificial intelligence (AI) applications in forestry and wildlife sectors. Recognizing the critical importance of addressing land degradation and promoting regeneration for climate regulation, ecosystem services, and population well-being, there is a pressing need for effective land use planning and interventions. Traditional regression approaches often fail to capture underlying drivers' complexity and nonlinearity. In response, this research investigates the efficacy of AI in monitoring, predicting, and managing deforestation and forest degradation compared to conventional methods, with a goal to bolster global forest conservation endeavors. Employing a fusion of satellite imagery analysis and machine learning algorithms, such as convolutional neural networks and predictive modelling, the study focuses on key forest regions, including the Amazon Basin, Central Africa, and Southeast Asia. Through the utilization of these AI-driven strategies, critical deforestation hotspots have been successfully identified with an accuracy surpassing 85%, markedly higher than traditional methods. This breakthrough underscores the transformative potential of AI in enhancing the precision and efficiency of forest conservation measures, offering a formidable tool for combating deforestation and degradation on a global scale.
APA, Harvard, Vancouver, ISO, and other styles
5

Sood, Parul, Pawan Patidar, and Piyush Piyush. "AI-Driven Crypto Time Series Forecasting." International Journal of Research Publication and Reviews 6, sp5 (2025): 217–23. https://doi.org/10.55248/gengpi.6.sp525.1929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Babu Basanaboyina, Suresh. "Data-Driven AI: The Future of Business through Data-Driven Insights." International Journal of Science and Research (IJSR) 14, no. 4 (2025): 772–75. https://doi.org/10.21275/sr25404224429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kitano, Hiroaki. "AI-driven systems toxicology." Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (2018): SY77–4. http://dx.doi.org/10.1254/jpssuppl.wcp2018.0_sy77-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaneko, Hiroyuki, Jun Goto, Yoshihiko Kawai, et al. "AI-Driven Smart Production." SMPTE Motion Imaging Journal 129, no. 2 (2020): 27–35. http://dx.doi.org/10.5594/jmi.2019.2959173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhowmik, Priti, Anuvart Kumar, Kartik Shekhar, and Devdutt Sharma. "NETRAM - AI Driven Technology." MR International Journal of Engineering and Technology 10, no. 1 (2023): 36–42. http://dx.doi.org/10.58864/mrijet.2023.10.1.5.

Full text
Abstract:
This paper presents a brief idea of developing an AI driven technology that assists the visually impaired people in carrying out their daily activities with ease. The visually impaired people often face challenges in their day to day life activities and frequently navigate via locating sound sources and sound reflecting objects, a phenomenon known as echolocation. This method of obstacle detection in crowded places does not always come in handy and thus traveling around becomes a cause of concern for them. Therefore, we proposed a device “NETRAM - Your Digital Eye” which is an AI driven technology which assists the blind and elderly in navigation. This device used Azure custom vision AI for training of its model with a precision accuracy of 82.1 % and recall 33 %. This was an attempt to give the visually impaired people a sense of inclusiveness and empower them.
APA, Harvard, Vancouver, ISO, and other styles
10

Elazab, Mohamed. "AI-driven personalized learning." International Journal of Internet Education 22, no. 3 (2024): 6–19. http://dx.doi.org/10.21608/ijie.2024.350579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ai-Driven"

1

Santiago, Dionny. "A Model-Based AI-Driven Test Generation System." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3878.

Full text
Abstract:
Achieving high software quality today involves manual analysis, test planning, documentation of testing strategy and test cases, and development of automated test scripts to support regression testing. This thesis is motivated by the opportunity to bridge the gap between current test automation and true test automation by investigating learning-based solutions to software testing. We present an approach that combines a trainable web component classifier, a test case description language, and a trainable test generation and execution system that can learn to generate new test cases. Training data was collected and hand-labeled across 7 systems, 95 web pages, and 17,360 elements. A total of 250 test flows were also manually hand-crafted for training purposes. Various machine learning algorithms were evaluated. Results showed that Random Forest classifiers performed well on several web component classification problems. In addition, Long Short-Term Memory neural networks were able to model and generate new valid test flows.
APA, Harvard, Vancouver, ISO, and other styles
2

Mennborg, Alexander. "AI-Driven Image Manipulation : Image Outpainting Applied on Fashion Images." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85148.

Full text
Abstract:
The e-commerce industry frequently has to deal with displaying product images in a website where the images are provided by the selling partners. The images in question can have drastically different aspect ratios and resolutions which makes it harder to present them while maintaining a coherent user experience. Manipulating images by cropping can sometimes result in parts of the foreground (i.e. product or person within the image) to be cut off. Image outpainting is a technique that allows images to be extended past its boundaries and can be used to alter the aspect ratio of images. Together with object detection for locating the foreground makes it possible to manipulate images without sacrificing parts of the foreground. For image outpainting a deep learning model was trained on product images that can extend images by at least 25%. The model achieves 8.29 FID score, 44.29 PSNR score and 39.95 BRISQUE score. For testing this solution in practice a simple image manipulation pipeline was created which uses image outpainting when needed and it shows promising results. Images can be manipulated in under a second running on ZOTAC GeForce RTX 3060 (12GB) GPU and a few seconds running on a Intel Core i7-8700K (16GB) CPU. There is also a special case of images where the background has been digitally replaced with a solid color and they can be outpainted even faster without deep learning.
APA, Harvard, Vancouver, ISO, and other styles
3

Chassagnon, Guillaume. "AI-driven Detection, Characterization and Classification of Chronic Lung Diseases." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC101.

Full text
Abstract:
L’évaluation de la gravité et la surveillance des maladies pulmonaires chroniques représentent deux challenges importants pour la prise en charge des patients et l’évaluation des traitements. La surveillance repose principalement sur les données fonctionnelles respiratoires mais l’évaluation morphologique reste un point essentiel pour le diagnostic et l’évaluation de sévérité. Dans la première partie de cette thèse, nous proposons différents modèles pour quantifier la sévérité de pathologies bronchiques chroniques au scanner. Une approche simple par seuillage adaptatif et une méthode plus sophistiquée de radiomique sont évaluées Dans la seconde partie, nous évaluons une méthode d’apprentissage profond pour contourer automatiquement l’atteinte fibrosante de la sclérodermie en scanner. Nous combinons le recalage élastique vers différents atlas morphologiques thoraciques et l’apprentissage profond pour développer un modèle dont les performances sont équivalentes à celles des radiologues. Dans la dernière partie, nous démontrons que l’étude de la déformation pulmonaire en IRM entre inspiration et expiration peut être utilisée pour repérer les régions pulmonaires en transformation fibreuse, moins déformables au cours de la respiration, et qu’en scanner, l’évaluation de la déformation entre des examens successifs de suivi peut diagnostiquer l’aggravation fibreuse chez les patients sclérodermiques<br>Disease staging and monitoring of chronic lung diseases are two major challenges for patient care and evaluation of new therapies. Monitoring mainly relies on pulmonary function testing but morphological assessment is a key point for diagnosis and staging In the first part, we propose different models to score bronchial disease severity on computed tomography (CT) scan. A simple thresholding approach using adapted thresholds and a more sophisticated machine learning approach with radiomics are evaluated In the second part, we evaluate deep learning methods to segment lung fibrosis on chest CT scans in patients with systemic sclerosis. We combine elastic registration to atlases of different thoracic morphology and deep learning to produce a model performing as well as radiologists In the last part of the thesis, we demonstrate that lung deformation assessment between inspiratory and expiratory magnetic resonance images can be used to depict fibrotic lung areas, which show less deformation during respiration and that CT assessment of lung deformation on serial CT scans can be used to diagnose lung fibrosis worsening
APA, Harvard, Vancouver, ISO, and other styles
4

Kacher, Yulia. "AI-Driven Discovery of Voltage-Gated Ion Channels’ Intermediate States." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0227.

Full text
Abstract:
Les canaux ioniques dépendants du voltage (VGICs) jouent un rôle crucial dans de nombreux processus physiologiques, y compris la transmission des impulsions nerveuses et la contraction musculaire. Ils sont également des cibles majeures en développement pharmaceutique, représentant environ 20 % des cibles de petites molécules, particulièrement pour les maladies comme l'épilepsie, les arythmies et autres canalopathies. Malgré les progrès significatifs de la microscopie cryo-électronique fournissant des détails structuraux approfondis, la capture des états intermédiaires dynamiques pendant les transitions de verrouillage des VGIC reste un défi. Ces conformations intermédiaires, qui existent entre les états ouvert et fermé, sont cruciales pour comprendre les propriétés de verrouillage uniques de chaque canal. Cependant, leur nature transitoire les rend difficiles à capturer par les techniques conventionnelles. Les simulations de dynamique moléculaire offrent une solution potentielle en modélisant ces transitions, mais elles entraînent des coûts de calcul élevés et sont limitées par des barrières énergétiques restreignant l'accès aux états intermédiaires cruciaux dans des délais raisonnables. Ces défis nécessitent des approches innovantes pour explorer le paysage conformationnel des VGIC de manière plus efficace. En réponse à ces obstacles, nous avons développé une nouvelle approche basée sur l'apprentissage profond, conçue pour prédire les états intermédiaires des VGIC, en intégrant l'IA avec des connaissances basées sur la physique. Avec des données structurales des deux états opérationnels les plus distincts - ouvert et fermé - comme celles dérivées de courtes simulations de dynamique moléculaire, notre pipeline peut produire des conformations intermédiaires significatives. Notre méthode emploie un autoencodeur convolutionnel 1D servant de fonction pour réduire les données structurelles tridimensionnelles complexes en une représentation bidimensionnelle plus interprétable. Le processus inverse génère de nouvelles structures, y compris des états le long du chemin de transition. Notre approche repose sur une fonction de perte sophistiquée, intégrant l'erreur quadratique moyenne géométrique traditionnelle, des contraintes basées sur la physique issues des techniques de dynamique moléculaire, et de nouveaux termes liés aux charges de verrouillage. Ces termes sont adaptés aux VGIC, car la charge de verrouillage est reconnue comme une variable collective supérieure pour cette superfamille de protéines, garantissant des prédictions biologiquement significatives. Nous avons validé notre pipeline en utilisant des ensembles de données étendus pour le domaine du capteur de tension du canal potassique Kv1.2, dérivés de simulations de dynamique moléculaire. Le pipeline a prédit avec succès des états intermédiaires cohérents avec des recherches antérieures. De plus, les capacités du pipeline ont été étendues aux réarrangements conformationnels de canaux entiers et testées sur d'autres VGICs, notamment le canal Kv7.1 et son domaine de capteur de tension, démontrant ainsi son applicabilité large dans la recherche sur les VGIC. Cette recherche adopte une approche pluridisciplinaire, combinant bioinformatique, biologie computationnelle et prédictions pilotées par IA pour approfondir notre compréhension des mécanismes de verrouillage des VGIC. Les applications potentielles s'étendent au-delà de la biologie structurale vers la découverte de médicaments, où les connaissances sur les conformations spécifiques des VGIC pourraient orienter le développement de traitements ciblés pour les canalopathies. Globalement, ce travail représente un avancement significatif dans la recherche biologique assistée par IA, ouvrant de nouvelles voies pour explorer la fonction des VGIC et leur rôle dans les maladies<br>Voltage-gated ion channels (VGICs) are crucial for numerous physiological processes, including nerve impulse transmissionand muscle contraction, and are key targets in drug development, representing about 20% of small-molecule drug targets,particularly for diseases such as epilepsy, arrhythmias, and other channelopathies. Despite significant advancements in cryo-electronmicroscopy that provide detailed structural insights, capturing the dynamic intermediate states during VGIC gating transitions remains challenging. These intermediate conformations, which exist between the openand closed states, are crucial for understanding the unique gating properties of each channel. However, their transient nature makes them difficult to capture using conventional techniques. Molecular dynamics simulations offer a potential solution by modeling these transitions, but they come with high computational costs and are limited by energy barriers that restrict access to crucial intermediate states within feasible time frames. These challenges necessitate innovative approaches for exploring the conformational landscape of VGICs more efficiently. In response to these obstacles, we have developed a novel deeplearning-based pipeline designed to predict intermediate states in VGICs, integrating AI with physics-based insights. Given structural data for the two most distinct channel operational states - open and closed - such as those derived from shortmolecular dynamics simulations, the pipeline can produce meaningful intermediate conformations. Our approach employs a 1D convolutional autoencoder that serves as a function to reduce complex three-dimensional structural data to a more interpretable 2D representation. The reverse process generates novel structures, including states along the transition pathway. Our approach leverages a sophisticated loss function, incorporating traditional geometric mean square error, physics-based constraints derived from MD techniques, and novel gating charge-related terms. These terms are tailored to VGICs, as the gating charge is recognized as a superior collective variable for this protein superfamily, ensuring biologically meaningful predictions. We validated our pipeline using extensive datasets for the Kv1.2 potassium channel voltage sensor domain, derived from molecular dynamics simulations. The pipeline successfully predicted intermediate states consistent with prior research. Moreover, the pipeline's capabilities were extended to whole-channel conformational rearrangements and tested on other VGICs, including the Kv7.1 channel and its voltage sensor domain, demonstrating its broad applicability in VGIC research. This research employs a multi-disciplinary approach, combining bioinformatics, computational biology, and AI-driven predictions to enhance our understanding of VGIC gating mechanisms. The potential applications extend beyond structural biology into drug discovery, where insights into specific VGIC conformations could guide the development of targeted treatments for channelopathies. Overall, this work represents a significant advancement in AI-assisted biological research, providing new avenues for exploring VGIC function and their roles in disease
APA, Harvard, Vancouver, ISO, and other styles
5

SORO, FRANCESCA. "An AI and data-driven approach to unwanted network traffic inspection." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2950486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cafaro, Alexandre. "AI-Driven Adaptive Radiation Treatment Delivery for Head & Neck Cancers." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL103.

Full text
Abstract:
Le cancer de la tête et du cou (HNC) est l'un des cancers les plus difficiles à traiter en raison de la complexité de son anatomie et des changements significatifs spécifiques à chaque patient au cours du traitement. En tant que 6e cancer le plus fréquent dans le monde, le HNC présente souvent un mauvais pronostic en raison d'un diagnostic tardif et de l'absence de marqueurs prédictifs fiables. La radiothérapie, souvent associée à la chirurgie, est confrontée à des défis tels que la variabilité inter-observateur, la complexité de la planification et les changements anatomiques pendant le traitement.La radiothérapie adaptative est essentielle pour maintenir la précision à mesure que l'anatomie du patient évolue. Cependant, les méthodes d'imagerie peu invasives actuelles, comme la tomographie conique (CBCT) et les rayons X biplanaires, sont limitées en qualité ou ne fournissent que des images 2D, ce qui complique l'adaptation quotidienne du traitement. Cette thèse propose des approches innovantes basées sur l'apprentissage profond pour reconstruire des images CT 3D précises à partir de rayons X biplanaires, permettant une radiothérapie adaptative qui réduit la dose de radiation, accélère l'acquisition, réduit les coûts et améliore la précision.La reconstruction de volumes 3D à partir de rayons X biplanaires est difficile en raison des informations limitées de seulement deux projections, ce qui crée une ambiguïté importante dans la capture des structures internes. Pour y remédier, cette thèse intègre des a priori anatomiques et de déformation via l'apprentissage profond, améliorant ainsi considérablement la précision des reconstructions malgré des données limitées.La première méthode, X2Vision, est une approche non supervisée qui utilise des modèles génératifs entraînés sur des scans CT pour apprendre la distribution des anatomies de la tête et du cou. Elle optimise des vecteurs latents pour générer des volumes 3D alignés avec les rayons X biplanaires et les a priori anatomiques. En utilisant ces a priori et en naviguant dans le domaine anatomique, X2Vision réduit considérablement la nature mal posée du problème de reconstruction, obtenant des résultats précis même avec seulement deux projections.En radiothérapie, des scans pré-traitement comme le CT ou l'IRM sont souvent disponibles et essentiels pour améliorer les reconstructions en tenant compte des changements anatomiques au fil du temps. Nous avons développé XSynthMorph, une méthode qui intègre des caractéristiques spécifiques au patient à partir des scans CT préalablement acquis. En combinant des a priori anatomiques et de déformation, XSynthMorph s'adapte aux changements tels que la perte de poids ou les déformations non rigides, permettant des reconstructions plus robustes et personnalisées, avec une précision et un détail sans précédent.Nous avons exploré le potentiel clinique de X2Vision et XSynthMorph, avec des évaluations cliniques préliminaires montrant leur efficacité dans le positionnement du patient, la recnstruction des structures et l'analyse dosimétrique, soulignant leur potentiel pour la radiothérapie adaptative quotidienne. Pour approcher la réalité clinique, nous avons développé une première approche pour intégrer ces méthodes aux systèmes de rayons X biplanaires utilisés en radiothérapie.En conclusion, cette thèse démontre la faisabilité de la radiothérapie adaptative utilisant uniquement des rayons X biplanaires. En combinant des modèles génératifs, des a priori de déformation et des scans préalablement acquis, nous avons montré que des reconstructions 3D de haute qualité peuvent être obtenues avec une faible exposition aux radiations. Ce travail ouvre la voie à une radiothérapie adaptative quotidienne, offrant une solution peu invasive, peu coûteuse, et précise<br>Head and neck cancer (HNC) is one of the most challenging cancers to treat due to its complex anatomy and significant patient-specific changes during treatment. As the 6th most common cancer worldwide, HNC often has a poor prognosis due to late diagnosis and the lack of reliable predictive markers. Radiation therapy, typically combined with surgery, faces challenges such as inter-observer variability, complex treatment planning, and anatomical changes throughout the treatment process.Adaptive radiotherapy is essential to maintain precision as the patient's anatomy evolves during treatment. However, current low-invasive imaging methods before each treatment fraction, such as Cone Beam CT (CBCT) and biplanar X-rays, are limited in quality or provide only 2D images, making daily treatment adaptation challenging. This thesis introduces novel deep learning approaches to reconstruct accurate 3D CT images from biplanar X-rays, enabling adaptive radiotherapy that reduces radiation dose, shortens acquisition times, lowers costs, and improves treatment precision.Reconstructing 3D volumes from biplanar X-rays is inherently challenging due to the limited information provided by only two projections, leading to significant ambiguity in capturing internal structures. To address this, the thesis incorporates anatomical and deformation priors through deep learning, significantly improving reconstruction accuracy despite the very sparse measurements.The first method, X2Vision, is an unsupervised approach that uses generative models trained on head and neck CT scans to learn the distribution of head and neck anatomies. It optimizes latent vectors to generate 3D volumes that align with both biplanar X-rays and anatomical priors. By leveraging these priors and navigating the anatomical manifold, X2Vision dramatically reduces the ill-posed nature of the reconstruction problem, achieving accurate results even with just two projections.In radiotherapy, pre-treatment scans such as CT or MRI are typically available and are essential for improving reconstructions by accounting for anatomical changes over time. To make use of this data, we developed XSynthMorph, a method that integrates patient-specific features from pre-acquired planning CT scans. By combining anatomical and deformation priors, XSynthMorph adjusts for changes like weight loss, non-rigid deformations, or tumor regression. This approach enables more robust and personalized reconstructions, providing an unprecedented level of precision and detail in capturing 3D structures.We explored the clinical potential of X2Vision and XSynthMorph, with preliminary clinical evaluations demonstrating their effectiveness in patient positioning, structure retrieval, and dosimetry analysis, highlighting their promise for daily adaptive radiotherapy. To bring these methods closer to clinical reality, we developed an initial approach to integrate them into real-world biplanar X-ray systems used in radiotherapy.In conclusion, this thesis demonstrates the feasibility of adaptive radiotherapy using only biplanar X-rays. By combining generative models, deformation priors, and pre-acquired scans, we have shown that high-quality 3D reconstructions can be achieved with minimal radiation exposure. This work paves the way for daily adaptive radiotherapy, offering a low-invasive, cost-effective solution that enhances precision, reduces radiation exposure, and improves overall treatment efficiency
APA, Harvard, Vancouver, ISO, and other styles
7

Ishida, Shoichi. "Development of an AI-Driven Organic Synthesis Planning Approach with Retrosynthesis Knowledge." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lévy, Loup-Noé. "Advanced Clustering and AI-Driven Decision Support Systems for Smart Energy Management." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG027.

Full text
Abstract:
Cette thèse aborde le clustering de systèmes énergétiques complexes et hétérogènes au sein d'un système d'aide à la décision (SAD).Dans le chapitre 1, nous explorons d'abord la théorie des systèmes complexes et leur modélisation, reconnaissant les bâtiments comme des Systèmes Complexes Sociotechniques. Nous examinons l'état de l'art des acteurs impliqués dans la performance énergétique, identifiant notre cas d'étude comme le Tiers de Confiance pour la Mesure et la Performance Énergétique (TCMPE). Face à nos contraintes, nous nous focalisons sur le besoin d'un système d'aide à la décision pour fournir des recommandations énergétiques, le comparant aux systèmes de supervision et de recommandation et soulignant l'importance de l'explicabilité dans la prise de décision assistée par IA (XAI). Reconnaissant la complexité et l'hétérogénéité des bâtiments gérés par le TCMPE, nous argumentons que le clustering est une étape initiale cruciale pour développer un SAD, permettant des recommandations sur mesure pour des sous-groupes homogènes de bâtiments.Dans le Chapitre 2, nous explorons l'état de l'art des systèmes semi-automatisés pour la prise de décisions à haut risque, mettant l'accent sur la nécessité de gouvernance dans les SAD. Nous investiguons les régulations européennes, mettant en lumière le besoin d'exactitude, de fiabilité, et d'équité de notre système décisionnel, et identifions des méthodologies pour adresser ces besoins, telles que la méthodologie DevOps et le data lineage. Nous proposons une architecture distribuée du SAD qui répond à ces exigences et aux défis posés par le Big Data, intégrant un datalake pour la manipulation des données hétérogènes et massive, des datamarts pour la sélection et le traitement spécifiques des données, et une ML-Factory pour peupler une bibliothèque de modèles. Différentes méthodes de Machine Learning sont sélectionnées pour les différents besoins spécifiques du SAD.Le Chapitre 3 se concentre sur le clustering comme méthode d'apprentissage automatique primaire dans notre cas d'étude, il est essentiel pour identifier des groupes homogènes de bâtiments. Face à la nature plurielle - numérique, catégorielle, séries temporelles - des données décrivant les bâtiments, nous proposons le concept de clustering complexe. Après avoir examiné l'état de l'art, nous identifions la nécessité d'introduire des techniques de réduction de dimensionnalité, associé à des méthodes de clustering numérique et mixte état de l'art. La Prétopologie est proposée comme approche novatrice pour le clustering de données mixtes et complexes. Nous soutenons qu'elle permet une plus grande explicabilité et interactivité, en permettant un clustering hiérarchique construit sur de règles logiques et de notions de proximité adaptées au contexte. Les défis de l'évaluation du clustering complexe sont abordés, et des adaptations de l'évaluation des jeux de donnée numérique sont proposées.Dans le chapitre 4, nous analysons les performances computationnelles des algorithmes et la qualité des clusters obtenus sur différents jeux de données variant en taille, nombre de clusters, distribution et nombre de dimensions. Ces jeux de donnée sont publique, privées ou généré pour les tests. La Prétopologie et l'utilisation de la réduction de dimensionnalité montrent des résultats prometteurs comparés aux méthodes de clustering de données mixtes de l'état de l'art.En conclusion, nous discutons des limitations de notre système, y compris les limites d'automatisation du SAD à chaque étape du flux de données. Nous mettons l'accent sur le rôle crucial de la qualité des données et les défis de prédire le comportement des systèmes complexes au fil du temps. L'objectivité de nos méthodes d'évaluation de clustering est questionnée en raison de l'absence de vérité terrain. Nous envisageons des travaux futurs, tels que l'automatisation de l'hyperparamètrisation et la continuation du développement du SAD<br>This thesis addresses the clustering of complex and heterogeneous energy systems within a Decision Support System (DSS).In chapter 1, we delve into the theory of complex systems and their modeling, recognizing buildings as complex systems, specifically as Sociotechnical Complex Systems. We examine the state of the art of the different agents involved in energy performance within the energy sector, identifying our case study as the Trusted Third Party for Energy Measurement and Performance (TTPEMP.) Given our constraints, we opt to concentrate on the need for a DSS to provide energy recommendations. We compare this system to supervision and recommender systems, highlighting their differences and complementarities and introduce the necessity for explainability in AI-aided decision-making (XAI). Acknowledging the complexity, numerosity, and heterogeneity of buildings managed by the TTPEMP, we argue that clustering serves as a pivotal first step in developing a DSS, enabling tailored recommendations and diagnostics for homogeneous subgroups of buildings. This is presented in Chapter 1.In Chapter 2, we explore DSSs' state of the art, emphasizing the need for governance in semi-automated systems for high-stakes decision-making. We investigate European regulations, highlighting the need for accuracy, reliability, and fairness in our decision system, and identify methodologies to address these needs, such as DevOps methodology and Data Lineage. We propose a DSS architecture that addresses these requirements and the challenges posed by big data, featuring a distributed architecture comprising a data lake for heterogeneous data handling, datamarts for specific data selection and processing, and an ML-Factory populating a model library. Different types of methods are selected for different needs based on the specificities of the data and of the question needing answering.Chapter 3 focuses on clustering as a primary machine learning method in our architecture, essential for identifying homogeneous groups of buildings. Given the combination of numerical, categorical and time series nature of the data describing buildings, we coin the term complex clustering to address this combination of data types. After reviewing the state-of-the-art, we identify the need for dimensionality reduction techniques and the most relevant mixed clustering methods. We also introduce Pretopology as an innovative approach for mixed and complex data clustering. We argue that it allows for greater explainability and interactability in the clustering as it enables Hierarchical clustering and the implementation of logical rules and custom proximity notions. The challenges of evaluating clustering are addressed, and adaptations of numerical clustering to mixed and complex clustering are proposed, taking into account the explainability of the methods.In the datasets and results chapter, we present the public, private, and generated datasets used for experimentation and discuss the clustering results. We analyze the computational performances of algorithms and the quality of clusters obtained on different datasets varying in size, number of clusters, distribution, and number of categorical and numerical parameters. Pretopology and Dimensionality Reduction show promising results compared to state-of-the-art mixed data clustering methods.Finally, we discuss our system's limitations, including the automation limits of the DSS at each step of the data flow. We focus on the critical role of data quality and the challenges in predicting the behavior of complex systems over time. The objectivity of our clustering evaluation methods is challenged due to the absence of ground truth and the reliance on dimensionality reduction to adapt state-of-the-art metrics to complex data. We discuss possible issues regarding the chosen elbow method and future work, such as automation of hyperparameter tuning and continuing the development of the DSS
APA, Harvard, Vancouver, ISO, and other styles
9

Perera, Jayasuriya Kuranage Menuka. "AI-driven Zero-Touch solutions for resource management in cloud-native 5G networks." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0427.

Full text
Abstract:
Le déploiement des réseaux 5G a introduit des architectures cloud-native et des systèmes de gestion automatisés, offrant aux fournisseurs de services de communication une infrastructure évolutive, flexible et agile. Ces avancées permettent une allocation dynamique des ressources, augmentant celles-ci en période de forte demande et les réduisant en période de faible utilisation, optimisant ainsi les CapEx et OpEx. Cependant, une observabilité limitée et une caractérisation insuffisante des charges de travail entravent la gestion des ressources. Une surprovisionnement pendant les périodes creuses augmente lescoûts, tandis qu’un sous-provisionnement dégrade la QoS lors des pics de demande. Malgré les solutions existantes dans l’industrie, le compromis entre efficacité des coûts et optimisation de la QoS reste difficile. Cette thèse aborde ces défis en proposant des solutions d’autoscaling proactives pour les fonctions réseau dans un environnement cloud native 5G. Elle se concentre sur la prévision précise de l’utilisation des ressources, l’identification des opérations de changement d’échelle à mettre en oeuvre, et l’optimisation des instants auxquels opérer ces ajustements pour préserver l’équilibre entre coût et QoS. De plus, une approche novatrice permet de tenir compte de façon efficace du throttling de la CPU. Le cadre développé assure une allocation efficace des ressources, réduisant les coûts opérationnels tout en maintenant une QoS élevée. Ces contributions établissent une base pour des opérations réseau 5G durables et efficaces et proposent une base pour les futures architectures cloud-native<br>The deployment of 5G networks has introduced cloud-native architectures and automated management systems, offering communication service providers scalable, flexible, and agile infrastructure. These advancements enable dynamic resource allocation, scaling resources up during high demand and down during low usage, optimizing CapEx and OpEx. However, limited observability and poor workload characterization hinder resource management. Overprovisioning during off-peak periods raises costs, while underprovisioning during peak demand degrades QoS. Despite industry solutions, the trade-off between cost efficiency and QoS remains unresolved. This thesis addresses these challenges by proposing proactive autoscaling solutions for network functions in cloud-native 5G. It focuses on accurately forecasting resource usage, intelligently differentiating scaling events (scaling up, down, or none), and optimizing timing to achieve a balance between cost and QoS. Additionally, CPU throttling, a significant barrier to this balance, is mitigated through a novel approach. The developed framework ensures efficient resource allocation, reducing operational costs while maintaining high QoS. These contributions establish a foundation for sustainable and efficient 5G network operations, setting a benchmark for future cloud-native architectures
APA, Harvard, Vancouver, ISO, and other styles
10

Rahaman, Khan Md Atiqur. "Feasibility Analysis of AI based Wearable Data-driven Solution for Safety and Health in Sweden." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239442.

Full text
Abstract:
This thesis investigates the prospects of AI and IoT based wearable solution in order to enhance the occupational safety and health. Thus this study contributes to find the probable use cases that can be suitable for such a technology. Later also investigation has been done to figure out how appropriate the Swedish market will be to target on. At the beginning of the thesis, it includes an overall scenario about the occupational safety/health globally as well as in Sweden. Later to improve the workplace injuries, how AI based wearable solution can be handy has been visualized. The theoretical framework explains the technical features and working mechanism and how it can implement in a real world. The methods that can be applied for such research has been discussed afterwards. Then investigation has been done to find the probable use cases and Swedish market has been analyzed to verify how fit the solution. The result chapter includes the finding of the analysis thereafter. To conclude, it has been figured out that few of the us cases for Swedish industries can certainly be applicable for such AI based wearable solution to improve the workplace safety scenario.<br>Denna avhandling undersöker utsikterna för AI och IoT-baserad bärbar lösning för att förbättra arbetssäkerheten och hälsan. Således bidrar denna studie till att hitta de sannolika användningsfall som kan vara lämpliga för en sådan teknik. Senare har också undersökningar gjorts för att ta reda på hur lämpligt den svenska marknaden ska vara inriktad på. I början av avhandlingen ingår det ett övergripande scenario om arbetssäkerhet / hälsa globalt såväl som i Sverige. Senare för att förbättra arbetsplatsskadorna, hur AI-baserad bärbar lösning kan vara användbar har visualiserats. Den teoretiska ramen förklarar de tekniska funktionerna och arbetsmekanismen och hur den kan genomföras i en verklig värld. De metoder som kan tillämpas för sådan forskning har diskuterats efteråt. Sedan har undersökningen gjorts för att hitta de sannolika användningsfallen och den svenska marknaden har analyserats för att verifiera hur lämplig lösningen är. Resultatet kapitlet innehåller analysen av analysen därefter. Avslutningsvis har det visat sig att få av användningsärenden för svenska industrier säkert kan tillämpas för en sådan AI-baserad bärbar lösning för att förbättra arbetssäkerhetsscenariot.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ai-Driven"

1

Chen, Fang, and Jianlong Zhou, eds. Humanity Driven AI. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-72188-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shen, Weiran, Pingzhong Tang, and Song Zuo. AI-Driven Mechanism Design. Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-9286-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zaidi, Neha, Mohit Maurya, Simon Grima, and Pallavi Tyagi. Building AI Driven Marketing Capabilities. Apress, 2024. http://dx.doi.org/10.1007/978-1-4842-9810-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sarker, Iqbal H. AI-Driven Cybersecurity and Threat Intelligence. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54497-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rani, Sita, Pankaj Bhambri, Sachin Kumar, Piyush Kumar Pareek, and Ahmed A. Elngar. AI-Driven Digital Twin and Industry 4.0. CRC Press, 2024. http://dx.doi.org/10.1201/9781003395416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jose, Deepa, Preethi Nanjundan, Sanchita Paul, and Sachi Nandan Mohanty. AI-Driven IoT Systems for Industry 4.0. CRC Press, 2024. http://dx.doi.org/10.1201/9781003432319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yafooz, Wael M. S., and Yousef Al-Gumaei, eds. AI-Driven: Social Media Analytics and Cybersecurity. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-80334-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yadav, Ashutosh, Mansaf Alam, and Kiran Chaudhary. AI-Driven Finance in the VUCA World. Auerbach Publications, 2025. https://doi.org/10.1201/9781003482154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sathi, Neena, and Arvind Sathi. An Introduction to AI-Driven Analytics for Business. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85333-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fahim, Sadaf. Ethico-Legal Aspect of AI-driven Driverless Cars. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6883-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ai-Driven"

1

Zhu, Liming, Xiwei Xu, Qinghua Lu, Guido Governatori, and Jon Whittle. "AI and Ethics—Operationalizing Responsible AI." In Humanity Driven AI. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72188-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jayanthi, J., and K. Arun Kumar. "AI-Driven Restoration." In Explainable AI (XAI) for Sustainable Development. Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003457176-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goniwada, Shivakumar R. "AI-Driven Development." In Cloud Native Architecture and Design. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7226-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lefkeli, Deniz, and Zeynep Gürhan-Canli. "AI-Driven Branding." In AI in Marketing. Routledge, 2025. https://doi.org/10.4324/9781003468806-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kumi, Desmond Kwadjo, Jefferson Seyanya Seneadza, and Richard Boateng. "AI-Driven Success." In AI and the Creative Economy. Productivity Press, 2025. https://doi.org/10.4324/9781003595717-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Jianjia, Bin Li, Xuhui Fan, Yang Wang, and Fang Chen. "Sewer Corrosion Prediction for Sewer Network Sustainability." In Humanity Driven AI. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72188-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ou, Yuming. "AI for Real-Time Bus Travel Time Prediction in Traffic Congestion Management." In Humanity Driven AI. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72188-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Boyu, Ting Guo, Yang Wang, and Fang Chen. "The Future of Transportation: How to Improve Railway Operation Performance via Advanced AI Techniques." In Humanity Driven AI. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72188-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Jianlong, and Fang Chen. "Towards Humanity-in-the-Loop in AI Lifecycle." In Humanity Driven AI. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72188-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Müller, Heimo, Michaela Kargl, Markus Plass, et al. "Towards a Taxonomy for Explainable AI in Computational Pathology." In Humanity Driven AI. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72188-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ai-Driven"

1

Huang, Yu, Alex Yu, Louis Liu, and Xijiang Lin. "AI Driven Testing." In 2024 IEEE International Test Conference in Asia (ITC-Asia). IEEE, 2024. http://dx.doi.org/10.1109/itc-asia62534.2024.10661318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ge, Yujun, and Jerry Ng. "AI-Driven Tennis Coaching." In 2024 IEEE MIT Undergraduate Research Technology Conference (URTC). IEEE, 2024. https://doi.org/10.1109/urtc65039.2024.10937589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gooty, Chandu Siddartha, and Nidhi Umashankar. "AI-Driven Financial Analyst." In 2025 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI). IEEE, 2025. https://doi.org/10.1109/icdsaai65575.2025.11011880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gupta, Rohit, Meenakshi R. Patil, Rupshikha Thapa, Prachi, and Shivani Nathani. "AI Driven Nursing Assistant." In 2025 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC). IEEE, 2025. https://doi.org/10.1109/iceccc65144.2025.11063773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ilieva, Roumiana, and Gloria Stoilova. "Challenges of AI-Driven Cybersecurity." In 2024 XXXIII International Scientific Conference Electronics (ET). IEEE, 2024. http://dx.doi.org/10.1109/et63133.2024.10721572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sehgal, Devansh, Inderdeep Kaur, Vaibhav Sharma, Bhuvnesh Gautam, Arozedeep Singh, and Nishant Kumar. "AI-Driven Early Diabetes Prediction." In 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC). IEEE, 2024. http://dx.doi.org/10.1109/aic61668.2024.10730970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perumal, Iyyanar, Kalaivani P, Naveenkumar A, Saran V, Sriram K, and Suruthi N. "AI-Driven Personalized Skincare Recommendations." In 2025 International Conference on Electronics and Renewable Systems (ICEARS). IEEE, 2025. https://doi.org/10.1109/icears64219.2025.10940359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, Nitin, Shivansh Kandhoua, and Payal Thakur. "AI-Driven Crop Yield Prediction." In 2024 Second International Conference on Advanced Computing & Communication Technologies (ICACCTech). IEEE, 2024. https://doi.org/10.1109/icacctech65084.2024.00096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chong, Sai King, Janice Soon, Yulia Wunyuti, Ghit Guan Goh, and Tian Feng Chew. "AI Driven Defect Map Recognition." In 2025 36th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2025. https://doi.org/10.1109/asmc64512.2025.11010700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

T A, MohanaPrakash, Lathashree P V, Divyashree A, Roshni Reju, Sonika V, and Nandagopal H. "AI-Driven Student Networking Portal." In 2025 International Conference on Inventive Computation Technologies (ICICT). IEEE, 2025. https://doi.org/10.1109/icict64420.2025.11005165.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ai-Driven"

1

Pugliese, Philip. AI Driven Optimization of Public Transit. Office of Scientific and Technical Information (OSTI), 2025. https://doi.org/10.2172/2549411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xhani, Donika. Ontology Driven Explainable AI for Tyre Engineering. University of Twente, 2023. http://dx.doi.org/10.3990/1.9789036558594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fathana, Rezka. A roadmap for Indonesia’s AI-driven healthcare. East Asian Bureau of Economic Research, 2023. http://dx.doi.org/10.59425/eabc.1691488850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fathana, Rezka. A roadmap for Indonesia’s AI-driven healthcare. East Asian Bureau of Economic Research, 2023. http://dx.doi.org/10.59425/eabc.1691575250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Varikoti, Rohith, Chathuri Jeewanthi Kombala Nanayakkara Thambiliya, Stephanie Thibert, et al. Automated AI-driven Molecular Design for Therapeutic Discovery. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2462814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Devarakonda, Ranjeet, Jitendra Kumar, Dalton Lunga, Jong Choi, and Giri Prakash. AI-Driven Data Discovery to Improve Earth System Predictability. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Puglisi, Anna, and Daniel Chou. China’s Industrial Clusters: Building AI-Driven Bio-Discovery Capacity. Center for Security and Emerging Technology, 2022. http://dx.doi.org/10.51593/20220012.

Full text
Abstract:
China is banking on applying AI to biotechnology research in order to transform itself into a “biotech superpower.” In pursuit of that goal, it has emphasized bringing together different aspects of the development cycle to foster multidisciplinary research. This data brief examines the emerging trend of co-location of AI and biotechnology researchers and explores the potential impact it will have on this growing field.
APA, Harvard, Vancouver, ISO, and other styles
8

Mehmood, Rashid. ‘Deep journalism’ driven by AI can aid better government. Edited by Sara Phillips. Monash University, 2022. http://dx.doi.org/10.54377/95e5-08b3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duplex, Younkap Nina, Zainab Akhtar, Indri Adisoemarta, et al. AI-Driven Temperature Analysis for Better Educational Environments in Tanzania. Open Development & Education, 2024. http://dx.doi.org/10.53832/opendeved.1158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pasupuleti, Murali Krishna. Securing AI-driven Infrastructure: Advanced Cybersecurity Frameworks for Cloud and Edge Computing Environments. National Education Services, 2025. https://doi.org/10.62311/nesx/rrv225.

Full text
Abstract:
Abstract: The rapid adoption of artificial intelligence (AI) in cloud and edge computing environments has transformed industries by enabling large-scale automation, real-time analytics, and intelligent decision-making. However, the increasing reliance on AI-powered infrastructures introduces significant cybersecurity challenges, including adversarial attacks, data privacy risks, and vulnerabilities in AI model supply chains. This research explores advanced cybersecurity frameworks tailored to protect AI-driven cloud and edge computing environments. It investigates AI-specific security threats, such as adversarial machine learning, model poisoning, and API exploitation, while analyzing AI-powered cybersecurity techniques for threat detection, anomaly prediction, and zero-trust security. The study also examines the role of cryptographic solutions, including homomorphic encryption, federated learning security, and post-quantum cryptography, in safeguarding AI models and data integrity. By integrating AI with cutting-edge cybersecurity strategies, this research aims to enhance resilience, compliance, and trust in AI-driven infrastructures. Future advancements in AI security, blockchain-based authentication, and quantum-enhanced cryptographic solutions will be critical in securing next-generation AI applications in cloud and edge environments. Keywords: AI security, adversarial machine learning, cloud computing security, edge computing security, zero-trust AI, homomorphic encryption, federated learning security, post-quantum cryptography, blockchain for AI security, AI-driven threat detection, model poisoning attacks, anomaly prediction, cyber resilience, decentralized AI security, secure multi-party computation (SMPC).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!