Academic literature on the topic 'Antiholomorphic functions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antiholomorphic functions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antiholomorphic functions"

1

Kim, Hong Oh. "M-harmonic functions with M-harmonic square." Bulletin of the Australian Mathematical Society 53, no. 1 (1996): 123–29. http://dx.doi.org/10.1017/s0004972700016786.

Full text
Abstract:
ℳ-harmonic functions with ℳ-harmonic square are proved to be either holomorphic or antiholomorphic in the unit ball of complex n-space under certain additional conditions. For example, if u and u2 are ℳ-harmonic in the unit ball of ℂ2 and if u is continuously differentiable up to the boundary then u is either holomorphic or antiholomorphic.
APA, Harvard, Vancouver, ISO, and other styles
2

Bogdanov, Konstantin, Khudoyor Mamayusupov, Sabyasachi Mukherjee, and Dierk Schleicher. "Antiholomorphic perturbations of Weierstrass Zeta functions and Green’s function on tori." Nonlinearity 30, no. 8 (2017): 3241–54. http://dx.doi.org/10.1088/1361-6544/aa79cf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baracco, Luca, and Giuseppe Zampieri. "CR Extension from Manifolds of Higher Type." Canadian Journal of Mathematics 60, no. 6 (2008): 1219–39. http://dx.doi.org/10.4153/cjm-2008-052-x.

Full text
Abstract:
AbstractThis paper deals with the extension of CR functions fromamanifold M ⊂ ℂn into directions produced by higher order commutators of holomorphic and antiholomorphic vector fields. It uses the theory of complex “sectors” attached to real submanifolds introduced in recent joint work of the authors with D. Zaitsev. In addition, it develops a new technique of approximation of sectors by smooth discs.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Heng-Yu, Hsiao-Yi Chen, and Jun-Kai Ho. "Connecting mirror symmetry in 3D and 2D via localization." International Journal of Modern Physics A 29, no. 32 (2014): 1530004. http://dx.doi.org/10.1142/s0217751x15300045.

Full text
Abstract:
We explicitly apply localization results to study the interpolation between three- and two-dimensional mirror symmetries for Abelian gauge theories with four supercharges. We first use the ellipsoid [Formula: see text] partition functions to verify the mirror symmetry between a pair of general three-dimensional 𝒩 = 2 Abelian Chern–Simons quiver gauge theories. These expressions readily factorize into holomorphic blocks and their antiholomorphic copies, so we can also obtain the partition functions on S1×S2 via fusion procedure. We then demonstrate S1×S2 partition functions for the three-dimensional Abelian gauge theories can be dimensionally reduced to the S2 partition functions of 𝒩 = (2, 2) GLSM and Landau–Ginzburg model for the corresponding two-dimensional mirror pair, as anticipated previously in M. Aganagic et al., J. High Energy Phys.0107, 022 (2001). We also comment on the analogous interpolation for the non-Abelian gauge theories and compute the K-theory vortex partition function for a simple limit to verify the prediction from holomorphic block.
APA, Harvard, Vancouver, ISO, and other styles
5

Basu, Anirban. "Poisson equation for the three-loop ladder diagram in string theory at genus one." International Journal of Modern Physics A 31, no. 32 (2016): 1650169. http://dx.doi.org/10.1142/s0217751x16501694.

Full text
Abstract:
The three-loop ladder diagram is a graph with six links and four cubic vertices that contributes to the [Formula: see text] amplitude at genus one in type II string theory. The vertices represent the insertion points of vertex operators on the toroidal worldsheet and the links represent scalar Green functions connecting them. By using the properties of the Green function and manipulating the various expressions, we obtain a modular invariant Poisson equation satisfied by this diagram, with source terms involving one-, two- and three-loop diagrams. Unlike the source terms in the Poisson equations for diagrams at lower orders in the momentum expansion or the Mercedes diagram, a particular source term involves a five-point function containing a holomorphic and a antiholomorphic worldsheet derivative acting on different Green functions. We also obtain simple equalities between topologically distinct diagrams, and consider some elementary examples.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Antiholomorphic functions"

1

Godin, Jonathan. "Classification analytique des points fixes paraboliques de germes antiholomorphes et de leurs déploiements." Thesis, 2020. http://hdl.handle.net/1866/25597.

Full text
Abstract:
On s’intéresse à la dynamique dans un voisinage d’un point fixe d’une fonction antiholomorphe d’une variable. Dans un premier temps, on cherche à décrire et à comprendre l’espace des orbites dans un voisinage d’un point fixe multiple, appelé point parabolique, et à explorer les propriétés géométriques préservées par les changements de coordonnée. En particulier, on résout le problème de classification analytique des points paraboliques. Résoudre ce problème consiste à définir un module de classification complet qui permet de déterminer si deux germes de difféomorphismes antiholomorphes sont analytiquement conjugués dans un voisinage de leur point fixe parabolique. On examine également les applications du module à différents problèmes : i) extraction d’une racine n-ième antiholomorphe, ii) existence d’une courbe analytique invariante sous la dynamique d’un germe antiholomorphe parabolique et iii) centralisateur d’un germe antiholomorphe parabolique. Dans un second temps, on étudie les déploiements génériques d’un point fixe double, soit un point parabolique de codimension 1. Les questions sont de nature similaire, à savoir comprendre l’espace des orbites et les propriétés géométriques des déploiements. Afin de classifier les déploiements génériques, on déploie le module de classification pour les points paraboliques, ce qui permet d’obtenir des conditions nécessaires et suffisantes pour déterminer lorsque deux déploiements génériques sont équivalents.<br>We are interested in the dynamics in a neighbourhood of a fixed point of an antiholomorphic function of one variable. First, we want to describe and understand the space of orbits in a neighbourhood of a multiple fixed point, called a parabolic point, and to explore the geometric properties preserved by changes of coordinate. In particular, we solve the problem of analytical classification of parabolic fixed points. To solve this problem, we define a complete modulus of classification that allows to determine whether two germs of antiholomorphic diffeomorphisms are analytically conjugate in a neighbourhood of their parabolic fixed point. We also consider the applications of the modulus to different problems: i) extraction of an n-th antiholomorphic root, ii) existence of an invariant real analytical curve under the dynamics of a parabolic antiholomorphic germ, and iii) centraliser of a parabolic antiholomorphic germ. In the second part, we study generic unfoldings of a double fixed point, i.e. a parabolic point of codimension 1. The questions are similar in nature, namely to understand the space of orbits and the geometric properties of unfoldings. In order to classify generic unfoldings, the modulus of classification of the parabolic point is unfolded, thus providing the necessary and sufficient conditions to determine when two generic unfoldings are equivalent.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!