Academic literature on the topic 'Atom atom collision'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atom atom collision.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Atom atom collision"

1

Prasad, Vinod, Rinku Sharma, and Man Mohan. "Laser Assisted Electron - Alkali Atom Collisions." Australian Journal of Physics 49, no. 6 (1996): 1109. http://dx.doi.org/10.1071/ph961109.

Full text
Abstract:
Lasar assisted inelastic scattering of electrons by alkali atoms is studied theoretically. The non-perturbative quasi-energy method, which is generalised for many atomic states, is used to describe the laser–atom interaction, and the electron–atom interaction is treated within the first Born approximation. We have calculated the total cross section for the excitation of sodium atoms due to simultaneous electron–photon collisions. We show the effect of laser and collision parameters, e.g. laser intensity, polarisation and incident electron energy, on the excitation process.
APA, Harvard, Vancouver, ISO, and other styles
2

Prepelita, Oleg. "Spontaneous decay in cold dense atomic systems: caloric effect and spectrum of emitted light." Canadian Journal of Physics 94, no. 7 (July 2016): 1–12. http://dx.doi.org/10.1139/cjp-2016-0098.

Full text
Abstract:
We discuss collision-induced spontaneous decay in a system of cold atoms and caloric effect manifesting in the heating of the atomic system during spontaneous decay. It is shown that the caloric effect is caused by inelastic atom–atom collisions accompanied by the spontaneous emission of photons. Because of the imbalance between the rate of emission of the photons with the frequency higher and lower than the atomic transition frequency, the atomic system, under some conditions, is heated up. The value of the critical temperature is found, which separates the regions where the collision-induced spontaneous decay is exothermic and endothermic.
APA, Harvard, Vancouver, ISO, and other styles
3

McAlinden, Mary T., F. G. R. S. MacDonald, and H. R. J. Walters. "Positronium–atom scattering." Canadian Journal of Physics 74, no. 7-8 (July 1, 1996): 434–44. http://dx.doi.org/10.1139/p96-062.

Full text
Abstract:
Calculations of total cross sections for Ps(1 s) scattering by atomic hydrogen, helium, and argon are reported for the energy range 0–150 eV. The results for atomic hydrogen have been evaluated exactly within the first Born approximation. For collisions with helium and argon in which the target remains in its initial state (so called target elastic collisions) it is assumed that the positronium scatters off a frozen target atom and a coupled positronium pseudostate approximation is then used to calculate the cross sections. For collisions in which the target atom is excited or ionized (target inelastic collisions) the first Born approximation is adopted. Here there is a significant problem in summing over all final states of the target and for this a scheme due to Hartley and Walters has been employed. It is found that for the light targets, hydrogen and helium, target inelastic collisions become dominant above 45 and 105 eV, respectively, while for the heavier argon atom, target elastic scattering is always more important. Except at the lowest energies, and for both target elastic and target inelastic collisions, positronium ionization is the main outcome of the collision for all three atoms. There is an encouraging degree of agreement at the higher energies with the total cross-section measurements of Zafar et al. and Laricchia et al. for helium and argon. The present approximations do not include electron exchange between the positronium and the atom which may be the main source of disagreement between theory and experiment elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
4

Joachain, C. J. "Laser-Assisted Electron-Atom Collisions." Laser Chemistry 11, no. 3-4 (January 1, 1991): 273–77. http://dx.doi.org/10.1155/lc.11.273.

Full text
Abstract:
The theoretical methods which have been developed to analyze laser-assisted electron-atom collisions are reviewed. Firstly, the scattering of an electron by a potential in the presence of a laser field is considered. The analysis is then generalized to laser-assisted collisions of electrons with “real” atoms having an internal structure. Two methods are discussed: a semi-perturbative approach suitable for fast incident electrons and a fully non-perturbative theory—the R-matrix-Floquet method—which is applicable to the case of slow incident electrons. In particular it is shown how the dressing of the atomic states by the laser field can affect the collision cross sections.
APA, Harvard, Vancouver, ISO, and other styles
5

VANDONI, G., C. FÉLIX, R. MONOT, J. BUTTET, C. MASSOBRIO, and W. HARBICH. "DEPOSITION OF MASS-SELECTED Ag7 ON Pd(100): FRAGMENTATION AND IMPLANTATION." Surface Review and Letters 03, no. 01 (February 1996): 949–54. http://dx.doi.org/10.1142/s0218625x96001704.

Full text
Abstract:
Mass-selected silver-cluster ions [Formula: see text] with an incident energy of 2.86 eV/atom and of 13.6 eV/atom are directed on a well-prepared Pd(100) surface, which is probed with thermal-energy atom (helium) scattering (TEAS), before, during, and after the deposition, yielding information on the collision process. We find that part of the cluster atoms are implanted into the surface layer, the fraction depending on the impact energy. Considerable fragmentation is present at both impact energies. Molecular dynamics calculations based on embedded atom method (EAM) potentials are used to model the collision process. These calculations confirm qualitatively the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
6

Kirsanov, V. V., S. B. Kislitsin, and E. M. Kislitsina. "Atom—atom collision cascades in non-uniformly stressed metals." Philosophical Magazine A 64, no. 1 (July 1991): 201–11. http://dx.doi.org/10.1080/01418619108206135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goldstein, R., C. Figl, J. Grosser, O. Hoffmann, M. Jungen, J. Stalder, and F. Rebentrost. "Collision photography: Polarization imaging of atom-molecule collisions." Journal of Chemical Physics 121, no. 18 (November 8, 2004): 8769–74. http://dx.doi.org/10.1063/1.1799592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prasad, Vinod, Rinku Sharma, and Man Mohan. "Excitation Dynamics of an Atom due to Heavy Ion Impact in a Laser Field." Australian Journal of Physics 51, no. 3 (1998): 527. http://dx.doi.org/10.1071/p97077.

Full text
Abstract:
Laser assisted inelastic scattering of heavy ions by alkali atoms is studied theoretically. The non-perturbative quasi-energy method, generalised for many states, is used to describe the laser-atom interaction, and the close coupling method using the impact parameter method is used for scattering calculations. We have calculated the transition probabilities and total cross section for the excitation of alkali atoms, due to simultaneous proton-photon collisions. We show the effect of laser and collision parameters, e.g. laser intensity, impact parameter, laser frequency, on the excitation process.
APA, Harvard, Vancouver, ISO, and other styles
9

Mo, Dan, Jun Cai, Ya Lin Li, and Yan Dong Wang. "Cascade Collision near the Grain Boundary of Fe-Cr Alloy by MD Simulation." Materials Science Forum 913 (February 2018): 642–49. http://dx.doi.org/10.4028/www.scientific.net/msf.913.642.

Full text
Abstract:
Using molecular dynamics method to study the cascade collision for the case of PKA(Primary Knock-on Atom) atoms at different distance from the grain boundary(GB) of iron chromium alloy. It is found that the PKA atoms at the GB will produce a large size cluster (size from 11 to 409 ) consisting of interstitial and vacancies, and many small clusters (number from 5 to 50). The size and number of the cluster depend heavily on PKA energy, while depend weakly on temperature. The PKA atom at distance of 1nm from the GB, sometimes produces large size defect clusters both inside and outside the GB region. When the PKA atom is at 1nm, 2nm and even 3nm, 4nm from the GB, the GB will effectively absorb the interstitial atoms. It is found that the atomic ratio of Cr-interstitial to total interstitial produced at the GB region is much less than one at outside of GB region.
APA, Harvard, Vancouver, ISO, and other styles
10

Pushkarev, A., A. Prima, V. Myshkin, N. Chistyakova, and V. Ezhov. "Comparison of Influence of the Fast Atom Beam and Ion Beam on the Metal Target." Laser and Particle Beams 2021 (January 12, 2021): 1–9. http://dx.doi.org/10.1155/2021/6630259.

Full text
Abstract:
A comparative analysis of a fast atom beam and ion beam effect on a metal target in the binary collision model is performed. Irradiation by fast atoms has been shown to more closely correspond to neutron radiation in a nuclear reactor, in terms of the primary knocked-on atom spectrum and the efficiency and mechanism of the radiation defect formation. It was found that upon irradiation by fast carbon atoms with an energy of 0.2-0.3 MeV, the average number of radiation defects in the displacement cascade of one atom is four to five times higher than the calculated values using the SRIM program for ions with the same energy. It is shown that during penetration in the target, the probability of ionization of atoms with energies less than 0.4 MeV is negligible.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Atom atom collision"

1

Glass, John T. "Relativistic ion-atom collision processes." Thesis, Queen's University Belfast, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beyene, Musie. "Magnetic field control of ultracold atom-molecule collision." Thesis, Durham University, 2011. http://etheses.dur.ac.uk/3196/.

Full text
Abstract:
In this work we investigate the potential of controlling cold (O(K)−mK) and ultracold (mK-μK) atom-molecule collisions by tuning scattering states across Feshbach resonances using magnetic fields. We are interested in particular in the prospect of suppressing the often undesirable inelastic collisions. The He-O_2 system provides the vehicle for our study. We calculate bound and quasi-bound states of several isotopic combinations, including their Zeeman structure, to reveal the underlaying pattern for easier characterization of quasi-bound states in terms of rigorous and approximately good quantum numbers. These calculations also help us locate the fields at which zero-energy resonances will occur. Scattering calculations are then performed for collisions of 3^He and 4^He with {16}^O_2 at fixed (1 μK) energy but varying magnetic field. The field is varied to sweep the scattering state across resonance. At low and ultralow energies we enter the Wigner threshold regime where the S-partial wave dominates the wavefunction. The cross sections, and the real and imaginary parts of the scattering length, vary dramatically across resonance. Their profiles are used to analyze the resonances. In a highlight of our results we show that dramatic suppression of inelastic cross sections occur for 4^He-{16}^O_2 . The resonances are relatively wide (of order 100 Gauss), with suppression of inelastic scattering over a similarly wide range of fields and for temperatures ranging from 10 mK down to 1 μK. We conclude that under certain conditions it is possible to almost completely eliminate inelastic collisions. This is potentially very important for cooling techniques, such as evaporative and sympathetic cooling, that require efficient elastic cross sections. Suppression of inelastic collisions can not only increase thermalization efficiency but it can also result in longer trap-lifetimes by reducing transitions to untrapable states.
APA, Harvard, Vancouver, ISO, and other styles
3

au, cplottke@fizzy murdoch edu, and Christopher Martin Plottke. "S-wave model in electron-atom collisions." Murdoch University, 2004. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040818.111937.

Full text
Abstract:
This thesis discusses the theory and presents the numerical solution of the S-wave models of electron-hydrogen and electron-helium scattering. The Convergent Close-Coupling (CCC) method is used to obtain the numerical results. The focus within the electron-hydrogen S-wave model is to investigate cross section results for scattering from excited states; in particular, the elastic free-free transitions. These contain a divergent potential matrix element as the first term. The investigation of the electron-helium S-wave model is split into two sections, firstly applying the Frozen-Core approximation and then relaxing this approximation. This includes the first accurate ab initio calculation of double-excitation of helium.
APA, Harvard, Vancouver, ISO, and other styles
4

Quichaud, Viviane. "Etude des processus elementaires : de synthese de la molecule no, en post-decharge en ecoulement, de collisions titane-gaz rares, titane-molecules, par perturbation laser resolue en temps." Paris 6, 1987. http://www.theses.fr/1987PA066135.

Full text
Abstract:
I. Etude de la preparation des etats excites de no dans un dispositif de post-decharge en ecoulement a partir de n::(2) excite (prepare par transfert d'excitation a partir d'atomes ar metastables dans une decharge basse pression) et de o (obtenu par dissociation de o::(2) dans une decharge de he). Observation d'une emission intense des bandes gamma de no, qui implique un etat a courte duree de vie (b) de n::(2) et le premier etat metastable de o. Ii. Analyse des processus d'extinction et de transfert d'excitation a partir d'etats a courte duree de vie de ti (crees dans un dispositif a cathode creuse) lors de collisions avec des gaz rares (ar, ne, he) et des molecules (n::(2),h::(2)). Ces experiences permettent l'etude de cinetiques de reactions elementaires au sein d'un plasma basse pression ensemence de vapeurs metalliques, a l'aide du dispositif de post-decharge en ecoulement
APA, Harvard, Vancouver, ISO, and other styles
5

Harland, Peter W. "Studies of gas phase electron, ion and atom collision processes." Thesis, University of Edinburgh, 1995. http://hdl.handle.net/1842/14990.

Full text
Abstract:
The research papers submitted in this thesis describe experimental and theoretical investigations of particle collisions in which the projectiles have been electrons, ions and atoms, and the targets have been atoms and molecules. Non-reactive and reactive collisions have been studied in order to explore the fundamental nature of the collision event, to understand the dynamics, and to facilitate the determination of thermochemical parameters and reaction properties. The formation of positive and negative ions under single collision conditions as a function of electron impact energy has been investigated for small molecules and for molecular clusters. The measurement of accurate ionization efficiency curves and ionization thresholds has been achieved using custom designed near-monochromatic electron sources or analytical deconvolution. In many cases, detailed energy balancing has been attempted through the measurement of the recoil energies of fragment ions using retarding electric fields. Ionization mechanisms for associative and dissociative resonance electron capture and the formation of isomeric positive ions have been deduced. Thermochemical parameters, including electron affinities, ionization potentials, enthalpies of formation and bond dissociation energies, have been determined. Experiments in which the molecular targets were spatially oriented have shown, for the first time, that the mass spectrum and the ionization efficiency are orientation dependent. A theoretical model has been developed which accounts for the experimental measurements. Investigations of ion-molecule chemistry and non-reactive ion-molecule interactions have been carried out using a custom designed drift-tube mass spectrometer. It has been shown that isomeric ions can be distinguished by their ion transport properties and that the isomeric form of an ion-molecule reaction product ion can be directly measured. A theoretical model based on a generalised ion-helium interaction potential was developed which quantitatively accounted for the relative ion mobilities of a wide range of ions according to their physical properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Astruc, Jean-Pierre. "Transfert d'électron entre atomes excités et molécules dans une expérience en jets croisés avec fluorescence résolue dans le temps." Paris 13, 1987. http://www.theses.fr/1987PA132020.

Full text
Abstract:
Etude experimentale avec résolution temporelle à l'échelle de la nanoseconde des valeurs absolues des séctions efficaces pour les transferts partiels d'énergie électronique entre Na(4d) et He, Ar, N(2), O(2), N(2)o et SF(6). Développement quantitatif de deux modèles à intermediaire ionique : réseau de multicroisement et diffusion résonnants atome excité-molecule. Emploi de l'approximation d'impact avec correction d'effet de coeur pour la transfert de moment orbital na(4d -> 4f)
APA, Harvard, Vancouver, ISO, and other styles
7

Konishi, Hideki. "Collisional stability of localized metastable ytterbium atoms immersed in a Fermi sea of lithium." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dalibard, Jean. "Le rôle des fluctuations dans la dynamique d'un atome couple au champ électromagnétique." Paris 6, 1986. http://www.theses.fr/1986PA066393.

Full text
Abstract:
Etude de la dynamique atomique interne; possibilité de séparer la contribution des fluctuations du vide et de la réaction du rayonnement pour differents processus radiatifs (émission spontanée, déplacement de Lamb, etc. ). Etude de la dynamique atomique externe en partant de l'analogie entre ce problème et celui du mouvement brownien; établissement d'une équation de Fokker-Planck-Kramers pour l'évolution de la fonction de Wigner atomique, avec termes de force stationnaire, force de frottement etc. Etude détaillée du mouvement atomique dans une onde laser stationnaire intense: refroidissement, piégeage.
APA, Harvard, Vancouver, ISO, and other styles
9

Gadea, Florent Xavier. "Theorie des hamiltoniens effectifs : applications aux problemes de diabatisation et de collision reactive." Toulouse 3, 1987. http://www.theses.fr/1987TOU30276.

Full text
Abstract:
Etude approfondie sur la theorie des hamiltoniens effectifs et analyse de leurs applications aux methodes de diabatisation et au traitement des collisions reactives. Propositions pour le calcul des valeurs propres de l'hamiltonien par des methodes de perturbation ou iteratives, pour l'emploi d'hamiltoniens effectifs dans le calcul des surfaces quasi diabatiques et le traitement general des collisions reactives. Application a la reaction cs+h::(2) etudiee par les methodes ab initio pour la geometrie colineaire : surfaces de potentiel, sections efficaces et mecanismes predominants
APA, Harvard, Vancouver, ISO, and other styles
10

Lühr, Armin. "Collisions of low-energy antiprotons and protons with atoms and molecules." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16084.

Full text
Abstract:
In dieser Arbeit wird eine, zeitabhängige, nicht störungstheoretische numerische Methode entwickelt, welche Ionisation und Anregung von Atomen oder Molekülen in Stößen mit entweder PB oder P beschreibt und auf der impact-parameter Methode basiert. Es wird eine spektrale close-coupling Methode verwendet, um die zeitabhängige Schrödinger-Gleichung zu lösen, in welcher die Wellenfunktion in (effektive) Ein- oder Zwei-Elektronen-Eigenzustände des Targets entwickelt wird. Dies beinhaltet auch eine erstmalige volle Zwei-Elektronen-Beschreibung von H2 in PB-Stößen. Rechnungen werden für PB-Stöße mit H, H2+ und H2 sowie He und den Alkaliatomen Li, Na, K und Rb durchgeführt. Daten für P-Stöße werden für H2 und die Alkaliatomen Li, Na und K erzielt. Die Methode wird durch einen detaillierten Vergleich der erhaltenen Ergebnisse für P-Stöße und für PB + He mit Literaturdaten verifiziert. Andererseits ergänzen die totalen und differentiellen Wirkungsquerschnitte für Ionisation und Anregung der Targets in PB-Stößen die spärliche Literatur. Sowohl die Resultate für verschiedene Targets als auch für PB- und P-Stöße werden miteinander verglichen. Ein Schwerpunkt dieser Arbeit liegt auf der Untersuchung von PB + H2, welche die Abhängigkeit der Wirkungsquerschnitte vom Kernabstand und von der relativen Ausrichtung der molekularen Achse beinhaltet. Weiterhin werden Ergebnisse mit Ein-Elektronen-Modellpotentialen erzielt und mit der vollen Zwei-Elektronen-Beschreibung von H2 verglichen. Außerdem werden Energieverluste in PB-Stößen bestimmt.
In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either PB or P impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schrödinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H2 molecule in PB collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configuration-interaction approach. Calculations are performed for PB collisions with H, H2+, and H2 as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for P collisions with H2, Li, Na, and K. The developed method is tested and validated by detailed comparison of the present findings for P impacts and for PB + He collisions with literature data. On the other hand, total and differential cross sections for ionization and excitation of the targets by PB impact complement the sparse literature data of this kind. Results gained from different targets as well as from PB and P impact are compared with each other and assessed. Furthermore, results obtained with one-electron model potentials are compared to the full two-electron description of H2. Finally, stopping powers for PB impacts are determined.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Atom atom collision"

1

Relativistic heavy-particle collision theory. New York: Kluwer Academic/Plenum Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1928-, Berényi Dénes, and Hock G, eds. High-energy ion-atom collisions: Proceedings of the 4th Workshop on High-Energy Ion-Atom Collision Processes, held in Debrecen, Hungary, 17-19 September 1990. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1928-, Berényi Dénes, and Hock G, eds. High-energy ion-atom collisions: Proceedings of the 2nd Workshop on High-energy Ion-atom Collision Processes, Debrecen, Hungary, August 27-28, 1984 : invited lectures and contributed papers. Budapest: Akadémiai Kiadó, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCarthy, I. E. Electron-atom collisions. Cambridge: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Berényi, Dénes. High-energy ion-atom collisions. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berényi, D., and G. Hock, eds. High-Energy Ion-Atom Collisions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53738-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burke, Philip G., and Charles J. Joachain. Theory of Electron—Atom Collisions. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1567-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berényi, D., and G. Hock, eds. High-Energy Ion-Atom Collisions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-18732-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burke, P. G. Theory of electron-atom collisions. New York: Plenum Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bransden, B. H. Charge exchange and the theory of ion-atom collisions. Oxford: Clarendon Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Atom atom collision"

1

Popov, N. P. "Muonic atom — atom collision processes." In Lecture Notes in Physics, 347–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53738-4_75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bransden, B. H. "Non-Adiabatic Atom-Atom Collision." In Collision Theory for Atoms and Molecules, 289–342. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5655-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Faubel, Manfred. "Low Energy Atom Collisions." In Fundamental Processes in Atomic Collision Physics, 503–20. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2125-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burke, P. G. "Electron Atom Scattering Theory." In Fundamental Processes in Atomic Collision Physics, 51–102. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2125-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crothers, Derrick S. F. "Heavy-Particle Ion-Atom Collisions." In Relativistic Heavy-Particle Collision Theory, 1–15. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4275-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wille, Uwe. "Excitation in Ion-Atom Collisions." In Coherence in Atomic Collision Physics, 229–82. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-9745-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hanne, G. F. "Spin Polarization in Electron-Atom Scattering." In Coherence in Atomic Collision Physics, 41–88. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-9745-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bederson, Benjamin. "Polarization Effects in Electron-Atom Collisions." In Fundamental Processes in Atomic Collision Physics, 133–57. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2125-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferrante, Gaetano. "Particle-Atom Collisions in Strong Laser Fields." In Fundamental Processes in Atomic Collision Physics, 343–95. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2125-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heideman, H. G. M. "Electron Correlation Effects in Electron-Atom Collisions." In Fundamental Processes in Atomic Collision Physics, 521–37. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2125-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Atom atom collision"

1

Joachain, C. J. "Electron-atom collision theory." In The Sixteenth International Conference on the Physics of Electronic and Atomic Collisions. AIP, 1990. http://dx.doi.org/10.1063/1.39245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tribedi, Lokesh C. "Momentum spectroscopy in ion-atom collision." In The 21st international conference on the physics of electronic and atomic collisions (21 IPEAC). AIP, 2000. http://dx.doi.org/10.1063/1.1302688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moshammer, R. "Kinematically complete ion-atom collision experiments: Ionization of atoms in strong fields." In The 21st international conference on the physics of electronic and atomic collisions (21 IPEAC). AIP, 2000. http://dx.doi.org/10.1063/1.1302687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

A., José Récamier. "Algebraic methods for an atom-anharmonic oscillator collision." In Half collision resonance phenomena in molecules. AIP, 1991. http://dx.doi.org/10.1063/1.40545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bray, I. "Various problems in electron-atom collision theory." In CORRELATION AND POLARIZATION IN PHOTONIC, ELECTRONIC, AND ATOMIC COLLISIONS. AIP, 2003. http://dx.doi.org/10.1063/1.1643697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gilbody, H. B. "Ion-atom collision measurements relevant to fusion plasmas." In The 19th international conference on the physics of electronic and atomic collisions. AIP, 1996. http://dx.doi.org/10.1063/1.49813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Standage, Max. "The Role of lasers in electron-atom collision physics." In The 19th international conference on the physics of electronic and atomic collisions. AIP, 1996. http://dx.doi.org/10.1063/1.49811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bartschat, Klaus. "Polarization, alignment, and orientation in electron-atom collisions: Benchmarks for atomic collision theory." In ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gibble, Kurt. "Scattering of cold atom coherences by hot atoms: Background gas collision shifts of primary fountain clocks." In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wilson, A. C., N. Kjaergaard, and A. S. Mellish. "Interferometric measurement of ultracold collision properties using an atom collider." In International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1560873.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Atom atom collision"

1

Kielkopf, John F. A spectroscopic study of hydrogen atom and molecule collision. Final report. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/808754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Valentini, J. J. Single-collision studies of hot atom energy transfer and chemical reaction. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5872757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Valentini, J. J. Single-collision studies of hot atom energy transfer and chemical reaction. Final report. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10124118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heller, E. J. Grant 'Theoretical Studies of Time-of-Flight and Atom and Molecular Surface Collision'. Fort Belvoir, VA: Defense Technical Information Center, April 1990. http://dx.doi.org/10.21236/ada221705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Celotta, R. J., and M. H. Kelley. Electron-atom collision studies using optically state selected beams. Progress report, May 15, 1987--May 14, 1988. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/10107059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Celotta, R. J., and M. H. Kelley. Electron-atom collision studies using optically state selected beams. Progress report, May 15, 1988--May 14, 1991. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/10107063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kelley, M. H., and J. J. McClelland. Electron-atom collision studies using optically state-selected beams. Final report, May 15, 1991--May 14, 1994. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/573391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tanis, J. A. Correlated charge-changing ion-atom collisions. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5296180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gallagher, A. Spectroscopic diagnostics of electron-atom collisions. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5957609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McColm, D. Correlated electron processes in ion-atom collisions. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/7188360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography