To see the other types of publications on this topic, follow the link: Algèbres de Lie.

Dissertations / Theses on the topic 'Algèbres de Lie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Algèbres de Lie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Petit, Toukaiddine. "Sur les algèbres enveloppantes des algèbres de Lie rigides." Mulhouse, 2001. http://www.theses.fr/2001MULH0669.

Full text
Abstract:
Ce travail concerne deux aspects des algèbres enveloppantes des algèbres de Lie rigides. Le premier est d'ordre topologique. On étudie la déformation de la structure de l'algèbre enveloppante U(g) d'une algèbre de Lie g. En particulier, on s'intéresse à la rigidité des algèbres enveloppantes en tant qu'algèbres associatives. On démontre que la rigidité de l'algèbre de Lie est une condition nécessaire mais non suffisante pour la rigidité de l'algèbre enveloppante. En utilisant le théorème de formalité de Kontsevitsch, on montre que toute déformation polynômiale non triviale de la structure de Poisson linéaire d'une algèbre de Lie induit une déformation non triviale de son algèbre enveloppante. On établit une classification en petites dimensions des algèbres de Lie fortement rigides (g est rigide et U(g) est rigide). Le deuxième aspect concerne la théorie de la représentation de ces algèbres. On calcule l'indice d'une sous-algèbre de Lie de Borel b d'une algèbre de Lie semi-simple et on montre également qu'il existe une famille d'orbites coadjointes (OA)A de dimension maximale de b*duai de b telle que l' idéal gradué gr(I(O. Z" à l'idéal primitif I(OÂ) associé à OÀ est premier. On donne ensuite une version coadjointe du théorème de Richardson.
APA, Harvard, Vancouver, ISO, and other styles
2

Gilg, Marc. "Super-algèbres de Lie nilpotentes." Mulhouse, 2000. http://www.theses.fr/2000MULH0604.

Full text
Abstract:
Dans ce travail, on s'intéresse aux propriétés et à la classification des super-algèbres de Lie nilpotentes. On les caractérise à l'aide des suites centrales puis en utilisant l'invariant de Goze, élargi aux super-algèbres de Lie nilpotentes. On y donne aussi la définition des super-algèbres de Lie filiformes et des propriétés générales concernant les super-algèbres de Lie nilpotentes. Dans la suite, les super-algèbres filiformes s'obtiennent par déformation linéaire d'une super-algèbre de Lie filiforme modèle, notée Ln,m. Ces déformations sont construites à partir des 2-cocycles paires de Ln,m, ce qui nous conduit à l'étude de ces cocycles. Du point de vue géométrique, on en déduit la dimension de l'orbite de Ln,m et une estimation de la dimension d'une composante irréductible contenant Ln,m dans la variété des super-algèbres de Lie nilpotentes. On établit, dans le dernier chapitre, la classification à isomorphisme près des super-algèbres de Lie filiformes dans les cas suivants : G = G0 ○+ G1 avec dim G0 = n + 1 et dim G1 = m où (n,m) ∈ {(1,m) ; (2,2) ; (2,3) ; (3,2) ; (4,2) ; (5,2)}.
APA, Harvard, Vancouver, ISO, and other styles
3

Ammari, Kaïs. "Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2256.

Full text
Abstract:
Soit K un corps algébriquement clos de caractéristique nulle. Il est bien connu, d'après un résultat de Duflo, Khalgui et Torasso, qu'une algèbre de Lie algébrique quasi-réductive (définie sur K) est stable. La réciproque est fausse en général. Se pose la question de savoir, si pour certaines classes particulières d'algèbres de Lie non réductives, il y a équivalence entre ces deux notions. Plus généralement, les sous-algèbres biparaboliques forment une classe très intéressante (incluant la classe des sous-algèbres paraboliques et de Levi) d'algèbres de Lie qui ne sont pas toutes réductives. Panyushev conjecture que si une sous-algèbre biparabolique est stable, alors son stabilisateur générique est un tore. Cette conjecture peut être reformulée ainsi : une sous-algèbre de Lie biparabolique est stable si et seulement si elle est quasi-réductive. Compte tenu des résultats obtenus par ce dernier pour le cas des sous-algèbres paraboliques d'une algèbre de Lie simple de type A et C, on donne dans cette thèse une réponse positive à cette conjecture pour la classe des sous-algèbres paraboliques d'une algèbre de Lie simple. Au passage, nous montrons également qu'une sous-algèbre de Lie de gl(n, K) qui stabilise une forme bilinéaire alternée de rang maximal et un drapeau en position générique est stable si et seulement si elle est quasi-réductive<br>Let K be an algebraically closed field of characteristic 0. It is well known by work of Duflo, Khalgui and Torasso that any quasi-reductive algebraic Lie algebra (defined over K) is stable. However, there are stable Lie algebras which are not quasi-reductive. This raises the question, if for some particular class of non-reductive Lie algebras, there is equivalence between stability and quasi-reductivity. More generally, biparabolic subalgebras form a very interesting class (including the class of parabolic subalgebras and of Levi subalgebras) of non-reductive Lie algebras. It was conjectured by Panyushev that these two notions are equivalent for biparabolic subalgebras of a reductive Lie algebra. In this thesis, we give by considering the results of Panyushev for parabolic subalgerbras of simple Lie algebra of type A and C a positive answer to this conjecture in the case of parabolic subalgebras. In passing, we prove that these two notions are equivalent for certain subalgebras of gl(n,K) which stabilize an alternating bilinear form of maximal rank and a flag in generic position
APA, Harvard, Vancouver, ISO, and other styles
4

Ancochea, Bermudez Jose Maria. "Sur la classification des algèbres de Lie rigides." Mulhouse, 1985. http://www.theses.fr/1985MULH0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chenal, Julien. "Structures géométriques liées aux algèbres de Lie graduées." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10036/document.

Full text
Abstract:
Le but de cette thèse est de définir un objet géométrique associé aux algèbres de Lie (2k+1)-graduées. Dans le cas d'une algèbre de Lie $\mathbb{Z}/2\mathbb{Z}$, l'objet géométrique associé est un espace symétrique G/H et l'objet infinitésimal associé est un système triple de Lie. Dans le cas où notre algèbre de Lie est 3-graduée, alors l'objet géométrique associé est une géométrie projective généralisée et l'objet infinitésimal correspondant est une paire de Jordan. Dans le cas général, nous appellerons cet objet géométrique une géométrie de drapeaux généralisée. La construction de cet objet est basée sur la notion de groupe projectif élémentaire et de complétion projective introduite par O. Loos et reprise par J.R. Faulkner. Ensuite, en utilisant la notion de filtration d'une algèbre de Lie, on arrive à réaliser la géométrie de drapeaux généralisée comme orbites sous le groupe projectif élémentaire de deux filtrations canoniques, associées à la graduation de l'algèbre de Lie. Dans le cas particulier de l'agèbre de Lie $\mathfrak{g}=End_R(V)$, des endomorphismes d'un module $V$ sur une algèbre associative $R$, alors la géométrie de drapeaux généralisée se réalise comme orbites de drapeaux de $V$; ce qui justifie le nom choisi de "géométrie de drapeaux généralisée". Enfin, dans un dernier temps, en utilisant un calcul différentiel généralisé, on peut construire sur la géométrie de drapeaux généralisée une structure de variété différentiable<br>The goal of this thesis is to define a geometric objet associated to graded Lie algebras. In the case of a $\mathbb{Z}/2\mathbb{Z}$ graded Lie algebra, this object is a symmetric space G/H and the infinitesimal object associated is a Lie triple system. If the Lie algebra is 3-graded, the geometry is called a generalized projective geometry and the infinitesimal object is a Jordan pair. In the general case, the geometric object will be called a generalized flag geometry. Its contruction needs the notions of elementary projective group and projective completion, definied by O. Loos and used by J. R. Faulkner. Then, by the notion of filtrations of a Lie algebras, a realization of the generalized flag geometry of a graded Lie algebra can be done as orbits under the elementary projective group of two natural filtrations, associated to the graduation. In the example $\mathfrak{g}=End_R(V)$, consisting of the endomorphisms of a module $V$ on a assocative algebra $R$, then the generalized flag geometry is realized like orbits of flags of $V$; so, it justifies the chosen name: "generalized flag geometry". To finish, using a generalized differential calculus, we can construct on this generalized flag geometry a structure of smooth manifold
APA, Harvard, Vancouver, ISO, and other styles
6

Sadaka, Guilnard. "Paires admissibles d'une algèbre de Lie simple complexe et W-algèbres finies." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2309/document.

Full text
Abstract:
Soient g une algèbre de Lie simple complexe et e un élément nilpotent de g. Nous nous intéressons dans ce mémoire à la question (soulevée par Premet) d'isomorphisme entre les W-algèbres finies construites à partir de certaines sous-algèbres nilpotentes de g dites e-admissibles. Nous introduisons les notions de paire et graduation e-admissibles. Nous montrons ensuite que la W-algèbre associée à une paire e-admissible possède des propriétés similaires à celle introduite par Gan et Ginzburg. De plus, nous définissons une relation d'équivalence sur l'ensemble des paires admissibles. Nous montrons alors que si deux paires sont équivalentes, alors les W-algèbres associées sont isomorphes. Nous introduisons enfin les notions de graduation et paire admissibles b-maximales et nous montrons que les paires admissibles b-maximales sont équivalentes entre elles. Comme conséquence de ce résultat, nous retrouvons un résultat de Brundan et Goodwin sur les bonnes graduations. Dans une dernière partie, nous considérons des cas particuliers pour lesquels nous pouvons apporter une réponse complète à la question d'isomorphisme<br>Let g be a complex simple Lie algebra and e a nilpotent element of g. We are interested to answer the isomorphism question (raised by Premet) between the finite W-algebras constructed from some nilpotent subalgebras of g called e-admissible. We introduce the concept of e-admissible pair and e-admissible grading. We show then that the W-algebra associated to an e-admissible pair admits similar properties to that introduced by Gan and Ginzburg. Moreover, we define an equivalence relation on the set of admissible pairs and we show that if two admissible pairs are equivalent, it follows that the associated W-algebras are isomorphic. We introduce later the concepts of b-maximal admissible pair and b-maximal admissible grading and show that b-maximal admissible pairs are equivalent. As a consequence to this result, we recover a result of Brundan and Goodwin on the good gradings. In a final part, we consider some particular cases where we may find a complete answer to the isomorphism question
APA, Harvard, Vancouver, ISO, and other styles
7

Patsourakos, Alexandros. "Sur les algèbres de Lie libres." Dijon, 1992. http://www.theses.fr/1992DIJOS025.

Full text
Abstract:
Dans ce travail on expose trois résultats concernant les algèbres de Lie libres. Soient K un corps commutatif et X un ensemble. On note Lib(X) l'algèbre non associative libre de X sur K et A(X) l'algèbre associative libre de X sur K. On note encore Jb(resp. Jg) l'idéal bilatère (resp. L'ideal à gauche) de Lib(X) engendré par les éléments Q(a)=aa et J(a,b,c)=a(bc)+b(ca)+c(ab) pour tout a,b,c dans Lib(X). Une algèbre de Lie libre, notée L(X), est le quotient Lib(X)/Jb. Le premier résultat est donné par le fait que Jb=Jg. L'algèbre A(X) est canoniquement isomorphe à l'algèbre enveloppante de L(X). On note A+(X) l'idéal d'augmentation de A(X). On considère l'idéal à gauche Rg de Lib(X) engendré par les éléments R(a,b,c)=a(bc)-(ab)c-b(ac) pour tout a,b,c dans Lib(X) et on établit le deuxième résultat. A savoir, il existe une structure de A(X)-module à gauche gradué sur Lib(X)/Rg telle que A+(X)=Lib(X)/Rg. Le troisième résultat consiste à démontrer que la cohomologie triple des algèbres de Lie coincide à la cohomologie usuelle des algèbres de Lie avec des modifications convenables.
APA, Harvard, Vancouver, ISO, and other styles
8

Bennour, Ahmed. "Symétrisation des algèbres de Lie graduées." Dijon, 1992. http://www.theses.fr/1992DIJOS036.

Full text
Abstract:
Dans la première partie de ce travail, on considère g une algèbre de Lie graduée sur un corps K de caractéristique zéro, T l'algèbre tensorielle de g et S l'ensemble des tenseurs symétriques de T. On généralise un opérateur de symétrisation defini explicitement par L. Solomon de T dans S. Dans la seconde partie, on suppose g une algèbre de Lie non graduée et K le corps des réels. On étudie un élément crucial pour les formules de symétrisation de L. Solomon.
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmad, Saad. "Algèbres symétriques à gauche et algèbre de couleurs." Montpellier 2, 1989. http://www.theses.fr/1989MON20039.

Full text
Abstract:
Le but essentiel de la premiere partie est de donner quelques resultats de nature algebrique concernant les algebres symetriques a gauche (sg). Nous avons donne une classification de ces algebres en dimension deux, en considerant les elements nilpotents. Ainsi, on a demontre que si la ir-algebre est sans elements nilpotents d'ordre deux alors elle possede au moins un idempotents; ensuite, on a etudie les derivations et les automorphismes. Quelques structures d'algebres sg sur une algebre de lie de dimension 3 ont ete donnees. La structure d'algebre sg sur une algebre de lie de type m a ete donnee; de plus, on a demontre (lorsque l'algebre enveloppante de l'algebre de lie des multiplications est semi-simple) que le radical de l'algebre sg est un ideal bilatere qui contient l'ideal de lie derive. On a donne des conditions necessaires et suffisantes pour qu'une algebre sg devienne associative. Nous avons defini aussi les algebres homotopes et l'algebre de mutation d'un algebre sg. Finalement, on a donne un theoreme d'extensions d'algebres sg analogue de celui de hochschild pour les algebres associatives. Dans la deuxieme partie nous donnsons un theoreme de structure de l'algebre de lie des derivations et du groupe des automorphismes de l'algebre de couleurs. Nous avons donne aussi une representation matricielle de cette algebre. Ainsi, on a repris les resultats concernant les derivations et les automorphismes et on les a representes sous cette forme matricielle
APA, Harvard, Vancouver, ISO, and other styles
10

Back, Valérie. "Formes réelles presque déployées d'algèbres de Lie affines." Nancy 1, 1995. http://www.theses.fr/1995NAN10090.

Full text
Abstract:
L’objet de cette thèse est l'étude des formes presque déployées des algèbres de Lie affines. Plus précisément, les algèbres de Lie affines se construisent comme algèbres de lacets à partir d'une algèbre de Lie simple et d'un automorphisme d'ordre fini de cette algèbre, on montre alors que les formes presque déployées des algèbres de Lie affines se construisent de façon parallèle à partir d'une forme de l'algèbre de Lie simple et du même automorphisme (pour un bon choix de cet automorphisme). On se restreint ensuite au cas réel et on donne pour chaque forme réelle presque déployée d'algèbre de Lie affine complexe, la ou les deux formes réelles d'algèbre de Lie simple complexe qu'on lui associe (selon le procédé évoqué ci-dessus), ainsi que leurs rangs
APA, Harvard, Vancouver, ISO, and other styles
11

Cesaro, Andrea. "Pre-Lie algebras and operads in positive characteristic." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10026/document.

Full text
Abstract:
Le sujet de cette thèse est la théorie des opérades. Une opérande est utilisée pour encoder des collections d’opérations. Une opérade P est associée à une catégorie d’algèbres, qui est gouvernée par une monade, dénotée par S(P,-). Nous avons des variantes de cette monade, dénotées par Λ(P,-) et Γ(P,-), ce qui nous donne de nouvelles catégories d’algèbres associée à P. Nous étudions les monades Λ(PreLie,-) et Γ(P,-), associées à une opérande particulière PreLie, dont la structure reflets la définition classique des crochets de Lie par la symétrisation des opérations. Nous montrons que la catégorie des algèbres Λ(PreLie,-) est isomorphe à la catégorie des algèbres pré-Lie p-restreintes. Nous donnons ensuite une présentation de la structure d’une algèbre sur la monade Γ(PreLie,-). Nous expliquons comment définir une généralisation appropriée de la notion d’une opérade dans la seconde partie de la thèse. Premièrement, nous expliquons la définition d’une catégorie de foncteurs cohomologiques de Mackey sur une catégorie des partitions HParn. Nous prouvons que cette catégorie de foncteurs de HParn-Mackey cohomologiques est équivalent à la catégorie de Suslin-Friedlander des foncteurs polynomiaux strictes de degré n. Nous comptons sur ce résultat pour définir une catégorie de M-modules correspondant aux foncteurs analytiques. Nous prouvons que la catégorie des M-modules forme une catégorie monoïdale équivalente à celle des foncteurs analytiques avec la composition des foncteurs comme structure monoïdale. Nous utilisons ce résultat pour prouver que la catégorie des monades analytiques est équivalente à une catégorie d’opérades généralisées dans les M-modules<br>The subject of this thesis is the theory of operads. An operad is used to encode collections of operations. An operad P is associated to a category of algebras, which is governed by a monad, denoted by S(P,-). We have variants of this monad, denoted by Λ(P,-) and Γ(P,-), which give new categories of algebras associated to P. We study the monads Λ(PreLie,-) and Γ(PreLie,-) associated to a particular operad PreLie, whose structure reflects the classical definition of Lie brackets by the symmetrization of operations in the field of differential geometry. We show that the category of Λ(PreLie,-) algebras is isomorphic to the category of p-restricted pre-Lie algebras. Then we give a presentation of the structure of an algebra over the monad Γ(PreLie,-). We explain how to define a suitable generalisation of the notion of an operad in the second part of the thesis. In a first step we explain the definition of a category of cohomological Mackey functors on a category of partitions HParn. We prove that this category of cohomological HParn-Mackey functors is equivalent to the Suslin-Friedlander category of strict polynomial functors of degree n. We rely on this result to define a category of M-modules corresponding to analytic functors. We prove that the category of M-modules forms a monoidal category equivalent to the category of analytic functors with the composition of functors as monoidal structure. We use this result to prove that the category of analytic monads is equivalent to a category of generalized operads in M-modules
APA, Harvard, Vancouver, ISO, and other styles
12

Mabrouk, Sami. "Algèbres Hom-Nambu quadratiques et Cohomologie des algèbres Hom-Nambu-Lie multiplicatives." Thesis, Mulhouse, 2012. http://www.theses.fr/2012MULH7311/document.

Full text
Abstract:
Dans le premier chapitre de la thèse, nous résumons d’abord les définitions des algèbres Hom-Nambu n-aires (resp. Hom-Nambu- Lie) et algèbres Hom-Nambu n-aires multiplicatives (resp. Hom-Nambu-Lie multiplicatives). Ensuite, on donne,quelques exemples d'algèbres Hom-Nambu de dimension finie. Dans la troisième section du chapitre on rappellela classication des algèbres Hom-Nambu-Lie ternaires de dimension 3 correspondant auxhomomorphismes diagonaux donnée par Ataguema, Makhlouf et Silvestrov dans [12]. Laquatrième section est consacrée aux différentes manières de construire des algèbres n-airesde type Hom-Nambu. On rappelle la construction par twist initiée par Yau. Ensuite on la généralise en une construction d'algèbre n-aire de Hom-Nambu à partir d'une algèbre n-aire de Hom-Nambu et d'un morphisme faible. On s'intéresse aussi à des constructions d'arité plus grande ou plus petite et par produit tensoriel. On montre par ailleurs comment obtenir de nouvelles algèbres n-aires de Hom-Nambu en utilisant les éléments du centroide. La cinquième section est consacrée aux notions de dérivations et de représentationspour les algèbres n-aires. On étudie les αk-dérivations, les dérivations centrales et dansle cas général, la théorie des représentations des algèbres Hom-Nambu n-aires. Nousdiscutons en particulier les cas des représentations adjointes et coadjointes. Les résultatsobtenus dans cette section généralisent ceux donnés pour le cas binaire dans [16, 57]<br>The aim of this thesis is to study representation theory and cohomology of n-ary Hom-Nambu-Lie algebras, as well as quadratic structures on these algebras. It is organized as follows.• Chapter 1. n-ary Hom-Nambu algebras : in the first section we recall the definitions of n-ary Hom-Nambu algebras and n-ary Hom-Nambu-Lie algebras, introduced by Ataguema, Makhlouf and Silvestrov and provide some key constructions. These algebras correspond to a generalized version by twisting of n-ary Nambu algebras and Nambu-Lie algebras which are called Filippov algebras. We deal in this chapter with a subclass of n-ary Hom-Nambu algebras called multiplicative n-ary Hom-Nambu algebras. In Section 1.2, we recall the list of 3-dimensional ternary Hom-Nambu-Lie algebras of special type corresponding to diagonal homomorphisms. In Section 1.4 we show different construction procedures. We recall the construction procedures by twisting principles and provide some new constructions using for example the centroid. The first twisting principle, introduced for binary case, was extend to n-ary case. The second twisting principle was introduced for binary algebras. We will extend it to n-ary case in the sequel. Also we recall a construction by tensor product of symmetric totally n-ary Hom-associative algebra by an n-ary Hom-Nambu algebra. In Section 1.5, we extend representation theory of Hom-Lie algebras to the n-ary case and discuss the derivations, αk-derivations and central derivations. The last section of chapter 1 is dedicated to ternary q-Virasoro-Witt algebras. We recall constructions of infinite dimensional ternary Hom-Nambu algebras.• Chapter 2. Cohomology of n-ary multiplicative Hom-Nambu algebras : InSection 2.1. We define a central extension. In the second Section we show that for an n-ary Hom-Nambu-Lie algebra N, the space ∧n−1 N carries a structure of Hom-Leibniz algebra and we dene a cohomology which is suitable for the study of one parameter formal deformations of n-ary Hom-Nambu-Lie algebras. In Section 2.4, we extend to n-ary multiplicative Hom-Nambu-Lie algebras the Takhtajan's construction of a cohomology of ternary Nambu-Lie algebras starting from Chevalley-Eilenberg cohomology of binary Lie algebras. The cohomology of multiplicative Hom-Lie algebras. The cohomology complex for Leibniz algebras was defined by Loday and Pirashvili.• Chapter 3. Quadratic n-ary Hom-Nambu algebras : In the first section we introduce a class of Hom-Nambu-Lie algebras which possess an inner product. In Section 3.3, we provide some constructions of Hom-quadratic Hom-Nambu-Lie algebras starting from an ordinary Nambu-Lie algebra and from tensor product of Hom-quadratic commutative Hom-associative algebra and Hom-quadratic Hom-Nambu-Lie algebra. In Section 3.5, we provide a construction of n-ary Hom-Nambu algebra L which is a generalization of the trivial T∗-extension. In Section 3.6, we give a construction of ternary algebra arising from quadratic Lie algebra. In Section 3.7, we construct quadratic n-ary Hom-Nambu algebras involving elements of the centroid of n-ary Nambu algebras
APA, Harvard, Vancouver, ISO, and other styles
13

Eberlin, Valerien. "Centroïdes et algèbres de Lie dimensionnellement nilpotentes." Montpellier 2, 1997. http://www.theses.fr/1997MON20084.

Full text
Abstract:
Il est connu que les algebres de lie dimensionnellement nilpotentes, non simples de dimension 3, sont resolubles et que les algebres de lie dimensionnellement nilpotentes, non nilpotentes sont des algebres locales d'ideal maximal nilpotent. Ces resultats fondamentaux obtenus par leger et manley nous ont permis de trouver quelques proprietes elementaires des algebres de lie dimensionnellement nilpotentes et d'etudier les types associes a l'ideal maximal nilpotent de ces algebres. Ainsi, nous montrons que si cet ideal maximal nilpotent n'est pas abelien ou de heisenberg, il est filiforme gradue engendre par ses elements de degre 1 ou produit semi-direct d'une filiforme graduee engendree par ses elements de degre 1 par une droite c'est a dire de type de la forme (n,2). Ce resultat est interessant parce'que michele vergne dans l'etude des algebres de lie filiformes engendrees par ses elements de degre 1, a montre qu'il n'y a que deux classes d'isomorphismes possibles pour ces algebres : les structures des algebres de lie dimensionnellement nilpotentes non nilpotentes sont donc presque toutes connues. Cela permet de calculer le centroide d'une algebre de lie dimensionnellement nilpotente quelconque, non nilpotente et de montrer qu'il est petit. Une etude des algebres de lie 2-nilpotentes dimensionnellement nilpotentes est aussi abordee ou nous etablissons une condition necessaire et suffisante pour qu'une algebre de lie 2-nilpotente soit dimensionnellement nilpotente. Un calcul explicite, decrit de facon precise les constantes de structures, sur une base dite adaptee, des algebres de lie 2-nilpotentes dimensionnellement nilpotentes dont le centre et l'ideal derive coincident ; cette description nous a permis de fournir la classification de ces algebres de lie en dimension 5,6 et 8.
APA, Harvard, Vancouver, ISO, and other styles
14

Ohayon, Jonathan. "Quantification des sous-algèbres de Lie coisotropes." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20040/document.

Full text
Abstract:
L’objet de cette thèse est l’étude de l’existence d’une quantification pour les sous-algèbres de Lie coisotropes des bigèbres de Lie. Une sous-algèbre de Lie coisotrope d’une bigèbre de Lie est une sous-algèbre de Lie qui est aussi un coidéal. Le problème de quantifications d’une sous-algèbre de Lie coisotrope fut posé par V. Drinfeld, lors de son étude de la quantification des espaces de Poisson homogènes G/C. Ces deux problèmes sont liés par le principe de dualité établi par N. Ciccoli et F. Gavarini. Dans cette thèse, nous cherchons à résoudre ce problème de quantification dans différents cadres. Premièrement, nous montrons qu’une quantification existe dans le cadre des bigèbres de Lie simple. Nous trouvons une quantification aux sous-algèbres de Lie coisotropes construites par M. Zambon. Puis nous établissons un lien entre ces quantifications et une classification des sous- algèbres coidéales à droite établie par I. Heckenberger et S. Kolb. Deuxièmement, nous trouvons une obstruction à la quantification universelle en utilisant une quantification d’ordre trois construite par V. Drinfeld. Nous montrons que cette obstruction disparait dans les exemples étudiés précédemment. Finalement, nous généralisons un résultat établi par P. Etingof et D. Kazhdan sur la quantification d’espaces de Poisson homogènes, liés aux sous-algèbres Lagrangiennes du double de Drinfeld<br>The aim of this thesis is the study of quantization of coisotropic Lie subalgebras of Lie bialgebras.A coisotropic Lie subalgebra of a Lie bialgebra is a Lie subalgebra which is also a Lie coideal. The problem of quantization of coisotropic Lie subalgebra was set forth by V. Drinfeld, in his study of quantization of Poisson homogeneous spaces G/C. These problems are closely related to the duality principle established by N. Ciccoli and F. Gavarini.In this thesis, we search for an answer to this quantization problem in different settings. Firstly, we show that a quantization exists for simple Lie bialgebras by constructing a quantization of examples provided by M. Zambon. We then establish a link between the quantization which we constructed and a classification of subalgebras right coideals established by I. Heckenberger and S. Kolb. Secondly, we find an obstruction to the quantization in the universal setting by using a third-order quantization constructed by V. Drinfeld. We show that this obstruction vanishes in the examples studied earlier. Finally, we generalize a result of P. Etingof and D. Kazhdan on the quantization of poisson homogeneous spaces, linked to Lagrangian Lie subalgebras of Drinfeld's double
APA, Harvard, Vancouver, ISO, and other styles
15

Khakimdjanova, Kamola. "Algèbres de Lie dont le treillis des idéaux est fixé." Mulhouse, 2000. http://www.theses.fr/2000MULH0606.

Full text
Abstract:
Dans cette thèse on étudie certaines structures algébriques dont le treillis des idéaux vérifie les propriétés données. De manière plus précise trois types de structures algébriques sont abordés : les espaces vectoriels différentiels, les algèbres de Lie et les algèbres de Lie différentielles de dimension finie ou infinie. Pour les espaces vectoriels différentiels nous définissons la notion de dimension différentielle et nous étudions certaines de ses propriétés. Ensuite nous abordons le problème suivant : si on fixe un treillis avec les propriétés simples, quelles sont les algèbres de Lie ou les algèbres de Lie différentielles de dimension finie ou infinie admettant le treillis donné comme treillis des idéaux ? En étudiant ce problème, nous avons obtenu une classification complète d'algèbres de Lie de dimension finie dont le treillis des idéaux a une longueur inférieure ou égale à 2. Nous introduisons une classe d'algèbres de Lie de dimension infinie appelées fines qui généralise celle des algèbres filiformes dans le cas de dimension finie. La classification complète des algèbres de Lie fines est un problème intéressant mais, probablement très difficile. Nous avons obtenu une classification complète à isomorphisme près, des algèbres de Lie fines admettant une graduation naturelle ou standard. Finalement en appliquant ce résultat nous avons obtenu la classification complète des algèbres de Lie de dimension infinie potentiellement résolubles dont le treillis des idéaux est une chaîne.
APA, Harvard, Vancouver, ISO, and other styles
16

Remm, Elisabeth. "Structures affines sur les algébres de Lie et opérades Lie admissibles." Mulhouse, 2001. http://www.theses.fr/2001MULH0670.

Full text
Abstract:
Le but de ce travail est l'étude et la construction de structures affines sur une algèbre de Lie, ce qui correspond au problème d'existence de connexions affines, sans courbure ni torsion, invariantes à gauche sur un groupe de Lie. L'existence d'une telle structure munit l'espace vectoriel sous-jacent à l'algèbre de Lie d'une autre structure d'algèbre appelée algèbre symétrique gauche ou algèbre de Vinberg qui, par antisymétrie, redonne la structure d'algèbre de Lie. On étudie également la complétude de la structure et on définit un produit scalaire associé permettant dans certains cas de munir un groupe de Lie associé d'une structure hessienne. On propose ici une approche de ces algèbres au travers des algèbres Lieadmissibles. Par définition, une algèbre est Lie-admissible si le produit X. Y vérifie que X. Y-Y. X est un crochet de Lie. La classe des algèbres Lie-admissibles contient en particulier les algèbres de Lie, de Vinberg et associatives. La variété algébrique des algèbres Lie-admissibles est naturellement fibrée au-dessus de la variété des algèbres de Lie. Le problème d'existence d'une structure affine revient à examiner l'intersection de la sous-variété des algèbres de Vinberg avec les fibres. L'idée de déformer une structure d'algèbre de Lie considérée comme algèbre Lie-admissible en une structure d'algèbre de Vinberg appartenant à la même fibre est donc naturelle. Ceci conduit à définir de manière précise les cohomologies de ces algèbres et à connaître précisemment leurs opérades associées. La deuxième approche est plus géométrique. On montre que les algèbres filiformes non caractéristiquement nilpotentes sont affines. On étudie également toutes les structures affines sur les algèbres abéliennes de dimensions 2 et 3 (en particulier les structures non complètes). On donne les conditions algébriques nécessaires à l'obtention d'une structure sur une algèbre de Lie de contact à partir d'une extension centrale d'une algèbre symplectique.
APA, Harvard, Vancouver, ISO, and other styles
17

Tanasa, Adrian. "Sous-algèbres de Lie de l'algèbre de Weyl : Algèbres de Lie d'ordre 3 et elurs applications à la supersymétrie cubique." Mulhouse, 2005. http://www.theses.fr/2005MULH0794.

Full text
Abstract:
Dans la première partie nous présentons l'algèbre de Weyl et nos résultats en ce qui concerne ses sous-algèbres de Lie de dimension finie. La deuxième partie est consacrée à une structure algébrique plus exotique, l'algèbre de Lie d'ordre 3. Nous posons les bases d'une théorie des déformations et contractions de ces structures algébriques. Nous choisissons après une telle algèbre de Lie d'ordre 3 qui étend d'une manière non-triviale, différente de la supersymétrie, l'algébre de Poincaré. Nous nous intéressons à la construction d'un modèle de théories des champs (la supersymétrie cubique ou la 3SUSY) basée sur cette algèbre. Dans ce but nous obtenons des multiplets bosoniques avec lesquels nous construisons des Lagrangiens invariants. Nous étudions la compatibilité entre cette nouvelle symétrie et la symétrie de jauge abelienne. L'analyse des termes d'interactions possible montre que ceux-ci ne sont pas permis par la 3SUSY. Finalement nous établirons les résultats de l'extension en dimension arbitraire de notre modèle<br>In the first part we present the Weyl algebra and our results concerning its finite-dimensional Lie subalgebras. The second part is devoted to a more exotic algebraic structure, the Lie algebra of order 3. We set the basis of a theory of deformations and contractions of these algebraic structures. We then concentrate on a particular such Lie algebra of order 3 which extends in a non-trivial way the Poincaré algebra, this extension being different of the supersymmetric extension. We then focus on the construction of a field theoretical model based on this algebra, the cubic supersymetry (3SUSY). For this purpose we obtain bosonic multiplets with whom we construct invariant Lagrangians. We then study the compatibility between this new symmetry and the abelian gauge symmetry. Furthermore, the analyse of possible interactions shows that interactions terms are not allowed by the 3SUSY invariance. Finally we establish results regarding the extension in arbitrary dimensions of our model
APA, Harvard, Vancouver, ISO, and other styles
18

Benayadi, Saïd. "Etude d'une famille d'algèbres de Lie généralisant les algèbres de Lie semi-simples." Dijon, 1993. http://www.theses.fr/1993DIJOS001.

Full text
Abstract:
Le but de cette thèse est d 'étudier les algèbres de Lie g qui vérifient g,g=g, Ders(g)=ad(g) et z(g)=0, qu'on appelle les algèbres de Lie sympathiques. On construit une algèbre de Lie sympathique non semi-simple qui vérifie h#2(g,g)=0, par conséquent g est rigide par déformation. Ce qui prouve que la structure sympathique n'est pas une dégénérescence directe de la structure semi-simple (par contraction). On construit une algèbre de Lie sympathique de dimension 48 non rigide par déformation. On construit une algèbre de Lie sympathique non semi-simple de dimension 25. Cette algèbre de Lie est la plus petite algèbre de Lie sympathique non semi-simple, connue à ce jour. On montre que certaines propriétés classiques des algèbres de Lie semi-simples restent vraies pour les algèbres de Lie sympathiques. Si g est une algèbre de Lie, on montre que g possède un plus grand idéal sympathique m, et qu'il existe un idéal résoluble de g note p(g) qui est le plus grand idéal l de g tel que lm=0. On montre l'existence d'une sous-algèbre de Lie sympathique m de g telle que g=m+p(g); et g est sympathique si, et seulement si p(g)=0. On étudie: les idéaux l d'une algèbre de Lie g tel que g/l est sympathique; une classe particulière d'algèbres de Lie parfaites; les algèbres de Lie munies d'un produit scalaire invariant
APA, Harvard, Vancouver, ISO, and other styles
19

Saïdi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Thesis, Clermont-Ferrand 2, 2011. http://www.theses.fr/2011CLF22208/document.

Full text
Abstract:
Nous étudions dans cette thèse l’algèbre de Hopf H associée à l’opérade pré-Lie. L’espace des éléments primitifs du dual gradué est muni d’une structure pré-Lie à gauche notée ⊲ définie par l’insertion d’un arbre dans un autre. Nous retrouvons la relation de dérivation entre le produit pré-Lie ⊲ et le produit pré-Lie de greffe → sur les éléments primitifs du dual gradué de l’algèbre de Hopf de Connes Kreimer HCK. Nous mettons en évidence un coproduit sur le produit tensoriel H ⊗HCK, qui en fait une algèbre de Hopf dont le dual gradué est isomorphe à l’algèbre enveloppante du produit semi-direct des deux algèbres de Lie considérées. Nous montrons que l’espace engendré par les arbres enracinés qui ont au moins une arête, muni du produit d’insertion, est une algèbre pré-Lie (non libre) engendrée par deux éléments. Nous mettons en évidence deux familles de relations. De plus nous montrons un résultat similaire pour l’algèbre pré-Lie associée à l’opérade NAP. Finalement on introduit les opérades à débit constant et on montre que l’opérade pré-Lie s’obtient comme déformation de l’opérade NAP dans ce cadre<br>We investigate in this thesis the Hopf algebra structure on the vector space H spanned by the rooted forests, associated with the pre-Lie operad. The space of primitive elements of the graded dual of this Hopf algebra is endowed with a left pre-Lie product denoted by ⊲, defined in terms of insertion of a tree inside another. In this thesis we retrieve the “derivation” relation between the pre-Lie structure ⊲ and the left pre-Lie product → on the space of primitive elements of the graded dual H0CK of the Connes-Kreimer Hopf algebra HCK, defined by grafting. We also exhibit a coproduct on the tensor product H⊗HCK, making it a Hopf algebra the graded dual of which is isomorphic to the enveloping algebra of the semidirect product of the two (pre-)Lie algebras considered. We prove that the span of the rooted trees with at least one edge endowed with the pre-Lie product ⊲ is generated by two elements. It is not free : we exhibit two families of relations. Moreover we prove a similar result for the pre-Lie algebra associated with the NAP operad. Finally, we introduce current preserving operads and prove that the pre-Lie operad can be obtained as a deformation of the NAP operad in this framework
APA, Harvard, Vancouver, ISO, and other styles
20

Saidi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00720201.

Full text
Abstract:
Nous étudions dans cette thèse l'algèbre de Hopf H associée à l'opérade pré-Lie. L'espace des éléments primitifs du dual gradué est muni d'une structure pré-Lie à gauche notée ⊲ définie par l'insertion d'un arbre dans un autre. Nous retrouvons la relation de dérivation entre le produit pré-Lie ⊲ et le produit pré-Lie de greffe → sur les éléments primitifs du dual gradué de l'algèbre de Hopf de Connes Kreimer HCK. Nous mettons en évidence un coproduit sur le produit tensoriel H ⊗HCK, qui en fait une algèbre de Hopf dont le dual gradué est isomorphe à l'algèbre enveloppante du produit semi-direct des deux algèbres de Lie considérées. Nous montrons que l'espace engendré par les arbres enracinés qui ont au moins une arête, muni du produit d'insertion, est une algèbre pré-Lie (non libre) engendrée par deux éléments. Nous mettons en évidence deux familles de relations. De plus nous montrons un résultat similaire pour l'algèbre pré-Lie associée à l'opérade NAP. Finalement on introduit les opérades à débit constant et on montre que l'opérade pré-Lie s'obtient comme déformation de l'opérade NAP dans ce cadre.
APA, Harvard, Vancouver, ISO, and other styles
21

Yu, Rupert Wei Tze. "Sur les déformations des algèbres de Lie locales." Paris 7, 1993. http://www.theses.fr/1993PA077106.

Full text
Abstract:
On généralise aux algèbres de Lie locales la théorie classique de la déformation. Les critères cohomologiques concernant la rigidité restent valables, ainsi que le théorème de Carles caractésisant les algèbres de Lie rigides, au moins si on impose une condition supplémentaire. D'autre part, on a trouvé une façon d'étudier les déformations provenant des extensions centrales : en particulier, appliqué aux algèbres de Lie ordinaires, celle-ci donne une autre condition de la rigidité, qui allonge la liste des critères de Carles et de la théorie classique.
APA, Harvard, Vancouver, ISO, and other styles
22

Bulois, Michaël. "Étude de quelques sous-variétés des algèbres de Lie symétriques semi-simples." Brest, 2009. http://www.theses.fr/2009BRES2042.

Full text
Abstract:
Les algèbres de Lie ont été introduites vers la fin du XlXème siècle afin d’étudier certains problèmes de nature géométrique. Dans un soucis de classification de ces objets, les algèbres de Lie réductives se sont vues conférer un rôle important. Les algèbres de Lie symétriques sont, elles, une généralisation des algèbres de Lie. De plus, il existe une correspondance bijective entre les algèbres de Lie réelles et les algèbres de Lie symétriques complexes, ce qui renforce l’intérêt porté à ces dernières, Un second niveau de structure des algèbre de Lie (semi-simples complexe) joue un rôle important. Il s’agit de considérer l’algèbre de Lie g comme une G-variété où G est le groupe algébrique adjoint de g opérant via l’action adjointe sur g. Il s’avère alors utile d’étudier ceci dans le cadre de la géométrie algébrique. Les propriétés géométriques de certaines variétés issues des algèbres de Lie ont alors pu être étudiées. D’un point de vue général, ce travail consiste à généraliser et comprendre les propriétés de variétés analogues dans les algèbres de Lie symétriques<br>Lie algebras were introduced toward the end of nineteenth century in order to study some problems arising from geometry. In the interest of classifying these objects, the subcategory of semisimple Lie algebras has been studied. Symmetric Lie algebras are a generalisation of Lie algebras and there are connections between complex symmetric Lie algebras and real Lie algebras. There is an another level structure on (semisimple complex) Lie algebras. Denoting by G the algebraic adjoint group of g, we can conside g as a G-variety under the adjoint action M. We can then study some properties in the framework of algebraic geometry. One can then study various G-varieties arising from this setting. From a global perspective, I try to generalize or understand some properties of analogue varieties in symmetric Lie algebras
APA, Harvard, Vancouver, ISO, and other styles
23

Wagemann, Friedrich. "Algèbres de Lie de dimension infinie - cohomologie et déformations." Habilitation à diriger des recherches, Université de Nantes, 2007. http://tel.archives-ouvertes.fr/tel-00397780.

Full text
Abstract:
La direction principale de mes recherches est la théorie des algèbres de Lie de dimension infinie d'un point de vue homologique. Une idée clé en manipulant des algèbres de Lie de dimension infinie est de les munir d'une topologie naturelle afin d'apprivoiser la théorie. Par exemple, soit g une algèbre de Lie topologique et m une algèbre de Lie topologique abélienne, et considérons les classes d'équivalence de suites exactes 0 -> m -> e -> g -> 0. Ici, l'exactitude de la suite est entendue comme exactitude d'une suite d'algèbres de Lie discrètes. Du point de vue des algèbres de Lie topologiques, il y a donc des extensions non triviales qui ne sont que des extensions d'espaces vectoriels topologiques (au cas où g et m sont effectivement de dimension infinie), il y a des extensions d'algèbres de Lie topologiques qui sont scindées en tant que suite d'espaces vectoriels topologiques, et il y a des extensions qui mélangent les deux phénomènes. Afin d'exclure le premier type d'extensions et de se concentrer sur le deuxième, on se restreint à des extensions qui sont topologiquement scindées. Cette restriction se reflète au niveau des cochaînes en ne considérant que des cochaînes continues. En effet, en prenant un scindage de la suite, on peut écrire e = g + m en tant qu'espaces vectoriels topologiques, et le crochet devient alors [(x,a),(y,b)] = ([x,y],-x b + y a + alpha(x,y)). La continuité du crochet et de la section sigma : g -> e impliquent que alpha : g x g -> m est un 2-cocycle continu sur g à valeurs dans m. Comme illustré dans le paragraphe précédent, l'analyse fonctionnelle entre dans notre étude d'une façon assez algébrique. En fait, nous sommes amenés à travailler avec des espaces vectoriels topologiques de Fréchet, puisque beaucoup d'algèbres de Lie de dimension infinie apparaissent comme espaces de sections d'un fibré vectoriel sur une variété. Les algèbres de Lie auxquelles nous nous intéressons sont des algèbres de Lie de champs de vecteurs sur une variété ou des produits tensoriels A x k d'une algèbre de Lie k par une algèbre associative commutative unitaire A; le produit tensoriel est ensuite regardé comme algèbre de Lie sur le corps de base. On appellera ces algèbres de Lie algèbres de courants. Pendant ma thèse et directement après celle-ci, j'ai travaillé sur la cohomologie continue des algèbres de Lie de champs de vecteurs, qu'on appelle aussi cohomologie de Gelfand-Fuks. La différence avec la cohomologie discrète ou algébrique est que les cochaînes sont supposées être continues par rapport à une topologie fixée sur l'algèbre de Lie et sur le module. Je crois que malgré le fait que ce sujet existe depuis plus de trente ans et que la question fondamentale, à savoir la conjecture de Bott, a été résolue il y a trente ans, il reste des questions ouvertes. Par exemple, celles sur des critères clairs pour la dégénérescence des suites spectrales de Gelfand-Fuks, le calcul explicite d'exemples, des formules explicites pour les cocycles, ou des résultats analogues pour des cohomologies différentes comme par exemple la cohomologie de Leibniz. De plus, je pense que le sujet n'est pas bien illustré dans des livres; par exemple, aucun livre sur le sujet n'explique comment l'annulation des classes de Pontryagin de la variété facilite la calcul, bien que ceci soit bien connu des experts du sujet. Des modèles, au sens de la théorie d'homotopie rationnelle, existent pour la cohomologie de Gelfand-Fuks, mais dans aucun livre, on n'explique comment les calculer explicitement, à partir d'exemples concrets comme dans un article de Félix et Thomas. Dans mes recherches, j'applique des méthodes et outils connus en théorie de Gelfand-Fuks aussi à d'autres algèbres de Lie ou à d'autres cohomologies, et cela pour illustrer l'universalité des outils en vue d'obtenir de nouveaux résultats. Il est important d'être conscient des limites de la théorie de Gelfand-Fuks pour des algèbres de Lie de dimension infinie purement algébriques. En effet, toute topologie sur l'algèbre de Lie des dérivations de l'algèbre des polynômes de Laurent K[X,X^{-1}] semble artificielle, mais nous ne connaissons pas de calcul de la cohomologie algébrique de cette algèbre de Lie. Or, sa cohomologie continue munie de la topologie de sous-algèbre de Lie de l'algèbre de Lie des champs de vecteurs différentiables sur le cercle est bien connue. Suite à une question de la part de Jean-Louis Loday pendant ma thèse, je me suis intéressé à l'interprétation de la 3-cohomologie d'une algèbre de Lie en tant que (classes d'équivalence) de modules croisés. Un module croisé est un homomorphisme d'algèbres de Lie mu : m -> n avec une action compatible de n sur m par dérivations. Mon point de vue est qu'on peut assez facilement construire de tels modules croisés pour des classes de cohomologie données. Cette construction permet de mieux comprendre leur lien avec d'autres classes. Le point de vue plus traditionnel est de voir des modules croisés comme obstructions contre l'existence d'extensions. La géométrie entre en scène quand ce cadre algébrique est appliqué à des algébroides de Lie et des groupoides de Lie. C'est à travers ces objets que les classes d'obstruction de Neeb sont liées à des gerbes sur la variété. La compréhension approfondie de la relation entre des modules croisés de groupoides de Lie et des gerbes est encore en chantier. Ensemble avec Karl-Hermann Neeb, nous étudions l'algèbre homologique et la théorie de Lie des algèbres de courants holomorphes, i.e. des algèbres de Lie qui sont espaces de sections holomorphes de fibrés triviaux en algèbres de Lie sur des variétés complexes. Plus précisément, nous déterminons leurs extensions centrales universelles dans le cas où l'algèbre de Lie fibre est simple, nous calculons la deuxième cohomologie continue pour une algèbre fibre quelconque, et nous adressons la question de savoir si le groupe topologique des applications holomorphes d'une variété complexe à valeurs dans un groupe de Lie porte une structure de groupe de Lie Fréchet. Plus récemment, je me suis intéressé aux déformations d'algèbres de Lie de dimension infinie. D'abord, j'établie un lien entre déformations d'algèbres de Krichever-Novikov et le champs algébrique des modules des courbes. Notre point de vue est que ce lien se comprend facilement en introduisant un champ des déformations d'algèbres de Lie. Nous montrons que le champ des modules admet un morphisme naturel dans la champ des déformations. Il s'avère que ce morphisme est presque un monomorphisme, grâce à la théorie de Pursell-Shanks qui caractérise une variété par son algèbre de Lie des champs de vecteurs. Ensemble avec Alice Fialowski, nous étudions les déformations des algèbres de Lie filiformes de dimension infinie m_0 et m_2. Le phénomène nouveau intéressant est que, malgré que la cohomologie adjointe est de dimension infinie, il n'y a qu'un nombre finie de vraies déformations, i.e. de déformations non obstruites, en chaque poids l <= 1 fixé.
APA, Harvard, Vancouver, ISO, and other styles
24

Berrada, Mohammed. ""R-Algèbres de Lie" nilpotentes sur certains anneaux R." Lyon 1, 1985. http://www.theses.fr/1985LYO11669.

Full text
Abstract:
Soient r un anneau commutatif noetherien et integre admettant un corps de fractions k, g une k-algebre de lie libre de type fini et nilpotente. On generalise certaines etudes deja faites dans le cas ou r = k sur les ideaux de son algebre enveloppante u(g). On montre que u(g) est classiquement localisable, que tout ideal non nul de u(g) verifie la condition a. R. , admet un systeme centralisant de generateurs et une decomposition primaire classique. On montre que g est nilpotente si et seulement si tout ideal non nul a droite (respectivement a gauche) classiquement primaire. Lorsque r est de jacobson on donne une caracterisation des ideaux primitifs et des ideaux rationnels de u(g). Si r est regulier on montre que u(g) est super-regulier et catenaire. Enfin on determine l'enveloppe injective de r en tant que u(g)-bimodule et en tant que u(g) =lim u(g non)j**(n)-module a gauche et a droite, j =u(g)g = gu(g)
APA, Harvard, Vancouver, ISO, and other styles
25

Carr, Sarah. "Valeurs multizeta : algèbres de Lie et périodes sur M0n." Paris 6, 2008. http://www.theses.fr/2008PA066561.

Full text
Abstract:
Cette thèse est une étude des relations algébriques et géométriques entre valeurs multizeta. Il y a de nombreux ensembles de telles relations, provenant de théories différentes. Cette thèse s'inspire des conjectures portant sur l'équivalence de ces relations. Afin d'étudier les relations algébriques, on regarde l'algèbre de Lie, &lt;&lt; double mélange &gt;&gt;. Dans le chapitre 2, on démontre un résultat qui donne la dimension des parties graduées de double mélange associées à sa filtration par profondeur en profondeurs 1 et 2. Dans les chapitres 3 et 4, on étudie les relations géométriques entre multizetas. L'ingrédient principal dans cette étude est la cohomologie de de Rham des espaces de modules en genre 0, à n points marqués. On donne une expression explicite pour une base la cohomologie de de Rham des espaces de modules partiellement compactifiés. Dans la dernière partie, on fournit une nouvelle présentation des groupes de Picard des espaces de modules en genre 0<br>This thesis is a study of algebraic and geometric relations between multizeta values. There are many such known sets of relations, coming from different theories. This thesis was inspired by the conjectures of equivalence of these relations. To study the algebraic relations, we look first at the double shuffle Lie algebra. In chapter 2 of this thesis, we prove a result which gives the dimension of the associated depth-graded pieces of the double shuffle Lie algebra in depths 1 and 2. In chapters 3 and 4, we study the geometric relations between multizeta values. The key ingredient in this study is the top dimensional de Rham cohomology of partially compactified moduli spaces of genus 0 curves, with n marked points. We give an explicit expression for a basis of the de Rham cohomology of some partially compactified moduli spaces. In the last section, we give a new presentation of the Picard groups of genus 0 moduli spaces
APA, Harvard, Vancouver, ISO, and other styles
26

Fauquant-Millet, Florence. "Sur la polynomialité de certaines algèbres d'invariants d'algèbres de Lie." Habilitation à diriger des recherches, Université Jean Monnet - Saint-Etienne, 2014. http://tel.archives-ouvertes.fr/tel-00994655.

Full text
Abstract:
Ce mémoire étudie la polynomialité de l'algèbre des invariants de l'algèbre des fonctions polynomiales sur le dual d'une certaine algèbre de Lie, lorsque cette dernière est la troncation canonique d'une sous-algèbre biparabolique d'une algèbre de Lie semi-simple complexe.
APA, Harvard, Vancouver, ISO, and other styles
27

Bois, Jean-Marie. "Corps enveloppants des algèbres de Lie en dimension infinie et en caractéristique positive." Phd thesis, Université de Reims - Champagne Ardenne, 2004. http://tel.archives-ouvertes.fr/tel-00371835.

Full text
Abstract:
Soient g une k-algèbre de Lie, U(g) son algèbre enveloppante, K(g) le corps des fractions de U(g). L'objet de cette thèse est d'étudier des propriétés algébriques du corps gauche K(g) dans les deux cas suivants : d'une part si k est de caractéristique 0 et g est de dimension infinie ; d'autre part si k est de caractéristique positive et g est de dimension finie.<br /><br />On suppose k de caractéristique nulle. On définit d'abord la notion de "degré de transcendance de niveau q" pour les algèbres de Poisson. Cette notion est introduite à partir de la notion de dimension de niveau q définie par V. Pétrogradsky pour les algèbres associatives et les algèbres de Lie. On démontre, sous des hypothèses peu restrictives sur g, que le degré de transcendance de niveau q+1 de K(g) est égal à la dimension de niveau q de g.<br /><br />On s'attache ensuite à l'étude de la famille des algèbres de type Witt définies par R. Yu. On construit ainsi des familles infinies de corps gauches deux à deux non isomorphes mais de même degré de transcendance de niveau 3 donné. On étudie aussi la question des centralisateurs dans les corps enveloppants des parties positives des algèbres de type Witt. On établit en particulier le résultat suivant : il existe des algèbres de Lie non commutatives de dimension infinie g telles que le premier corps de Weyl ne se plonge pas dans K(g).<br /><br />Supposons maintenant k de caractéristique p>0. On étudie le cas particuliers des algèbres de Lie suivantes : les algèbres gl(n) ; les algèbres sl(n) lorsque p ne divise pas n ; l'algèbre de Witt modulaire W(1) et une sous-algèbre P de l'algèbre de Witt W(2) (s'identifiant à un produit tensoriel de l'algèbre de Lie W(1) avec une algèbre associative de polynômes tronqués). Dans tous les cas, on démontre que le corps enveloppant est isomorphe à un corps de Weyl. Pour les algèbres W(1) et P, on démontre en outre que le centre de l'algèbre enveloppante est un anneau factoriel, en accord avec une conjecture récente de A. Braun et C. Hajarnavis.
APA, Harvard, Vancouver, ISO, and other styles
28

He, Xiao. "W-algebras Associated to Truncated Current Lie Algebras." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30327.

Full text
Abstract:
Étant donné une algèbre de Lie g semi-simple de dimension finie et un élément nilpotent non nul e 2 g, on peut construire plusieurs algèbres-W associées à (g; e). Parmi eux, l’algèbre-W affine est une algèbre vertex qui peut être réalisée comme une cohomologie semi-infinie d’une sous-algèbre nilpotente de ~g, où ~g est l’algèbre de Kac-Moody associée à g. L’algèbre-W finie est l’algèbre de Zhu de l’algèbre-W affine. Dans les constructions des algèbres-W, une forme bilinéaire non dégénérée invariante et une bonne Z-graduation de g jouent des rôles essentiels. Les algèbres de courants tronqués associées à g sont des quotients de l’algèbre de courants g C[t]. On peut montrer que: (1) des formes bilinéaires non dégénérées invariantes existent sur des algèbres de courants tronqués; (2) une bonne Z-graduation de g induit des bonnes Z-graduations des algèbres de courants tronqués. Alors, les constructions des algèbres-W fonctionnent bien dans le cas des algèbres de courants tronqués. Les résultats de cette thèse sont les suivants. Premièrement, nous introduisons les algèbres-W finies et affines associées aux algèbres de courants tronqués et nous généralisons certaines propriétés des algèbres-W associées aux algèbres de Lie semi-simples. Deuxièmement, nous developpons une version ajustée de la cohomologie semi-infinie, ce qui nous permet de définir les algèbres-W affines associées à des éléments nilpotents généraux d’une façon uniforme. À la fin, nous prouvons que les algèbres de Zhu de niveaux plus hauts d’une algèbre vertex conforme sont toutes isomorphes à des sous-quotients de son algèbre enveloppante universelle.<br>Given a finite-dimensional semi-simple Lie algebra g and a non-zero nilpotent element e 2 g, one can construct various W-algebras associated to (g; e). Among them, the affine W-algebra is a vertex algebra which can be realized through semi-infinite cohomology, and the finite W-algebra is the Zhu algebra of the affineW-algebra. In the constructions ofW-algebras, a non-degenerate invariant bilinear form and a good Z-grading of g play essential roles. Truncated current Lie algebras associated to g are quotients of the current Lie algebra g C[t]. One can show that non-degenerate invariant bilinear forms exist on truncated current Lie algebras and a good Z-grading of g induces good Z-gradings of truncated current Lie algebras. The constructions of W-algebras can thus be adapted to the setting of truncated current Lie algebras. The main results of this thesis are as follows. First, we introduce finite and affine W-algebras associated to truncated current Lie algebras and generalize some properties of W-algebras associated to semi-simple Lie algebras. Second, we develop an adjusted version of semi-infinite cohomology, which helps us to define affine W-algebras associated to general nilpotent elements in a uniform way. Finally, we consider vertex operator algebras in general, and show that their higher level Zhu algebras are all isomorphic to subquotients of their universal enveloping algebras.
APA, Harvard, Vancouver, ISO, and other styles
29

Molinier, Jean-Christophe. "Linéarisation de structures de Poisson." Montpellier 2, 1993. http://www.theses.fr/1993MON20006.

Full text
Abstract:
Soit (m, p) une variete de poisson de rang nul a l'origine. Si l'on considere le developpement en serie de taylor du tenseur p, on peut ecrire p=p#l+r ou p#l designe la partie lineaire de p et ou r est d'ordre superieur a 2. On dit que p est linearisable (formellement, analytiquement ou differentiablement) si p est localement diffeomorphe (au sens precise) a p#l. Si l'on note que les coefficients de p#l sont les constantes de structures d'une algebre de lie g, on dira que g est non degeneree pour exprimer que toutes les structures de poisson associees a g sont linearisables. Ce travail debute sur l'etude des algebres de lie de dimension 4 et des arguments geometriques permettent de demontrer qu'elles sont toutes degenerees sauf 4 algebres particulieres. Ceci amene dans un second chapitre a demontrer la non-degenerescence formelle de g#2x. . . Xg#2 (n fois) ainsi que la non-degenerescence differentiable de g#2g#2 en utilisant des techniques de changement de variables, ainsi que la notion de rotationnel (ou g#2 est l'algebre de lie de dimension 2 non triviale). Enfin nous generalisons un travail de j. F. Conn pour demontrer la non-degenerescence des algebres du type produit direct gr ou g est semi-simple
APA, Harvard, Vancouver, ISO, and other styles
30

Bangoura, Momo. "Quasi-bigèbres jacobiennes et généralisations des groupes de Lie-Poisson." Lille 1, 1995. http://www.theses.fr/1995LIL12018.

Full text
Abstract:
Les quasi-bigèbres jacobiennes sont les limites classiques des quasi-algèbres de Hopf introduites par Drinfeld. Plus précisement une quasi-bigèbre jacobienne est la donnée d'une algèbre de Lie (f, ) muni d'un co-crochet qui est un 1-cocycle et d'un élément de #3f qui mesure le défaut d'identité de jacobi du co-crochet ; l'objet global correspondant est un groupe de Lie quasi-Poisson. Les quasi-bigèbres jacobiennes sont des généralisations naturelles des bigèbres de Lie, mais contrairement à la notion de bigèbre de Lie, la notion de quasi-bigèbre jacobienne n'est pas auto-duale. Nous étudions l'objet dual d'une quasi-bigèbre jacobienne appelé quasi-bigèbre co-jacobienne, et la notion plus générale de proto-bigèbre de Lie dont les quasi-bigèbres jacobiennes et leurs duaux, ainsi que les bigèbres de Lie sont des cas particuliers. Nous généralisons la construction du double classique en montrant que le double d'une proto-bigèbre de Lie n'est pas seulement une algèbre de Lie, mais aussi une quasi-bigèbre jacobienne quasitriangulaire. Nous étudions la modification des quasi-bigèbres jacobiennes, qui est une relation d'équivalence, et nous établissons le lien avec les couples de manin. Enfin nous définissons l'objet dual d'un groupe de Lie quasi-Poisson que nous appelons quasi-groupe de Lie-Poisson et nous établissons la correspondance entre les quasi-groupes de Lie-Poisson et les quasi-bigèbres co-jacobiennes. En fait, un quasi-groupe de Lie-Poisson est une boucle de Lie mono-alternative à droite g munie d'une structure de Poisson compatible avec la loi de composition de g et d'un élément de #3t*#eg mesurant dans un certain sens le défaut d'associativité de la loi de composition de g.
APA, Harvard, Vancouver, ISO, and other styles
31

Oliveira, Santos José Carlos de Souza. "Induction homologique dans les super algèbres de Lie basiques classiques." Paris 7, 1996. http://www.theses.fr/1996PA077107.

Full text
Abstract:
Dans cette thèse on construit des foncteurs analogues aux foncteurs de Zuckerman dans le cas des super algèbres de Lie classiques. En foncteurs aux modules de Verma généralisés, on obtient des modules de dimension finie. Une adaptation d'un théorème de Duflo et Vergne permet l'étude de m^mes méthodes qui ont été employées par Deamzure dans sa démonstration du théorème de Borel-Bott. On obtient en particulier une nouvelle façon les modules typiques et une nouvelle démonstration de la formule du caractère de Kac.
APA, Harvard, Vancouver, ISO, and other styles
32

Ammar, Faouzi. "Cohomologies et déformations de certaines algèbres de Lie Z-graduées." Metz, 1990. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1990/Ammar.Faouzi.SMZ903.pdf.

Full text
Abstract:
Soit E une algèbre de Lie graduée sur Z, E se décompose en une somme directe d'espaces vectoriels: E, Eo, E+. On considère sur l'espace vectoriel E trois structures d'algèbre de Lie a, b et c définies de la manière suivante: l'algèbre a est la somme directe des algèbres E++, Eo et E. L'algèbre c’est la structure initiale d'algèbre de Lie sur E. Enfin b est une structure intermédiaire obtenue à partir de c en annulant les crochets entre un élément de E+ et un élément de E. Nous démontrons dans ce travail que, dans un grand nombre de cas, il existe une suite de déformations de a vers c. Plus précisément on définit une déformation formelle de a vers b qui est une déformation à l'ordre 1. Puis on montre qu'il existe une déformation formelle de b vers c. Cette dernière peut ne pas être d'ordre fini si la dimension de E est infinie mais est simplement convergente. Ceci fournit en fait le premier exemple de déformations formelles infinies convergentes à part ceux issus de la théorie des produits stars. Enfin en passant en dual de E, ces constructions fournissent des familles à 1-paramètre particulièrement intéressantes de structures de Poisson 1-différentiables
APA, Harvard, Vancouver, ISO, and other styles
33

Chopp, Mikaël. "Lie-admissible structures on Witt type algebras and automorphic algebras." Electronic Thesis or Diss., Metz, 2011. http://www.theses.fr/2011METZ020S.

Full text
Abstract:
L’algèbre de Witt a été intensivement étudiée. Elle est présente dans de nombreux domaines des Mathématiques. Cette thèse est l’étude de deux généralisations de l’algèbre de Witt: les algèbres de type Witt et les algèbres de Krichever-Novikov. Dans une première partie on s’intéresse aux structures Lie-admissibles sur les algèbres de type Witt. On donne toutes les structures troisième-puissance associatives et flexibles Lie-admissibles sur ces algèbres. De plus, on étudie les formes symplectiques qui induisent un produit symétrique gauche. Dans une seconde partie on étudie les algèbres automorphes. Partant d’une surface de Riemann compacte quelconque, on considère l’action d’un sous-groupe fini du groupe des automorphismes de la surface sur des algèbres d’origines géométriques comme les algèbres de Krichever-Novikov. Plus précisément nous faisons le lien entre la sous-algèbre des éléments invariants sur la surface et l’algèbre sur la surface quotient. La structure presque-gradue des algèbres de Krichever-Novikov induit une presque-graduation sur ces sous-algèbres de certaines algèbres de Krichever- Novikov<br>The Witt algebra has been intensively studied and arise in many research fields in Mathematics. We are interested in two generalizations of the Witt algebra: the Witt type algebras and the Krichever-Novikov algebras. In a first part we study the problem of finding Lie-admissible structures on Witt type algebras. We give all third-power associative Lie-admissible structures and flexible Lie-admissible structures on these algebras. Moreover we study the symplectic forms which induce a graded left-symmetric product. In the second part of the thesis we study the automorphic algebras. Starting from arbitrary compact Riemann surfaces we consider the action of finite subgroups of the automorphism group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on the Riemann surface, the invariance subalgebras living on the surface to the algebras on the quotient surface under the group action. The almost-graded Krichever-Novikov algebras structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with almost-grading) on the original Riemann surface
APA, Harvard, Vancouver, ISO, and other styles
34

Laurent-Gengoux, Camille. "Quelques problèmes analytiques et géométriques autour des algèbres et super-algèbres de Lie de champs de vecteurs." Lyon 1, 2002. http://www.theses.fr/2002LYO10261.

Full text
Abstract:
Cette thèse est divisée en trois parties : super-géométrie, système bihamiltoniens, représentations. 1) Nous faisons d'abord la théorie de la classe caractéristique des feuilletages en super géométrie. Nous montrons que la cohomologie de la partie de Vect'n,m) joue le rôle que joue la cohomologie Vect(n) dans le cas réel. Nous déterminons par exemple un équvalent de la classe de Gobdillon-Vey pour le feuilletage de codimension (0,1). 2) Nous étudions ensuite les systèmes bihamiltoniens associés à l'algèbre des courants, nous déterminons les fonctions de Casimir des extensions centrales de cette algèbre, ouis les super-fonctions de Casimir de certaines super-algèbres super- conformes. 3) Nous étudions les représentations des extensions centrales des algèbres des courants. Nous montrons que le problème, sous de larges hypothèses, se ramène à l'étude des représentations de Virasoro et Kac-Moody affine.
APA, Harvard, Vancouver, ISO, and other styles
35

Romdhani, Mustapha. "Classification des algèbres de lie nilpotentes réelles et complexes de dimension 7." Nice, 1985. http://www.theses.fr/1985NICE4023.

Full text
Abstract:
On classe les algèbres de Lie nilpotentes de dimension 7 sur R et C à chaque classe et chaque famille trouvée on associe quelques invariants : le type, le défaut de commutativité, l'âme et le corps des fractions du centre de l'algèbre enveloppante, la matrice de Cartan généralisée et le diagramme de Dynkin
APA, Harvard, Vancouver, ISO, and other styles
36

Chopp, Mikaël. "Lie-admissible structures on Witt type algebras and automorphic algebras." Thesis, Metz, 2011. http://www.theses.fr/2011METZ020S/document.

Full text
Abstract:
L’algèbre de Witt a été intensivement étudiée. Elle est présente dans de nombreux domaines des Mathématiques. Cette thèse est l’étude de deux généralisations de l’algèbre de Witt: les algèbres de type Witt et les algèbres de Krichever-Novikov. Dans une première partie on s’intéresse aux structures Lie-admissibles sur les algèbres de type Witt. On donne toutes les structures troisième-puissance associatives et flexibles Lie-admissibles sur ces algèbres. De plus, on étudie les formes symplectiques qui induisent un produit symétrique gauche. Dans une seconde partie on étudie les algèbres automorphes. Partant d’une surface de Riemann compacte quelconque, on considère l’action d’un sous-groupe fini du groupe des automorphismes de la surface sur des algèbres d’origines géométriques comme les algèbres de Krichever-Novikov. Plus précisément nous faisons le lien entre la sous-algèbre des éléments invariants sur la surface et l’algèbre sur la surface quotient. La structure presque-gradue des algèbres de Krichever-Novikov induit une presque-graduation sur ces sous-algèbres de certaines algèbres de Krichever- Novikov<br>The Witt algebra has been intensively studied and arise in many research fields in Mathematics. We are interested in two generalizations of the Witt algebra: the Witt type algebras and the Krichever-Novikov algebras. In a first part we study the problem of finding Lie-admissible structures on Witt type algebras. We give all third-power associative Lie-admissible structures and flexible Lie-admissible structures on these algebras. Moreover we study the symplectic forms which induce a graded left-symmetric product. In the second part of the thesis we study the automorphic algebras. Starting from arbitrary compact Riemann surfaces we consider the action of finite subgroups of the automorphism group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on the Riemann surface, the invariance subalgebras living on the surface to the algebras on the quotient surface under the group action. The almost-graded Krichever-Novikov algebras structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with almost-grading) on the original Riemann surface
APA, Harvard, Vancouver, ISO, and other styles
37

Al-Kaabi, Mahdi Jasim Hasan. "Bases de monômes dans les algèbres pré-Lie libres et applications." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22599/document.

Full text
Abstract:
Dans cette thèse, nous étudions le concept d’algèbre pré-Lie libre engendrée par un ensemble (non-vide). Nous rappelons la construction par A. Agrachev et R. Gamkrelidze des bases de monômes dans les algèbres pré-Lie libres. Nous décrivons la matrice des vecteurs d’une base de monômes en termes de la base d’arbres enracinés exposée par F. Chapoton et M. Livernet. Nous montrons que cette matrice est unipotente et trouvons une expression explicite pour les coefficients de cette matrice, en adaptant une procédure suggérée par K. Ebrahimi-Fard et D. Manchon pour l’algèbre magmatique libre. Nous construisons une structure d’algèbre pré-Lie sur l’algèbre de Lie libre $\mathcal{L}$(E) engendrée par un ensemble E, donnant une présentation explicite de $\mathcal{L}$(E) comme quotient de l’algèbre pré-Lie libre $\mathcal{T}$^E, engendrée par les arbres enracinés (non-planaires) E-décorés, par un certain idéal I. Nous étudions les bases de Gröbner pour les algèbres de Lie libres dans une présentation à l’aide d’arbres. Nous décomposons la base d’arbres enracinés planaires E-décorés en deux parties O(J) et $\mathcal{T}$(J), où J est l’idéal définissant $\mathcal{L}$(E) comme quotient de l’algèbre magmatique libre engendrée par E. Ici, $\mathcal{T}$(J) est l’ensemble des termes maximaux des éléments de J, et son complément O(J) définit alors une base de $\mathcal{L}$(E). Nous obtenons un des résultats importants de cette thèse (Théorème 3.12) sur la description de l’ensemble O(J) en termes d’arbres. Nous décrivons des bases de monômes pour l’algèbre pré-Lie (respectivement l’algèbre de Lie libre) $\mathcal{L}$(E), en utilisant les procédures de bases de Gröbner et la base de monômes pour l’algèbre pré-Lie libre obtenue dans le Chapitre 2. Enfin, nous étudions les développements de Magnus classique et pré-Lie, discutant comment nous pouvons trouver une formule de récurrence pour le cas pré-Lie qui intègre déjà l’identité pré-Lie. Nous donnons une vision combinatoire d’une méthode numérique proposée par S. Blanes, F. Casas, et J. Ros, sur une écriture du développement de Magnus classique, utilisant la structure pré-Lie de $\mathcal{L}$(E)<br>In this thesis, we study the concept of free pre-Lie algebra generated by a (non-empty) set. We review the construction by A. Agrachev and R. Gamkrelidze of monomial bases in free pre-Lie algebras. We describe the matrix of the monomial basis vectors in terms of the rooted trees basis exhibited by F. Chapoton and M. Livernet. Also, we show that this matrix is unipotent and we find an explicit expression for its coefficients, adapting a procedure implemented for the free magmatic algebra by K. Ebrahimi-Fard and D. Manchon. We construct a pre-Lie structure on the free Lie algebra $\mathcal{L}$(E) generated by a set E, giving an explicit presentation of $\mathcal{L}$(E) as the quotient of the free pre-Lie algebra $\mathcal{T}$^E, generated by the (non-planar) E-decorated rooted trees, by some ideal I. We study the Gröbner bases for free Lie algebras in tree version. We split the basis of E- decorated planar rooted trees into two parts O(J) and $\mathcal{T}$(J), where J is the ideal defining $\mathcal{L}$(E) as a quotient of the free magmatic algebra generated by E. Here $\mathcal{T}$(J) is the set of maximal terms of elements of J, and its complement O(J) then defines a basis of $\mathcal{L}$(E). We get one of the important results in this thesis (Theorem 3.12), on the description of the set O(J) in terms of trees. We describe monomial bases for the pre-Lie (respectively free Lie) algebra $\mathcal{L}$(E), using the procedure of Gröbner bases and the monomial basis for the free pre-Lie algebra obtained in Chapter 2. Finally, we study the so-called classical and pre-Lie Magnus expansions, discussing how we can find a recursion for the pre-Lie case which already incorporates the pre-Lie identity. We give a combinatorial vision of a numerical method proposed by S. Blanes, F. Casas, and J. Ros, on a writing of the classical Magnus expansion in $\mathcal{L}$(E), using the pre-Lie structure
APA, Harvard, Vancouver, ISO, and other styles
38

Steinmetz, Wilhelm Alexander. "Algèbres de Lie de dimension infinie et théorie de la descente." Paris 11, 2009. http://www.theses.fr/2009PA112168.

Full text
Abstract:
Soit k un corps algébriquement clos de caractéristique zéro et soit R l’anneau des polynômes de Laurent à deux variables sur k. La motivation principale de ce travail est l’étude d’une classe d’algèbres de Lie de dimension infinie sur k, appelées extended affine Lie algebras (EALAs). Ces algèbres correspondent à des torseurs sous des groupes algébriques linéaires sur R. On établit dans ce travail une classification de R–torseurs sous des groupes de type classique de rang assez grand (sous une hypothèse plus forte pour les groupes de type A intérieur) et on obtient ainsi des résultats sur les EALAs mentionnées ci-dessus. On obtient également une variante de la conjecture de Serre II pour l’anneau R : tout torseur lisse sur R sous un groupe semi-simple simplement connexe de type classique B, C ou D de rang assez grand est trivial. La stratégie pour démontrer les résultats principaux est la suivante : les torseurs sous les groupes classiques correspondent à des algèbres d’Azumaya à involutions et à des formes hermitiennes et quadratiques. On calcule les groupes de Witt et les K-groupes correspondants à l’aide de suites spectrales dues à Panin, Suslin et S. Gille. Ensuite on utilise des résultats de simplification pour obtenir une classification des formes hermitiennes et anti-hermitiennes de rang assez grand sur R et ainsi une classification de certains torseurs sur R<br>Let k be an algebraically closed field of characteristic zero and let R be the Laurent polynomial ring in two variables over k. The main motivation behind this work is a class of infinite dimensional Lie algebras over k, called extended affine Lie algebras (EALAs). These algebras correspond to torsors under linear algebraic groups over R. In this work we classify R–torsors under classical groups of large enough rank (and under stronger hypotheses for groups of interior type A) and obtain this way results on the above mentioned EALAs. We also obtain a variant of Serre’s Conjecture II for the ring R: every smooth R–torsor under a semi-simple simply connected R–group of large enough rank of classical type B, C or D is trivial. We use the following strategy to prove our main results: torsors under classical groups correspond to Azumaya algebras with involution and to hermitian and quadratic forms. We calculate the corresponding Witt and K-groups using spectral sequences due to Panin, Suslin and S. Gille. Finally we use simplification results to obtain a classification of hermitian and skew-hermitian forms of large enough rank over R and thus a classification of certain R–torsors
APA, Harvard, Vancouver, ISO, and other styles
39

Chaudouard, Pierre-Henri. "La formule des traces pour les algèbres de Lie et applications." Paris 7, 2002. http://www.theses.fr/2002PA077047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chloup-Arnould, Véronique. "Groupes de Lie-Poisson." Metz, 1996. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1996/Chloup_Arnould.Veronique.SMZ9619.pdf.

Full text
Abstract:
Dans cette thèse nous étudions les structures de Lie-Poisson. De manière plus précise deux thèmes sont abordés. Le premier est de nature classificatoire. Nous donnons une description complète des algèbres de Manin (c'est-à-dire les grandes algèbres d'un triple de Manin) associées à des structures de bigèbre de lie sur une algèbre de lie réelle semi-simple. Ensuite, en adaptant au cas réel les résultats de Belavin et Drinfeld décrivant les solutions de l'équation de Yang-Baxter standard modifiée non nulle sur une algèbre de lie semi-simple complexe, nous donnons les solutions générales de l'équation de Yang-Baxter modifiée standard non nulle sur une algèbre de lie réelle semi-simple. Enfin nous donnons des résultats partiels concernant les structures de bigèbre liées aux solutions de l'équation de Yang-Baxter modifiée non standard sur une algèbre de lie réelle simple telle que sa complexifiée ne soit pas simple. Le deuxième thème est celui de la linéarisation locale d'une structure de lie-poisson. Nous montrons, en utilisant le théorème de linéarisation analytique dans le cas d'une structure de poisson de j. Conn, que si (g,p) est un groupe de lie-poisson, et si l'algèbre duale est la somme directe d'un idéal semi-simple et d'un idéal abélien, alors p est analytiquement linéarisable dans un voisinage de l'identité. Dans le cadre d'une structure de poisson générale cette proposition peut-être mise en défaut. Nous montrons par ailleurs que toute structure de lie-poisson exacte sur un groupe de lie nilpotent de pas deux est linéaire, sur un groupe de lie nilpotent de pas trois et de dimension inferieure ou égale a six est linéarisable et qu'il existe des structures de lie-poisson exactes sur un groupe de lie nilpotent de pas quatre et de dimension cinq qui ne sont pas linéarisables
APA, Harvard, Vancouver, ISO, and other styles
41

Bennani, Khalid. "Sur certaines représentations irréductibles d'algèbres de Lie de champs de vecteurs." Paris 7, 1993. http://www.theses.fr/1993PA077014.

Full text
Abstract:
Cette thèse est constituée de deux parties. Dans la première partie nous étudions une certaine classe de représentations irréductibles de l'algèbre de Lie K des champs de vecteurs préservant la structure de contact. Cette algèbre admet la décomposition triangulaire suivante : K=K#+K#0+K#+. Nous associons à tout caractère de K#0 Un module de Verma V(). Utiliant une méthode de variété caractéristique, nous prouvons que si n'est pas trivial alors V() est simple. Nous déduisons après une formule pour la dimension des composantes homogènes de V(). Dans la deuxième partie nous construisons des modules simples sur l'algèbre de Witt W. Nous commençons par classifier les orbites coadjointes de codimension finie. Après la donnée de cette classification nous prouvons l'existence des polarisations en chaque élément de W#* appartenant à une orbite coadjointe de codimension finie. Par induction à partir des polarisations, nousobtenons des W-modules dont on prouve effectivement la simplicité.
APA, Harvard, Vancouver, ISO, and other styles
42

Bouayad, Alexandre. "Algèbres enveloppantes quantiques généralisées, algèbres de Kac-Moody colorées et interpolation de Langlands." Paris 7, 2013. http://www.theses.fr/2013PA077053.

Full text
Abstract:
Nous proposons dans cette thèse un nouveau processus de déformation des algèbres de Kac-Moody (K-M) et de leurs représentations. La direction de déformation est indiquée par une collection de nombres, appelée coloriage. Les nombres naturels mènent par exemple aux algèbres classiques, tandis que les nombres quantiques mènent aux algèbres quantiques. Nous établissons dans un premier temps des conditions nécessaires et suffisantes sur les coloriages, de telle sorte que le processus dépend polynômialement d'un paramètre formel et fournit les algèbres enveloppantes quantiques généralisées (algèbres GQE). Nous levons par la suite les restrictions et montrons que le processus existe toujours via les algèbres de Kac-Moody colorées. Nous formulons la conjecture GQE, qui prévoit que toute représentation dans la catégorie Oint d'une algèbre de K-M peut être déformée en une représentation d'une algèbre GQE associée. Nous donnons divers exemples pour lesquels la conjecture est vérifiée et réalisons une première étape vers sa résolution en prouvant que les algèbres de K-M sans relations de Serre peuvent être déformées en des algèbres GQE sans relations de Serre. Admettant la conjecture GQE, nous établissons un résultat analogue dans le cas des algèbres de K-M colorées, nous prouvons que les théories des représentations déformées sont parallèles à le théorie classique, nous explicitons une présentation de Serre déformée pour les algèbres GQE, nous prouvons que ces dernières sont les représentants d'une classe naturelle de déformations formelles des algèbres de K-M et sont h-triviales en type fini. En guise d'application, nous expliquons en termes d'interpolation les dualités de Langlands classique et quantique entre représentations d'algèbres de Lie et nous proposons une nouvelle approche afin de résoudre une conjecture apparentée de Frenkel-Hernandez. En général, nous prouvons qu'il est possible d'interpoler les représentations de deux algèbres d&lt; K-M colorées isogéniques par les représentations d'une troisième. En observant que la conjecture GQE est vérifiée dans le cas des algèbres quantiques standards, nous donnons une nouvelle preuve de la dualité de Langlands classique mentionnée précédemment (les premières preuves sont dues à Littelmann et McGerty)<br>We propose in this thesis a new deformation process of Kac-Moody (K-M) algebras and their representations. The direction of deformation is given by a collection of numbers, called a colouring. The natural numbers lead for example to the classical algebras, while the quantum numbers lead to the associated quantum algebras. We first establish sufficient and necessary conditions on colourings to allow the process depend polynomially on a formal parameter and to provide the generalised quantum enveloping (GQE) algebras. We then lift the restrictions and show that the process still exists via the coloured Kac-Moody algebras. We formulate the GQE conjecture which predicts that every representation in the category Oint of a K-M algebra can be deformed into a representation of an associated GQE algebra. We give various evidences for this conjecture and make a first step towards its resolution by proving that Kac-Moody algebras without Serre relations can be deformed into GQE algebras without Serre relations. In case the conjecture holds, we establish an analog result for coloured K-M algebras, we prove that the deformed representation theories are parallel to the classical one, we explicit a deformed Serre presentation for GQE algebras, we prove that the latter are the representatives of a natural class of formal deformations of K-M algebras and are h-trivial in finite type. As an application, we explain in terms of interpolation both classical and quantum Langlands dualities between representations of Lie algebras, and we propose a new approach which aims at proving a related conjecture of Frenkel-Hernandez. In general, we prove that representations of two isogenic coloured K-M algebras can be interpolated by representations of a third one. Observing that standard quantum algebras satisfy the GQE conjecture, we give a new proof of the previously mentioned classical Langlands duality (the first proofs are due to Littelmann and McGerty)
APA, Harvard, Vancouver, ISO, and other styles
43

Sanchez-Flores, Selene Camelia. "La structure de Lie de la cohomologie de Hochschild d'algèbres monomiales." Montpellier 2, 2009. http://www.theses.fr/2009MON20047.

Full text
Abstract:
Cette thèse porte sur la structure de Lie de la cohomologie de Hochschild donnée par le crochet de Gerstenhaber. Plus précisément, nous étudions la structure d'algèbre de Lie du premier groupe de cohomologie et la structure de module de Lie des groupes de cohomologie de Hochschild de certaines algèbres monomiales. Ces algèbres sont définies comme le quotient de l'algèbre de chemins d'un carquois par l'ideal bilatère engendré par un ensemble de chemins de longueur au moins deux. Nous utilisons les données combinatoires intrinsèques à de telles algèbres pour étudier la structure de Lie définie sur la cohomologie de Hochschild. En fait, nous examinons deux aspects de cette structure algébrique. Le premier est la relation entre la semi-simplicité du premier groupe de cohomologie de Hochschild et la nullité des groupes de cohomologie de Hochschild. Dans le second aspect, nous nous concentrons sur la structure de module de Lie des groupes de cohomologie de Hochschild d'une famille d'algèbres monomiales particulière: celles dont le radical de Jacobson au carré est nul<br>This thesis is about the Lie structure on the Hochschild cohomology given by the Gerstenhaber bracket. More precisely, we study the Lie algebra structure on the first Hochschild cohomology group and the Lie module structure on the Hochschild cohomology groups of some monomial algebras. Such algebras are defined by the quotient of the path algebra of a quiver by a two-sided ideal generated by a set of paths of length at least two. We use the combinatorial data of such algebras to study the Lie structure on the Hochschild cohomology. Actually, we discuss two features of such algebraic structure. The first one is the relationship between semisimplicity on the first Hochschild cohomology group and the vanishing of the Hochschild cohomology groups. In the second one, we center our attention to the Lie module structure on the Hochschild cohomology groups of a particular family of monomial algebras: those whose Jacobson radical square is zero
APA, Harvard, Vancouver, ISO, and other styles
44

Dahamna, Khaled. "Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées." Phd thesis, INSA de Rouen, 2011. http://tel.archives-ouvertes.fr/tel-00769931.

Full text
Abstract:
Dans cette thèse, on s'intéresse en premier aux problèmes sous-riemanniens sur un groupe de Lie nilpotent d'ordre 2. Dans un premier temps, on réalise la classification complète des algèbres de Lie sous-riemanniennes (SR-algèbres de Lie) nilpotentes d'ordre 2 de dimension n compris entre 3 et 7, et celles de dimension arbitraire n telle que l'algèbre dérivée est de dimension une.De plus, nous avons distingué les SR-algèbres de Lie de contact et de quasi-contact et nous avons calculé, en dimension 5, le groupe des SR-symétries infinitésimales. Une fois cette classification réalisée, on étudie les géodésiques sous-riemanniennes associées aux SR-algèbres de Lie nilpotentes d'ordre 2 obtenues dans notre classification. Nous avons étudié l'intégrabilité des équations géodésiques adjointes et donné les contrôles optimaux ainsi que les trajectoires optimales dans chacun des cas. Dans une seconde partie de la thèse, on étudie les géodésiques sous-riemanniennes pour un groupe de Lie sous-riemannien (G;D;B) où G = SO(4) ou G = SO(2; 2) et D est de codimension2 (donnant des espaces SR-homogènes de contact). Nous avons donné un modèle canonique de ces espaces et ensuite montré que les systèmes adjoints de Lie-Poisson associés au modèle étaient toujours intégrables au sens de Liouville. De plus, nous montrons que le système de Lie-Poisson est soit un système linéaire qui est super-intégrable en fonctions trigonométriques du temps ou constantes ; soit un système non linéaire intégrable au sens de Liouville et dont les solutions sont exprimables à l'aide de la fonction elliptique de Weierstrass.
APA, Harvard, Vancouver, ISO, and other styles
45

Alaoui, Abdallaoui Mostafa. "Sur les quotients primitifs minimaux des algèbres enveloppantes d'algèbres de Lie semi-simples." Lyon 1, 1985. http://www.theses.fr/1985LYO11676.

Full text
Abstract:
Soient g une algebre de lie semi-simple, h une sous algebre de cartan de g et u(g) son algebre enveloppante. On s'interesse aux alambda , lambda appartient a h**(*) les quotients primitifs minimaux de u(g). En rappelant divers resultats sur la categorie theta , et les modules de harish-chandra, on montre que les alambda sont des ordres maximaux. On retrouve le meme resultat en se basant sur un resultat de b. Kostant. On etudie l'espace l(m,n) des applications c-lineaires, g-finies de m dans n, ou m et n sont deux g-modules. On montre, sous des conditions sur m et n que les algebres l(m,n) et l(n,n) sont morita-contexte equivalentes. On s'interesse ensuite aux modules projectifs et a leurs traces, en montrant que tout idempotent de a est trace d'un a-module projectif de type fini (a est quotient primitif quelconque de u(g). Ceci permet de montrer que gl dim alambda = +infini si lambda est non regulier. On etudie le plongement de conze dans une algebre de weyl. On montre que si lambda est dominant et regulier, le plongement est plat a gauche, et de dimension homologique finie a droite, et on etudie en detail le cas de g = sl::(2)(c)
APA, Harvard, Vancouver, ISO, and other styles
46

Varro, Richard. "Algèbres de Bernstein périodiques." Montpellier 2, 1992. http://www.theses.fr/1992MON20256.

Full text
Abstract:
Dans le but de modéliser des populations dont la composition génétique suit une succession cyclique d'états d'équilibre, nous présentons une généralisation de la notion d'algèbre de Bernstein d'ordre n en introduisant la notion de périodicité. Nous nous sommes intéressés aux conditions d'existence d'idempotents généralisés et à leurs propriétés, à la structure vectorielle qui apparaît lors de la décomposition de Peierce et à des problèmes de transport de structures dans la dupliquée de ces algèbres. Enfin nous étudions les algèbres qui modelisent les populations d'organismes soumises seulement à la mutation des gènes et nous établissons la condition nécessaire et suffisante pour que ces populations atteignent à la première génération une situation d'équilibre périodique
APA, Harvard, Vancouver, ISO, and other styles
47

Bendiffalah, Belkacem. "Contributions à l'étude locale des singularités : formes Ombre, polylogarithmes et éléments de Lie." Aix-Marseille 1, 1994. http://www.theses.fr/1994AIX11021.

Full text
Abstract:
Dans ce travail, nous explicitons le morphisme ombre introduit par brasselet, goresky et macpherson dans le but d'etablir un theoreme de de rham pour les varietes singulieres. En retrouvant leur resultat, nous demontrons que le morphisme ombre est un morphisme multiplicatif. Nous exhibons des morphismes polylogarithmes sous-jacents au morphisme ombre. Leur etude conduit a la solution d'un probleme pose par aomoto, concernant l'existence de morphismes reciproques. Enfin, nous etudions les elements de lie d'un point de vue differentiel. Nous en donnons quelques caracterisations et generalisons le theoreme de chen sur l'independance lineaire de leurs exponentielles. Nous explicitons l'espace des solutions exponentielles des edp lineaires
APA, Harvard, Vancouver, ISO, and other styles
48

Bulois, Michaël. "Etude de quelques sous-variétés des algèbres de Lie symétriques semi-simples." Phd thesis, Université de Bretagne occidentale - Brest, 2009. http://tel.archives-ouvertes.fr/tel-00455626.

Full text
Abstract:
Les algèbres de Lie ont été introduites vers la fin du XIXème siècle afin d'étudier certains problèmes de nature géométrique. Dans un soucis de classification de ces objets, les algèbres de Lie semi-simples se sont vues conférer un rôle important. Les algèbres de Lie symétriques sont, elles, une généralisation des algèbres de Lie. De plus, il existe une correspondance bijective entre les algèbres de Lie réelles et les algèbres de Lie symétriques complexes, ce qui renforce l'intérêt porté à ces dernières. Un second niveau de structure des algèbre de Lie (semi-simples complexe) joue un rôle important. Il s'agit de considérer l'algèbre de Lie g comme une G-variété où G est le groupe algébrique adjoint de g opérant via l'action adjointe sur g. Il s'avère alors utile d'étudier ceci dans le cadre de la géométrie algébrique. Les propriétés géométriques de certaines variétés issues des algèbres de Lie ont alors pu être étudiées. D'un point de vue général, ce travail consiste à généraliser et comprendre les propriétés de variétés analogues dans les algèbres de Lie symétriques.
APA, Harvard, Vancouver, ISO, and other styles
49

Aboughazi, Rachida. "Groupes simpliciaux croisés : P-algèbres de Lie, produit tensoriel du groupe d'Heisenberg." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bertrand, Sébastien. "Surfaces solitoniques plongées dans des algèbres de Lie associées aux modèles intégrables." Thèse, Université du Québec à Trois-Rivières, 2013. http://depot-e.uqtr.ca/6906/1/030586245.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!