To see the other types of publications on this topic, follow the link: Anodes. 00 – Electrodes, Zinc.

Journal articles on the topic 'Anodes. 00 – Electrodes, Zinc'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 journal articles for your research on the topic 'Anodes. 00 – Electrodes, Zinc.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Parubak, Apriani Sulu, Eko Sugiharto, and Mudjiran Mudjiran. "The Effect of Salinity on the Release of Copper (Cu), Lead (Pb) And Zinc (Zn) from Tailing." Indonesian Journal of Chemistry 1, no. 1 (2010): 16–22. http://dx.doi.org/10.22146/ijc.21956.

Full text
Abstract:
The effects of salinity on the release of copper (Cu), lead (Pb) and zinc (Zn) in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV) onto hanging mercury drop electrode (HMDE) and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Hai-Yang, Xingxing Gu, Peng Huang, et al. "Polyoxometalate driven dendrite-free zinc electrodes with synergistic effects of cation and anion cluster regulation." Journal of Materials Chemistry A 9, no. 11 (2021): 7025–33. http://dx.doi.org/10.1039/d1ta00256b.

Full text
Abstract:
Dendrite-free Zn anodes are achieved by using the highly efficient electrolyte additives based on polyoxometalate. Both of the anions and cations of polyoxometalate play important roles in inhibiting the growth Zn dendrites.
APA, Harvard, Vancouver, ISO, and other styles
3

Nikolova, V., I. Nikolov, T. Vitanov, A. Mobius, W. Schneider, and K. Wiesener. "Utilization of gas-diffusion electrodes catalysed with tungsten carbide as anodes for zinc electrowinning." Journal of Applied Electrochemistry 17, no. 2 (1987): 322–28. http://dx.doi.org/10.1007/bf01023298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boonpong, Rabat, Attera Worayingyong, Marisa Arunchaiya, and Atchana Wongchaisuwat. "Effect of LaCoO3 Additive on the Electrochemical Behavior of Zinc Anode in Alkaline Solution." Materials Science Forum 663-665 (November 2010): 596–99. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.596.

Full text
Abstract:
The utilization of zinc anode for zinc-based battery is limited due to low cycling life, shape change and ZnO passivation on the electrode surface. The electrochemical behavior of zinc anode in the presence of the additives added to the electrodes or the electrolytes have been reported. In this work, LaCoO3 was used as an additive to improve the electrochemical properties of the zinc oxide anode. LaCoO3 synthesized by sol gel method (Schiff base complex) was added to zinc oxide powder (99.9%) with the weight ratio of 1:0.001, 1:0.002 and 1:0.003. The relative ZnO/LaCoO3 ratios were confirmed by particle induced x-ray emission (PIXE) technique.The electrochemical behavior of the ZnO/LaCoO3 electrodes in 6M KOH solution were investigated by voltammetry and electrochemical impedance spectroscopy (EIS). The cyclic voltammogram showed that ZnO/LaCoO3 gave higher anodic current and ZnO passivation delayed. The EIS spectra showed that charge transfer resistances of the ZnO/LaCoO3 anodes due to zinc oxidation were higher than that of ZnO electrode
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Jingxu, and Lynden A. Archer. "Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems." Science Advances 7, no. 2 (2021): eabe0219. http://dx.doi.org/10.1126/sciadv.abe0219.

Full text
Abstract:
Scalable approaches for precisely manipulating the growth of crystals are of broad-based science and technological interest. New research interests have reemerged in a subgroup of these phenomena—electrochemical growth of metals in battery anodes. In this Review, the geometry of the building blocks and their mode of assembly are defined as key descriptors to categorize deposition morphologies. To control Zn electrodeposit morphology, we consider fundamental electrokinetic principles and the associated critical issues. It is found that the solid-electrolyte interphase (SEI) formed on Zn has a similarly strong influence as for alkali metals at low current regimes, characterized by a moss-like morphology. Another key conclusion is that the unique crystal structure of Zn, featuring high anisotropy facets resulting from the hexagonal close-packed lattice with a c/a ratio of 1.85, imposes predominant influences on its growth. In our view, precisely regulating the SEI and the crystallographic features of the Zn offers exciting opportunities that will drive transformative progress.
APA, Harvard, Vancouver, ISO, and other styles
6

Wei, Zidong, Wenzhang Huang, Shengtao Zhang, and Jun Tan. "Carbon-based air electrodes carrying MnO2 in zinc–air batteries." Journal of Power Sources 91, no. 2 (2000): 83–85. http://dx.doi.org/10.1016/s0378-7753(00)00417-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Zhi-lin, Wen Qian, Qin-Hui Luo, and Meng-Chang Shen. "Abnormal electrochemical behavior of copper–zinc superoxide dismutase on mercury electrodes." Journal of Electroanalytical Chemistry 482, no. 1 (2000): 87–91. http://dx.doi.org/10.1016/s0022-0728(00)00017-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Emma Qingnan, and Luping Tang. "Rechargeable Concrete Battery." Buildings 11, no. 3 (2021): 103. http://dx.doi.org/10.3390/buildings11030103.

Full text
Abstract:
A rechargeable cement-based battery was developed, with an average energy density of 7 Wh/m2 (or 0.8 Wh/L) during six charge/discharge cycles. Iron (Fe) and zinc (Zn) were selected as anodes, and nickel-based (Ni) oxides as cathodes. The conductivity of cement-based electrolytes was modified by adding short carbon fibers (CF). The cement-based electrodes were produced by two methods: powder-mixing and metal-coating. Different combinations of cells were tested. The results showed that the best performance of the rechargeable battery was the Ni–Fe battery, produced by the metal-coating method.
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, David F., and Curtis Brown. "Aging in chemically prepared divalent silver oxide electrodes for silver/zinc reserve batteries." Journal of Power Sources 96, no. 1 (2001): 121–27. http://dx.doi.org/10.1016/s0378-7753(00)00679-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yamamoto, Takakazu, and Takaki Kanbara. "Porous and electrically conducting clay-carbon composite as positive electrodes of zinc-oxygen primary cells and zinc-iodine secondary cells." Inorganica Chimica Acta 142, no. 2 (1988): 191–93. http://dx.doi.org/10.1016/s0020-1693(00)81557-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Panayotova, Marinela, and Vladko Panayotov. "Electrochemical conditioning of recycled flotation wastewater for flotation results improving." E3S Web of Conferences 255 (2021): 01013. http://dx.doi.org/10.1051/e3sconf/202125501013.

Full text
Abstract:
Flotation of minerals, an important part of the chain of metals production for our society, needs huge amounts of water. This industry can contribute to the sustainable use of water and circular economy development by utilizing its own production wastewater. However, reuse of clarified water without additional treatment may cause worsening of flotation results. Electrocoagulation of this water with mild steel sacrificial anodes, complemented by electroflotation is able to decrease the chemical oxygen demand (COD) and dissolved organic carbon (DOC) of the treated water, i.e. to remove at least partially the residual organic reagents. For the studied case 66 % of COD and nearly 32 % of DOC were removed by electrocoagulation with mild steel electrodes at energy consumption of 0, 458 kWh/m3. This warrants better results of lead-zinc flotation carried out with treated water, in comparison to the case of use of untreated water, and contributes to freshwater saving. Treated water ensured outcomes of lead-zinc flotation comparable to the results found at use of fresh tap water.
APA, Harvard, Vancouver, ISO, and other styles
12

Kureishi, Yasuhiko, Haruki Shiraishi, and Hitoshi Tamiaki. "Self-aggregates of synthetic zinc chlorins as the photosensitizer on carbon paste electrodes for a novel solar cell." Journal of Electroanalytical Chemistry 496, no. 1-2 (2001): 13–20. http://dx.doi.org/10.1016/s0022-0728(00)00262-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Susilowati, Sri Endah, and Jadi Martua Simbolon. "ANALISA LAJU KOROSI PLAT A36 UNTUK DECK FLOATIN G DOCK VENTURE 3 DENGAN PERLINDUNGAN ZINC ANODE DAN ARUS DC SERTA ZINC ANODE TANPA MENGGUNAKAN ARUS DC." JURNAL KAJIAN TEKNIK MESIN 4, no. 2 (2019): 108–15. http://dx.doi.org/10.52447/jktm.v4i2.1814.

Full text
Abstract:
ABSTRAKKorosi atau perkaratan sangat lazim terjadi pada besi. Besi merupakan logam yang mudah berkarat. Karat besi merupakan zat yang dihasilkan pada peristiwa korosi, yaitu berupa zat padat berwarna coklat kemerahan yang bersifat rapuh serta berpori. Rumus kimia dari karat besi adalah Fe2O3 x H2O. Bila dibiarkan, lama kelamaan besi akan habis menjadi karat. Dampak dari peristiwa korosi bersifat sangat merugikan. Peristiwa korosi sendiri merupakan proses elektrokimia, yaitu reaksi kimia yang melibatkan adanya aliran listrik. Bagian tertentu dari besi berlaku sebagai kutub negatif (elektroda negatif, anoda), sementara bagian yang lain sebagai kutub positif (elektroda positif, katoda). Elektron mengalir dari anoda ke katoda, sehingga terjadilah peristiwa korosi. Penelitian laju korosi ini menggunakan plat A36 untuk Deck Floating Dock Venture dengan tiga macam perlakuan, yaitu Plat tanpa perlindungan korosi (A) , dengan perlindungan zinc anode (B) serta perlindungan gabungan dari zinc anode dan arus listrik DC (C). Laju korosi dihitung dengan menggunakan metode kehilangan berat. Hasil penelitian menunjukkan besarnya laju korosi pada perlakuan A, B dan C berturut-turut adalah : 0,66 mpy, 0,22 mpy dan 0,17 mpy. Perlakuan dengan menggunakan perlindungan zinc anode dan arus DC menghasilkan nilai laju kekerasan paling kecil diantara yang lain. Untuk nilai kekerasan yang diuji menggunakan Brinnnel Number Test nilainya berturut-turut adalah : 136,3 BHN, 205,2 BHN dan 202,9 BHN. Nilai kekerasan tertinggi pada Plat dengan perlakuan perlindungan zinc anode.Kata kunci :Laju Korosi, Zinc Anode, Arus listrik DC, Floating Dock, Plat A36 ABSTRACK Corrosion or rusting is very common in iron. Iron is a metal that is easily corroded. Iron rust is a substance produced in the event of corrosion, which is a reddish brown solid which is fragile and porous. The chemical formula of iron rust is Fe2O3 x H2O. If left unchecked, over time the iron will run out to rust. The impact of corrosion is very detrimental. Corrosion event itself is an electrochemical process, which is a chemical reaction involving an electric current. Certain parts of the iron act as negative poles (negative electrodes, anodes), while other parts are positive poles (positive electrodes, cathodes). Electrons flow from the anode to the cathode, resulting in a corrosion event. This corrosion rate research uses A36 plate for Deck Floating Dock Venture with three types of treatment, namely Plate without corrosion protection (A), with zinc anode protection (B) as well as combined protection from zinc anode and DC electric current (C). Corrosion rate is calculated using the weight loss method. The results showed the magnitude of the corrosion rate in treatments A, B and C were: 0.66 mpy, 0.22 mpy and 0.17 mpy. The treatment using zinc anode protection and DC current yields the smallest rate of hardness among others. For the hardness values tested using the Brinnnel Number Test, the values are: 136.3 BHN, 205.2 BHN and 202.9 BHN. The highest hardness value on the Plate with zinc anode protection treatment.Keywords: Corrosion Rate, Zinc Anode, DC Electric Current, Floating Dock, Plate A36
APA, Harvard, Vancouver, ISO, and other styles
14

Bond, A. M., H. A. hudson, D. L. Luscombe, K. L. Timms, and F. L. Walter. "Continous monitoring of copper and cadmium in zinc plat electrolyte usinga microprocessor-based batter-operated data acquisition system, multiple ion-selective electrodes and redundancy principles." Analytica Chimica Acta 200 (1987): 213–25. http://dx.doi.org/10.1016/s0003-2670(00)83770-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rusyn, I. B., and K. R. Hamkalo. "Use of Carex hirta in electro-biotechnological systems on green roofs." Regulatory Mechanisms in Biosystems 10, no. 1 (2019): 39–44. http://dx.doi.org/10.15421/021906.

Full text
Abstract:
Production of bioelectricity from substrates with growing plants and developing microorganisms is the newest technology of alternative energetics that has great perspectives. The efforts of scientists around the world are aimed at improving biotechnology: the development of effective electrode systems for the collection of plant-microbial bioelectricity, the search for new plants, suitable for technology, testing of new substrates for the development of plants. In this paper, we presented tests of new model electro-biosystems (EBS) consisting of graphite-zinc-steelical systems of electrodes with stainless steel elements placed in plastic containers with soil substrate and planted sedges Carex hirta. The experiment was conducted during the year on the roofs of a university building in the climatic conditions of the Western Ukrainian region to assess the functioning of the electro-biosystems in outdoor conditions. We analyzed the different types of electrode placement in containers: with the horizontal alocation of the electrodes under the root system, with the vertical placement cathodes and anodes in a container and with the increased contact area of the cathodes with the substrate and reinforced connecting of cathodes with each other. During the experiment, we monitored the bioelectric potential of the samples which were in an open circle and under load of an external resistor. To analyze short-term voltage and current, polarization measurements were performed by changing the external resistance from 10 Ω to 5 kΩ, and the current strength, current density and power density were calculated. The conducted experiments showed C. hirta can be successfully cultivated on green roofs in open soil in the climatic conditions of the Western Ukrainian region. The studied electro-biosystems operate round-the-year as the plants are frost-resistant. Metereological conditions, especially the temperature and precipitation intensity, affect the electro-performance of the electro-biosystems on the roofs. The maximum average weekly current of 21.36 mA was recorded in May at optimum temperatures and a favourable humidity level, with an average temperature of 11.4 °C and rainfall of 5.39 mm/day. The electrical performance of electro-biosystems decreases during the winter and dry periods without an organized irrigation system. During the winter period, electrode systems are damaged by adverse factors. The configuration of the electrode system EBS3 is less susceptible to breakdowns due to the destructive action of water during freezing in the winter and more effective in collecting bioelectricity. The research represented in the paper is one more step towards improving bioelectricity technology on green roofs.
APA, Harvard, Vancouver, ISO, and other styles
16

Hou, Zhen, Yao Gao, Hong Tan, and Biao Zhang. "Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-23352-0.

Full text
Abstract:
AbstractStable plating/stripping of metal electrodes under high power and high capacity remains a great challenge. Tailoring the deposition behavior on the substrate could partly resolve dendrites’ formation, but it usually works only under low current densities and limited capacities. Here we turn to regulate the separator’s interfacial chemistry through tin coating with decent conductivity and excellent zincophilicity. The former homogenizes the electric field distribution for smooth zinc metal on the substrate, while the latter enables the concurrent zinc deposition on the separator with a face-to-face growth. Consequently, dendrite-free zinc morphologies and superior cycling stability are achieved at simultaneous high current densities and large cycling capacities (1000 h at 5 mA/cm2 for 5 mAh/cm2 and 500 h at 10 mA/cm2 for 10 mAh/cm2). Furthermore, the concept could be readily extended to sodium metal anodes, demonstrating the interfacial chemistry regulation of separator is a promising route to circumvent the metal anode challenges.
APA, Harvard, Vancouver, ISO, and other styles
17

"00/00843 Thin-film zinc/manganese dioxide electrodes based on microporous polymer foils." Fuel and Energy Abstracts 41, no. 2 (2000): 94. http://dx.doi.org/10.1016/s0140-6701(00)90820-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dongmo, Saustin, Julian Jakob Alexander Kreissl, Kohei Miyazaki, et al. "Reproducible and stable cycling performance data on secondary zinc oxygen batteries." Scientific Data 7, no. 1 (2020). http://dx.doi.org/10.1038/s41597-020-00728-3.

Full text
Abstract:
AbstractElectrically rechargeable zinc oxygen batteries are promising energy storage devices. They appeal due to the abundance of zinc metal and their high energy density. Research on zinc oxygen batteries is currently focusing on the development of electrode materials. Since the progress is rapid and no state-of-the-art is agreed upon yet, it is difficult to benchmark their performance. This circumstance also complicates the use of the generated electrochemical data for model-based research – simulating the processes in the battery requires reliable performance data and material properties from experimental investigations. Herein we describe reproducible data on the cycling performance and durability of zinc oxygen batteries. We utilize anodes and gas diffusion electrodes (with the bifunctional catalysts Sr2CoO3Cl, Ru-Sn oxide, and Fe0.1Ni0.9Co2O4 with activated carbon) with low degradation during cycling, and present voltage data of current-dependent discharge and charge. All in all, we stimulate to reuse the data for parameter fitting in model-based work, and also to evaluate novel battery materials by preventing or minimizing side reactions with the testing protocol and setup utilized.
APA, Harvard, Vancouver, ISO, and other styles
19

Feshchenko, R. Yu, R. N. Eremin, O. O. Erokhina, and V. M. Dydin. "Phosphate solution wetting of graphite blocks for magnesium electrolysis to enhance their oxidation resistance. Part 1." Tsvetnye Metally, October 30, 2020, 49–54. http://dx.doi.org/10.17580/tsm.2020.10.07.

Full text
Abstract:
Graphitized electrodes are broadly used in industry. However, when they are used in high-temperature operating environments, they are subject to oxidation, which can lead to abnormal operation or premature failure of an electrolytic cell. Use of protective coatings or special wetting solutions (melts) help increase the oxidation resistance of a wide assortment of components. It is obvious that a coating that covers an electrode completely will hinder or stop the electric current from flowing at the electrode/electrolyte boundary, which makes this technique inapplicable to anodes for magnesium electrolysis. Aqueous solutions of phosphates are widely used around the world to make materials more resistant to high-temperature oxidation due to the formation of glassy phases during drying. This paper examines the efficiency of using a mixture of zinc and aluminium dihydrophosphates dissolved in an aqueous solution of orthophosphoric acid to enhance the oxidation resistance of the graphite electrode EGP (NR). A comprehensive thermal analysis was carried out to examine the solution for suitability. And X-ray diffractometry helped verify the formation of crystals after the solution had been dried. Cube-shaped specimens with the side length of 50 mm were used in the experiments aimed at identifying optimum graphite wetting and drying conditions. Isopropanol was used as a surfactant to ensure proper wetting. The specimens were first subjected to vacuum degassing for air to be removed from the pores, and then they were soaked in a rarefied solution. A kinetic model was selected to describe the post-wetting drying procedure. The oxidation resistance was analyzed in a dynamic air flow. The experiments were carried out at 700 oC as it is the highest possible temperature for magnesium electrolysis. The results of the experiments showed that the above wetting technique, when applied in a laboratory environment, helped achieve a five-fold increase in the oxidation resistance of the model graphite electrodes. The authors looked at the feasibility of scaling the experiments and developing process circuits to produce graphite with high oxidation resistance.
APA, Harvard, Vancouver, ISO, and other styles
20

Sushkova, Tatiana P., Galina V. Semenova, Aleksandra V. Sheveljuhina, Sergey V. Kannykin, Elena Yu Proskurina та Alexey V. Nerushev. "Фазовые равновесия в системе Sn–As–Sb при концентрации олова менее 50 мол.%". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, № 1 (2020). http://dx.doi.org/10.17308/kcmf.2020.22/2534.

Full text
Abstract:
Сплавы на основе олова и сурьмы, в том числе SnSb и некоторые другие соединения типа AIVBV, применяются для изготовления анодов Li+- и Na+-ионных батарей. Использование ногокомпонентных твердых растворов позволяет варьировать свойства материала и улучшать технические характеристики анодов. В литературе очень мало информации о твердофазной растворимости в системе Sn–As–Sb, фазовая диаграмма этой системы не изучена.Цель работы заключалась в исследовании политермических сечений SnAs–Sb и SnAs–SnSb с помощью методов рентгенофазового анализа (РФА) и дифференциального термического анализа (ДТА) и построении схемы фазовых равновесий в системе Sn–As–Sb в области концентраций олова менее 50 мол.%. Сплавы политермических разрезов SnAs–Sb и SnAs–SnSb получали из предварительно синтезированных бинарных соединений, подвергали гомогенизирующему отжигу и исследовали с помощью методов дифференциального термического анализа (ДТА) и рентгенофазового анализа (РФА) порошкообразных образцов. Результаты РФА показали, что все исследованные сплавы представляют собой гетерофазную смесь твердых растворов (SnAs), (SnSb) и a¢, где a¢ – твердый раствор олова в фазе As1–xSbx. Протяженность твердых растворов на основе бинарных соединений при комнатной температуре менее 10 мол.%. Для нескольких сплавов двух разрезов методомДТА установлена одинаковая температура начала первого эндотермического эффекта (393±2 oС), которая отвечает протеканию перитектического процесса с участием указанных выше фаз: L+ a¢ ↔ (SnAs) + (SnSb). Методом ДТА с учетом данных РФА построены Т–х диаграммы политермических разрезов SnAs–Sb и SnAs–SnSb. Установлены координаты нонвариантного перитектического равновесия L+ a¢ ↔ (SnAs) + (SnSb); предложена схема фазовых равновесий в системе Sn–As–Sb в области концентраций олова менее 50 мол.%. Для построения полной схемы фазовых равновесий в тройной системе необходимо дальнейшее исследование разрезов SnAs–Sn4Sb3 и Sn4As3–Sn4Sb3
 
 
 
 ЛИТЕРАТУРА
 
 Hu Y., Lu Y. 2019 Nobel Pprize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Letters. 2019;4(11): 2689–2690. DOI: https://doi.org/10.1021/acsenergylett.9b02190
 Song K., Liu C., Mi L., Chou S., Chen W., Shen C. Recent progress on the alloy-based anode for sodiumion batteries and potassium-ion batteries. Small. 2019;334: 1903194. DOI: https://doi.org/10.1002/smll.201903194
 Kulova T. L., Skundin A. M.. From lithium-ion to sodium-ion battery. Russian Chemical Bulletin. 2017;66(8): 1329–1335. DOI: https://doi.org/10.1002/smll.20190319410.1007/s11172-017-1896-3
 Jing W. T., Yang C. C., Jiang Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. Journal of Materials Chemistry A. 2020; Advance Article. DOI: https://doi.org/10.1039/C9TA11782B
 Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review. Reviews on Advanced Material Science. 2011;27: 14–24. Available at: http://194.226.210.10/e-journals/RAMS/no12711/kamali.pdf
 Wachtler M., Winter M., Besenhard J. O. Anodic materials for rechargeable Li-batteries. Journal of Power Sources. 2002;105: 151–160. DOI: https://doi.org/10.1016/S0378-7753(01)00934-X
 Wachtler M., Besenhard J.O., Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells. Journal of Power Sources. 2001;94: 189–193. DOI: https://doi.org/10.1016/S0378-7753(00)00585-1
 Xie H., Tan X., Luber E.J., Olsen B.C., Kalisvaart W. P., Jungjohann K. L., Mitlin D., Buriak J. M. b-SnSb for sodium ion battery anodes: phase transformations responsible for Eenhanced cycling stability revealed by in situ TEM. ACS Energy Letters. 2018;3(7): 1670–1676. DOI: https://doi.org/10.1021/acsenergylett.8b00762.
 Li H., Wang Q., Shi L., Chen L., Huang X. Nanosized SnSb Alloy Pinning on hard non-graphitic carbon spherules as anode materials for a Li-ion battery. Chemistry of Materials. 2002;14(1): 103–108. DOI: https://doi.org/10.1021/cm010195p
 Huang B., Pan Z., Su X., An L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. Journal of Power Sources. 2018;395: 41-59. DOI: https://doi.org/10.1016/j.jpowsour.2018.05.063.
 Zhang W., Pang W., Sencadas V., Guo Z. Understanding high-Eenergy-density Sn4P3 Aanodes for potassium-ion batteries. Joule. 2018;2(8): 1534–1547. DOI: https://doi.org/10.1016/j.joule.2018.04022
 Jung S.C., Choi J., Han Y. The origin of excellent rate and cycle performance of Sn4P3 binary electrodes for sodium-ion batteries. Journal of Materials Chemistry A. 2018;6(4): 1772–1779. DOI: https://doi.org/10.1039/C7TA07310K
 Domi Y., Usui H., Nakabayashi E., Yamamoto T., Nohira T., Hiroki Sakaguchi H. Potassiation and depotassioation Pproperties of Sn4P3 electrode in an ionic-liquid electrolyte. Electrochemistry. 2019;87(6): 333–335. DOI: https://doi.org/10.5796/electrochemistry.19-00052
 Saddique J., Zhang X., Wu T., Su H., Liu S., Zhang D., Zhang Y., Yu H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. Journal of Materials Science & Technology. 2019. In Press. DOI: https://doi.org/10.1016/j.jmst.2019.05.032
 Zhang J., Wang W., Li B. Effect of particle size on the sodium storage performance of Sn4P3. Journal of Alloys and Compounds. 2019;771: 204–208. DOI: https://doi.org/10.1016/j.jallcom.2018.08.271
 Lan D., Li Q. Sn4P3/SbSn nanocomposites for anode application in sodium-ion batteries. ChemElec troChem. 2018;5(17): 2383–2386. DOI: https://doi.org/10.1002/celc.201800639
 Lee K. Synthesis and characterization of tetrel pnictides and compounds in the lithium-tetrel-arsenic system. Dissertation. University of California, Davis; 2016. 136 p. Available at: https://search.proquest.com/openview/6c5577b9817fa2c2864fdeda33e2acfb/1?pq-origsite=gscholar&cbl=18750&diss=y
 Usui H., Domi Y., Yamagami R., Fujiwara K., Nishida H., Sakaguchi H. Sodiation–desodiation reactions of various binary phosphides as novel anode materials of Na-ion battery. ACS Applied Energy Materials. 2018;1(2): 306–311. DOI: https://doi.org/10.1021/acsaem.7b00241
 Liu S., Zhang H., Xu L., Ma L., Chen X. Solvothermal preparation of tin phosphide as a longlife anode for advanced lithium and sodium ion batteries. Journal of Power Sources. 2016;304: 346– 353. DOI: https://doi.org/10.1016/j.jpowsour.2015.11.056
 Liu J., Wang S., Kravchyk K., Ibáñez M., Krumeich F., Widmer R., Nasiou D., Meyns M., Llorca J., Arbiol J., Kovalenko M.V., Cabot A. SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A. 2018;6(23): 10958–10966. DOI: https://doi.org/10.1039/C8TA01492B
 Liu C., Yang X., Liu J., Ye X. Theoretical Prediction of Two-Dimensional SnP3 as a Promising Anode Material for Na-Ion Batteries. ACS Applied Energy Materials. 2018;1(8): 3850-3859. DOI: https://doi.org/10.1021/acsaem.8b00621
 Saddique J, Zhang X., Wu T, Wang X., Cheng X., Su H., Liu S., Zhang L., Li G., Zhang Y., Yu H. Enhanced Silicon Diphosphide-Carbon Composite Anode for Long-Cycle, High-effi cient sodium ion batteries. ACS Applied Energy Materials. 2019;2(3): 2223–2229. DOI: https://doi.org/10.1021/acsaem.8b02242
 Schmetterer С., Polt J., Flandorfer H. The phase equilibria in the Sb-Sn system. Part I: Literature review. Journal of Alloys and Compounds. 2017;728: 497–505. DOI: https://doi.org/10.1016/j.jallcom. 2017.08.215
 Schmetterer С., Polt J., Flandorfer H. The phase equilibria in the Sb-Sn system. Part II: Experimental results. Journal of Alloys and Compounds. 2018;743: 523–536. DOI: https://doi.org/10.1016/j.jallcom.2017.11.367
 Kovnir K.A., Kolen’ko Yu.V., Baranov A.I., Neira I.S., Sobolev AV., Yoshimura M., Presniakov I.A., Shevelkov A.V. A Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure. Journal of Solid State Chemistry. 2009;182(3): 630–639. DOI: https://doi.org/10.1016/j.jssc.2008.12.007
 Kovnir K.A., Kolen’ko Yu.V., Ray S., Li J., Watanabe T., Itoh M., Yoshimura M., Shevelkov A.V. A facile high-yield solvothermal route to tin phosphide Sn4P3. Journal of Solid State Chemistry. 2006;179(12): 3756–3762. DOI: https://doi.org/10.1016/j.jssc.2006.08.012
 Семенова Г. В., Гончаров Е. Г. Твердые растворы в тройных системах с участием элементов пятой группы. М.: Моск. физ.-техн. ин-т; 2000. 160 с. 28. Woo K. E., Dolyniuk J., Kovnir K. Superseding van der Waals with electrostatic interactions: intercalation of Cs into the interlayer space of SiAs2. Inorganic Chemistry.2019;58(8): 4997–5005. DOI: https://doi.org/10.1021/acs.inorgchem.9b00017
 Woo K. E., Dolyniuk J., Kovnir K. Supersedingvan der Waals with electrostatic interactions: intercalation of Cs into the interlayer space of SiAs2. Inorganic Chemistry.2019;58(8): 4997–5005. DOI: https://doi.org/10.1021/acs.inorgchem.9b00017
 Семенова Г. В., Кононова Е. Ю., Сушкова Т. П. Политермический разрез Sn4P3–Sn4As3. Журнал неорганической химии. 2013;58: 1242–1245. DOI: https://doi.org/10.7868/S0044457X13090201
 Kononova E. Yu., Semenova G. V., Sinyova S. I., Sushkova T. P. Phase equilibria in the Sn–As–Ge and Sn–As–P systems. Journal of Thermal Analysis and Calorimetry. 2014;117(3): 1171–1177. DOI: https://doi.org/10.1007/s10973-014-3883-3
 Сушкова Т. П., Семенова Г. В., Наумов А. В., Проскурина Е. Ю. Твердые растворы в системе Sn-As–P. Вестник ВГУ. Серия: Химия. Биология. Фармация. 2017;3: 30–36. Режим доступа: http://www.vestnik.vsu.ru/pdf/chembio/2017/03/2017-03-05.pdf
 Семенова Г. В., Сушкова Т. П., Зинченко Е. Н., Якунин С. В. Растворимость фосфора в моноарсениде олова. Конденсированные среды и межфазные границы. 2018;20(4): 644–649. DOI: https://doi.org/10.17308/kcmf.2018.20/639
 Okamoto H., Subramanian P.R., Kacprzak L., Massalski T. B. Binary Alloy Phase Diagrams, Second Edition. Ohio: ASM International, Materials Park; 1990. 810 p.
 Allen W. P., Perepezko J. H. Solidifi cation of undercooled Sn-Sb peritectic alloys: Part 1. Microstructural evolution. Metallurgical Transactions A. 1991;22: 753–764. DOI: https://doi.org/10.1007/BF02670298
 Gokcen N.A. The As–Sn (Tin-Arsenic) system. Bulletin of alloy phase diagrams. 1990;11(3): 271–278. DOI: https://doi.org/10.1007/bf03029298
 Эмсли Дж. Элементы. М.: Мир; 1993. 256 c.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!