To see the other types of publications on this topic, follow the link: Ascorbyl palmitate.

Journal articles on the topic 'Ascorbyl palmitate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ascorbyl palmitate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Andersen, F. Alan. "Final Report on the Safety Assessment of Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and sodium Erythorbate." International Journal of Toxicology 18, no. 3_suppl (1999): 1–26. http://dx.doi.org/10.1177/109158189901800303.

Full text
Abstract:
Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate are related ingredients that function as antioxidants in cosmetic formulations. Ascorbyl Palmitate, Ascorbyl Dipalmitate, and Ascorbyl Stearate are esters and diesters of ascorbic acid with long-chain fatty acids. Erythorbic Acid is a stereoisomer of ascorbic acid and Sodium Erythorbate is the sodium salt of Erythorbic Acid. Although all of these ingredients are used, uses of Ascorbyl Palmitate and Erythorbic Acid predominate, with combined uses in over a thousand cosmetic formulations at low c
APA, Harvard, Vancouver, ISO, and other styles
2

Ji, Jun Min. "Chemical Synthesis of Ascorbyl Palmitate in [BMIM]BF4." Advanced Materials Research 236-238 (May 2011): 1962–65. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.1962.

Full text
Abstract:
Scorbyl palmitate is a safty and highly efficient lipophilic antioxidant.It is produced by a novel ionic liquid method: L-ascorbic acid was esterified with palmitic acid to synthesize ascorbyl palmitate,using concentrated sulfuric acid as chemical catalyst in 1-Butyl-3-methy limidazolium terafluoroborate ([BMIM]BF4).The yield of ascorbyl palmitate reached 69.6±1%.
APA, Harvard, Vancouver, ISO, and other styles
3

Tufiño, Carolina, Claudia Bernal, Carminna Ottone, Oscar Romero, Andrés Illanes, and Lorena Wilson. "Synthesis with Immobilized Lipases and Downstream Processing of Ascorbyl Palmitate." Molecules 24, no. 18 (2019): 3227. http://dx.doi.org/10.3390/molecules24183227.

Full text
Abstract:
Ascorbyl palmitate is a fatty acid ester endowed with antioxidant properties, used as a food additive and cosmetic ingredient, which is presently produced by chemical synthesis. Ascorbyl palmitate was synthesized from ascorbic acid and palmitic acid with a Pseudomonas stutzeri lipase immobilized on octyl silica, and also with the commercial immobilized lipase Novozym 435. The latter was selected for optimizing the reaction conditions because of its high reactivity and stability in the solvent 2-methyl-2-butanol used as reaction medium. The reaction of the synthesis was studied considering temp
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, HaiJiao, Xinmei Yang, Peng Sun, Ying Zhi, Qingqiang Yao, and Bo Liu. "L-ascorbyl 6-palmitate as lead compound targeting SphK1: an in silico and in vitro investigation." Journal of Chemical Research 45, no. 7-8 (2021): 781–87. http://dx.doi.org/10.1177/17475198211001819.

Full text
Abstract:
Sphingosine kinases (SphKs) are a class of lipid kinases, that have received extensive attention as important rate-limiting enzyme in tumor. Inhibition of the activity of SphK1 can lead to an anticancer effect. Herein, we describe the discovery process and biological characteristics of a new SphK1 inhibitor, ascorbyl palmitate, discovered through computer-aided drug design. Biochemical experiments show that ascorbyl palmitate has a strong inhibitory effect on SphK1, with an IC50 value of 6.4 μM. The MTT experiment showed that ascorbyl palmitate had anti-cancer effects toward the U87, A549, 22R
APA, Harvard, Vancouver, ISO, and other styles
5

Pinnell, Sheldon R. "Ascorbyl-6-Palmitate is not Ascorbic Acid." Journal of Investigative Dermatology 119, no. 5 (2002): 991. http://dx.doi.org/10.1046/j.1523-1747.2002.19530.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Filip, V., I. Hrádková, and J. Šmidrkal. "Antioxidants in Margarine Emulsions." Czech Journal of Food Sciences 27, Special Issue 1 (2009): S9—S11. http://dx.doi.org/10.17221/1089-cjfs.

Full text
Abstract:
The lipid oxidation in margarine takes place in continuous liquid oil phase. The extension of fat interfaces in the system – emulsion of water in oil and the dispersion of fat crystals in liquid oil influences on the peroxidation, decomposition of hydroperoxides to aldehydes and the oxidative stability in the comparison with oxidation in the fat blend. Different antioxidants were used in margarine dispersions: <I>L</I>(+)ascorbic acid, ascorbyl palmitate and DL-α -tocopherol. Increasing polarity and decreasing molecular size of antioxidants have the positive influence on
APA, Harvard, Vancouver, ISO, and other styles
7

Moribe, Kunikazu, Waree Limwikrant, Kenjirou Higashi, and Keiji Yamamoto. "Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives." Journal of Drug Delivery 2011 (April 26, 2011): 1–9. http://dx.doi.org/10.1155/2011/138929.

Full text
Abstract:
Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or
APA, Harvard, Vancouver, ISO, and other styles
8

Hughes, R. E., and Eleri Jones. "Ascorbyl palmitate as a source of tissue ascorbic acid." Food Chemistry 22, no. 1 (1986): 37–40. http://dx.doi.org/10.1016/0308-8146(86)90006-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

AOYAMA, Minoru, Hiromu KANEMATSU, Isao NIIYA, Masato TSUKAMOTO, Shigeru TOKAIRIN, and Taro MATSUMOTO. "Synergistic Effect of L-Ascorbyl Palmitate." Journal of Japan Oil Chemists' Society 42, no. 1 (1993): 25–29. http://dx.doi.org/10.5650/jos1956.42.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pop, F. "Chemical Stabilization of Oils Rich in Long-Chain Polyunsaturated Fatty Acids During Storage." Food Science and Technology International 17, no. 2 (2011): 111–17. http://dx.doi.org/10.1177/1082013210368738.

Full text
Abstract:
During the microencapsulation process, the fish oil undergoes multiple changes in its physical properties such as bulkiness and dispersibility in aqueous phase and dry matrix. Autoxidation already occurred in the first stages of the microencapsulation process itself during emulsification and spray-drying. An efficient stabilization was achieved using a ternary combination of lipophilic antioxidants, synergistic compounds and a trace metal chelator, e.g. a combination of tocopherols, rich in the δ-derivative and low in the α-derivative, with ascorbyl palmitate and lecithin. Trace metal chelatio
APA, Harvard, Vancouver, ISO, and other styles
11

Špiclin, P., M. Gašperlin, and V. Kmetec. "Stability of ascorbyl palmitate in topical microemulsions." International Journal of Pharmaceutics 222, no. 2 (2001): 271–79. http://dx.doi.org/10.1016/s0378-5173(01)00715-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tangsumranjit, A., Y. Pellequer, H. Lboutounne, Y. C. Guillaume, A. Lamprecht, and J. Millet. "Enhanced Ascorbyl Palmitate Stability by Polymeric Nanoparticles." Journal of Drug Delivery Science and Technology 16, no. 2 (2006): 161–63. http://dx.doi.org/10.1016/s1773-2247(06)50025-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Willett, Sarah A., and Casimir C. Akoh. "Physicochemical characterization of organogels prepared from menhaden oil or structured lipid with phytosterol blend or sucrose stearate/ascorbyl palmitate blend." Food & Function 10, no. 1 (2019): 180–90. http://dx.doi.org/10.1039/c8fo01725e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kristl, Julijana, Breda Volk, Mirjana Gašperlin, Marjeta Šentjurc, and Polona Jurkovič. "Effect of colloidal carriers on ascorbyl palmitate stability." European Journal of Pharmaceutical Sciences 19, no. 4 (2003): 181–89. http://dx.doi.org/10.1016/s0928-0987(03)00104-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Costa, Ingrid C. R., Felipe K. Sutili, Gabriela V. V. da Silva, Selma G. F. Leite, Leandro S. M. Miranda, and Rodrigo O. M. A. de Souza. "Lipase catalyzed ascorbyl palmitate synthesis under microwave irradiation." Journal of Molecular Catalysis B: Enzymatic 102 (April 2014): 127–31. http://dx.doi.org/10.1016/j.molcatb.2014.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gopinath, D., D. Ravi, B. R. Rao, S. S. Apte, D. Renuka, and D. Rambhau. "Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications." International Journal of Pharmaceutics 271, no. 1-2 (2004): 95–113. http://dx.doi.org/10.1016/j.ijpharm.2003.10.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shen, Huaqing, Qiuhong Song, and Tianwei Tan. "Synthesis of l-ascorbyl palmitate by immobilized lipase." Journal of Biotechnology 136 (October 2008): S393. http://dx.doi.org/10.1016/j.jbiotec.2008.07.908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

LEE, JU-WOON, HONG-SUN YOOK, SEONG-AI KIM, KYONG-HAENG LEE, and MYUNG-WOO BYUN. "Effects of Antioxidants and Gamma Irradiation on the Shelf Life of Beef Patties." Journal of Food Protection 62, no. 6 (1999): 619–24. http://dx.doi.org/10.4315/0362-028x-62.6.619.

Full text
Abstract:
To improve the storage safety of two types of ground beef patty popular in Korea (general beef patties and bulgogi patties), we added various antioxidants (200 ppm; including butylated hydroxyanisole, ascorbyl palmitate, α-tocopherol, and β-carotene) to typical formulations of patties, cooked the patties to 70°C, and irradiated them at a dose of 1.5 or 3 kGy. During 30 d of storage at 5°C, the number of aerobic bacteria and lactic acid bacteria were determined using total aerobic plate count and phenyl ethyl alcohol-sucrose agar, respectively. The concentration of thiobarbituric acid was also
APA, Harvard, Vancouver, ISO, and other styles
19

García-Moreno, P. J., R. Morales-Medina, M. M. Muñío, A. Guadix та E. M. Guadix. "Optimization of α-tocopherol and ascorbyl palmitate addition for the stabilization of sardine oil". Grasas y Aceites 66, № 2 (2015): e069. http://dx.doi.org/10.3989/gya.0694141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Guardiola, Francesc, Sandra Garcia-Cruset, Ricard Bou, and Rafael Codony. "Artifactual Oxidation of Cholesterol During the Analysis of Cholesterol Oxidation Products: Protective Effect of Antioxidants." Journal of AOAC INTERNATIONAL 87, no. 2 (2004): 493–98. http://dx.doi.org/10.1093/jaoac/87.2.493.

Full text
Abstract:
Abstract To study the influence of the addition of various antioxidants and their combinations on the artifactual oxidation of cholesterol during analysis, 2 factorial experiments were performed in duplicate. In the first experiment, 2 amounts of the following antioxidants were assayed: ethylene-diaminetetraacetic acid (EDTA) disodium salt (0 and 1 mg), pyrogallol (0 and 600 μg), and butylated hydroxytoluene (BHT; 0 and 600 μg); in the second, EDTA disodium salt (0 and 1 mg), ascorbyl palmitate (0 and 600 μg), and BHT (0 and 600 μg). Under low oxidative conditions of dim light, evaporation of
APA, Harvard, Vancouver, ISO, and other styles
21

Purwadi, Ronny, Vita Wonoputri, Febri Ulfa Fitriana, and Najwa Shufia Choliq. "Variasi Antioksidan dalam Pembuatan Protected Active Dried Yeast." Jurnal Teknik Kimia Indonesia 19, no. 1 (2021): 1. http://dx.doi.org/10.5614/jtki.2020.19.1.1.

Full text
Abstract:
Abstrak. Penggunaan antioksidan pada pembuatan protected active dried yeast (PADY) dapat memperpanjang umur simpan ragi kering. Antioksidan yang sering digunakan adalah antioksidan sintesis BHA dan BHT yang diduga bersifat karsinogenik. Penelitian ini bertujuan untuk mencari alternatif antioksidan yang lebih aman. Lima antioksidan yaitu asam sitrat, asam askorbat, tokoferol, natrium eritrobat, dan askorbil palmitat pada rentang konsentrasi 0,025-0,5% diuji pada suspensi ragiuntuk mempelajari efek inhibisi dari antioksidan tersebut. Uji laju produksi CO2 menunjukkan sifat noninhibisi dari asam
APA, Harvard, Vancouver, ISO, and other styles
22

Zhai, Jinyi, Julia Mantaj, and Driton Vllasaliu. "Ascorbyl Palmitate Hydrogel for Local, Intestinal Delivery of Macromolecules." Pharmaceutics 10, no. 4 (2018): 188. http://dx.doi.org/10.3390/pharmaceutics10040188.

Full text
Abstract:
Biologics have changed the management of inflammatory bowel disease (IBD), but there are concerns with unexpected systemic toxicity and loss of therapeutic response following administration by injection. Rectal administration of biologics offers potentially reduced therapy costs, as well as safer and more effective local delivery to inflammation sites. Hydrogels are potentially useful carriers of biologics for improved delivery to the inflamed intestinal mucosa. Here, we prepared a hydrogel system based on ascorbyl palmitate (AP) and incorporated a model macromolecular drug (fluorescently-labe
APA, Harvard, Vancouver, ISO, and other styles
23

Pizarro, Fernando, Manuel Olivares, Eva Hertrampf, et al. "Ascorbyl palmitate enhances iron bioavailability in iron-fortified bread." American Journal of Clinical Nutrition 84, no. 4 (2006): 830–34. http://dx.doi.org/10.1093/ajcn/84.4.830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Benedini, Luciano, Paula V. Messina, Santiago D. Palma, Daniel A. Allemandi, and Pablo C. Schulz. "The ascorbyl palmitate–polyethyleneglycol 400–water system phase behavior." Colloids and Surfaces B: Biointerfaces 89 (January 2012): 265–70. http://dx.doi.org/10.1016/j.colsurfb.2011.09.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pokorski, Mieczysław, Ahlam Ramadan, and Magdalena Marczak. "Ascorbyl palmitate augments hypoxic respiratory response in the cat." Journal of Biomedical Science 11, no. 4 (2004): 465–71. http://dx.doi.org/10.1007/bf02256095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Vicente, Thelma S., Edward H. Waysek, and Winifred M. Cort. "Determination of ascorbyl palmitate by high performance liquid chromatography." Journal of the American Oil Chemists' Society 62, no. 6 (1985): 1051. http://dx.doi.org/10.1007/bf02935714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Paneva, Dilyana, Nevena Manolova, Mariana Argirova та Iliya Rashkov. "Antibacterial electrospun poly(ɛ-caprolactone)/ascorbyl palmitate nanofibrous materials". International Journal of Pharmaceutics 416, № 1 (2011): 346–55. http://dx.doi.org/10.1016/j.ijpharm.2011.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Balthasar, D. M., and D. A. Cadenhead. "Ascorbyl palmitate monolayers at the nitrogen-gas/water interface." Journal of Colloid and Interface Science 115, no. 1 (1987): 280–82. http://dx.doi.org/10.1016/0021-9797(87)90036-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Teeranachaideekul, Veerawat, Varaporn B. Junyaprasert, Eliana B. Souto, and Rainer H. Müller. "Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology." International Journal of Pharmaceutics 354, no. 1-2 (2008): 227–34. http://dx.doi.org/10.1016/j.ijpharm.2007.11.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vicente, Thelma S., Edward H. Waysek, and Winifred M. Cort. "Determination of ascorbyl palmitate by high performance liquid chromatography." Journal of the American Oil Chemists' Society 62, no. 4 (1985): 745–47. http://dx.doi.org/10.1007/bf03028745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Taofik, A., S. Bandiati, A. M. Maskoen, and M. Yusuf. "The effects of shearing and ascorbyl palmitate administration on physiological and blood metabolite profile of Padjadjaran sheep under heat exposure treatment." Journal of the Indonesian Tropical Animal Agriculture 46, no. 1 (2021): 12–19. http://dx.doi.org/10.14710/jitaa.46.1.12-19.

Full text
Abstract:
Ascorbyl-6-palmitate (AP) was a lipid-soluble synthetic ester of ascorbic acid that has been used as a preservation agent for foods and as an antioxidant in cosmetics and related products. This study aims to investigate the effect of shearing management and ascorbyl palmitate administration on physiological and hematological profiles in under heat load Padjadjaran sheep. The physiological profile involves respiration rate (RR), Pulse rate (PR), and rectal temperature (RT). Twenty rams Padjadjaran 1 – 1,5 year-old, weighing between 25 to 47.5 kg used from sheep breeding station Purwakarta, West
APA, Harvard, Vancouver, ISO, and other styles
32

Teneva, Olga, and Nina Dimcheva. "Electrochemical assay of the antioxidant ascorbyl palmitate in mixed medium." Food Chemistry 203 (July 2016): 35–40. http://dx.doi.org/10.1016/j.foodchem.2016.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Palma, Santiago, Pierandrea Lo Nostro, Ruben Manzo, and Daniel Allemandi. "Evaluation of the surfactant properties of ascorbyl palmitate sodium salt." European Journal of Pharmaceutical Sciences 16, no. 1-2 (2002): 37–43. http://dx.doi.org/10.1016/s0928-0987(02)00054-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sohrabi, Yousef, Hossein Mohammadzadeh-Aghdash, Elham Baghbani, Parvin Dehghan, and Jafar Ezzati Nazhad Dolatabadi. "Cytotoxicity and Genotoxicity Assessment of Ascorbyl Palmitate (AP) Food Additive." Advanced Pharmaceutical Bulletin 8, no. 2 (2018): 341–46. http://dx.doi.org/10.15171/apb.2018.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Han, Sanghwa. "Structure of Ascorbyl Palmitate Bilayers (Aspasomes) from Molecular Dynamics Simulation." Bulletin of the Korean Chemical Society 39, no. 7 (2018): 887–90. http://dx.doi.org/10.1002/bkcs.11475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Benedini, Luciano, Maria Laura Fanani, Bruno Maggio, et al. "Surface Phase Behavior and Domain Topography of Ascorbyl Palmitate Monolayers." Langmuir 27, no. 17 (2011): 10914–19. http://dx.doi.org/10.1021/la201847j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pokorski, Mieczysław, Magdalena Marczak, Aneta Dymecka, and Piotr Suchocki. "Ascorbyl palmitate as a carrier of ascorbate into neural tissues." Journal of Biomedical Science 10, no. 2 (2003): 193–98. http://dx.doi.org/10.1007/bf02256054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Olsen, Elisabeth, Gjermund Vogt, Kristin Saarem, Tyge Greibrokk, and Astrid Nilsson. "Autoxidation of cod liver oil with tocopherol and ascorbyl palmitate." Journal of the American Oil Chemists' Society 82, no. 2 (2005): 97–103. http://dx.doi.org/10.1007/s11746-005-1049-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mottola, Milagro, Natalia Wilke, Luciano Benedini, Rafael Gustavo Oliveira, and Maria Laura Fanani. "Ascorbyl palmitate interaction with phospholipid monolayers: Electrostatic and rheological preponderancy." Biochimica et Biophysica Acta (BBA) - Biomembranes 1828, no. 11 (2013): 2496–505. http://dx.doi.org/10.1016/j.bbamem.2013.06.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Santibáñez, Luciana, Lorena Wilson, and Andrés Illanes. "Synthesis of Ascorbyl Palmitate with Immobilized Lipase from Pseudomonas stutzeri." Journal of the American Oil Chemists' Society 91, no. 3 (2013): 405–10. http://dx.doi.org/10.1007/s11746-013-2378-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bradoo, S., R. K. Saxena, and R. Gupta. "High yields of ascorbyl palmitate by thermostable lipase-mediated esterification." Journal of the American Oil Chemists' Society 76, no. 11 (1999): 1291. http://dx.doi.org/10.1007/s11746-999-0141-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gosenca, M., and M. Gašperlin. "Dermal delivery of ascorbyl palmitate: the potential of colloidal delivery systems." Journal of Drug Delivery Science and Technology 21, no. 6 (2011): 535–37. http://dx.doi.org/10.1016/s1773-2247(11)50086-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hsieh, Hsin-Ju, Giridhar R. Nair, and Wen-Teng Wu. "Production of Ascorbyl Palmitate by Surfactant-Coated Lipase in Organic Media." Journal of Agricultural and Food Chemistry 54, no. 16 (2006): 5777–81. http://dx.doi.org/10.1021/jf060089d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Byun, Youngjae, та Scott Whiteside. "Ascorbyl palmitate-β-cyclodextrin inclusion complex as an oxygen scavenging microparticle". Carbohydrate Polymers 87, № 3 (2012): 2114–19. http://dx.doi.org/10.1016/j.carbpol.2011.10.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kim, Mi Kyung, Ji-Soo Lee, Kwang Yup Kim, and Hyeon Gyu Lee. "Ascorbyl palmitate-loaded chitosan nanoparticles: Characteristic and polyphenol oxidase inhibitory activity." Colloids and Surfaces B: Biointerfaces 103 (March 2013): 391–94. http://dx.doi.org/10.1016/j.colsurfb.2012.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bruun-Jensena, Lone, Ib M. Skovgaardb, Leif H. Skibsteda, and Grete Bertelsena. "Antioxidant synergism between tocopherols and ascorbyl palmitate in cooked, minced turkey." Zeitschrift f�r Lebensmittel-Untersuchung und -Forschung 199, no. 3 (1994): 210–13. http://dx.doi.org/10.1007/bf01193446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Benedini, Luciano, Erica P. Schulz, Paula V. Messina, Santiago D. Palma, Daniel A. Allemandi, and Pablo C. Schulz. "The ascorbyl palmitate-water system: Phase diagram and state of water." Colloids and Surfaces A: Physicochemical and Engineering Aspects 375, no. 1-3 (2011): 178–85. http://dx.doi.org/10.1016/j.colsurfa.2010.11.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wittayasuporn, Mayura, Sirirat Rengpipat, Tanapat Palaga, Pravit Asawanonda, Nattaporn Anumansirikul, and Supasorn P. Wanichwecharungruang. "Chitosan derivative nanocarrier: Safety evaluation, antibacterial property and ascorbyl palmitate encapsulation." Journal of Microencapsulation 27, no. 3 (2010): 218–25. http://dx.doi.org/10.3109/02652040903067836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

HUNG, Lan-Hsin, Yukitaka KIMURA, and Shuji ADACHI. "Discoloration Kinetics of L-Ascorbyl 6-Palmitate Powders with Various Water Contents." Food Science and Technology Research 13, no. 1 (2007): 7–12. http://dx.doi.org/10.3136/fstr.13.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jurkovič, Polona, Marjeta Šentjurc, Mirjana Gašperlin, Julijana Kristl, and Slavko Pečar. "Skin protection against ultraviolet induced free radicals with ascorbyl palmitate in microemulsions." European Journal of Pharmaceutics and Biopharmaceutics 56, no. 1 (2003): 59–66. http://dx.doi.org/10.1016/s0939-6411(03)00062-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!