Journal articles on the topic 'Bacterial polymers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bacterial polymers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Secor, Patrick R., Lia A. Michaels, Anina Ratjen, Laura K. Jennings, and Pradeep K. Singh. "Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance inPseudomonas aeruginosa." Proceedings of the National Academy of Sciences 115, no. 42 (October 1, 2018): 10780–85. http://dx.doi.org/10.1073/pnas.1806005115.
Full textvan Loosdrecht, M. C. M., M. A. Pot, and J. J. Heijnen. "Importance of bacterial storage polymers in bioprocesses." Water Science and Technology 35, no. 1 (January 1, 1997): 41–47. http://dx.doi.org/10.2166/wst.1997.0008.
Full textCarrasco-Acosta, Marina, Marta Santos-Garcia, and Pilar Garcia-Jimenez. "Marine Bacteria Associated with Colonization and Alteration of Plastic Polymers." Applied Sciences 12, no. 21 (November 1, 2022): 11093. http://dx.doi.org/10.3390/app122111093.
Full textDeng, Shuhua, Anfu Chen, Weijia Chen, Jindi Lai, Yameng Pei, Jiahua Wen, Can Yang, et al. "Fabrication of Biodegradable and Biocompatible Functional Polymers for Anti-Infection and Augmenting Wound Repair." Polymers 15, no. 1 (December 28, 2022): 120. http://dx.doi.org/10.3390/polym15010120.
Full textRingenberg, L., A. Winkel, O. Kufelt, P. Behrens, M. Stiesch, and W. Heuer. "The Effectiveness of Poly-(4-vinyl-N-hexylpyridiniumbromide) as an Antibacterial Implant Coating: AnIn VitroStudy." International Journal of Dentistry 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/859140.
Full textFujiwara, Natsumi, Hiromichi Yumoto, Koji Miyamoto, Katsuhiko Hirota, Hiromi Nakae, Saya Tanaka, Keiji Murakami, Yasusei Kudo, Kazumi Ozaki, and Yoichiro Miyake. "2-Methacryloyloxyethyl phosphorylcholine (MPC)-polymer suppresses an increase of oral bacteria: a single-blind, crossover clinical trial." Clinical Oral Investigations 23, no. 2 (May 16, 2018): 739–46. http://dx.doi.org/10.1007/s00784-018-2490-2.
Full textTyagi, Anju, and Abhijit Mishra. "Methacrylamide based antibiotic polymers with no detectable bacterial resistance." Soft Matter 17, no. 12 (2021): 3404–16. http://dx.doi.org/10.1039/d0sm02176h.
Full textMaruthapandi, Moorthy, Arumugam Saravanan, Akanksha Gupta, John H. T. Luong, and Aharon Gedanken. "Antimicrobial Activities of Conducting Polymers and Their Composites." Macromol 2, no. 1 (February 9, 2022): 78–99. http://dx.doi.org/10.3390/macromol2010005.
Full textSharma, Hemlata, Jyoti Pal, and Deepesh Kumar Neelam. "Bacterial Extracellular Polymers: A Review." Journal of Pure and Applied Microbiology 15, no. 3 (July 17, 2021): 1072–82. http://dx.doi.org/10.22207/jpam.15.3.28.
Full textTAKAI, Mitsuo, and Tomoki ERATA. "Natural Polymers. Bacterial Cellulose." Kobunshi 47, no. 6 (1998): 382–85. http://dx.doi.org/10.1295/kobunshi.47.382.
Full textRojas-Tapias, Daniel, Oriana Ortega Sierra, Diego Rivera Botía, and Ruth Bonilla. "Preservation of Azotobacter chroococcum vegetative cells in dry polymers." Universitas Scientiarum 20, no. 2 (October 10, 2014): 201. http://dx.doi.org/10.11144/javeriana.sc20-2.pacv.
Full textSchäffer, Christina, and Paul Messner. "The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together." Microbiology 151, no. 3 (March 1, 2005): 643–51. http://dx.doi.org/10.1099/mic.0.27749-0.
Full textOhgita, Takashi, Naoki Hayashi, Naomasa Gotoh, and Kentaro Kogure. "Suppression of type III effector secretion by polymers." Open Biology 3, no. 12 (December 2013): 130133. http://dx.doi.org/10.1098/rsob.130133.
Full textvan Tol, Eric A. F., Lisa Holt, Feng Ling Li, Feng-Ming Kong, Richard Rippe, Mitsuo Yamauchi, Jolanta Pucilowska, P. Kay Lund, and R. Balfour Sartor. "Bacterial cell wall polymers promote intestinal fibrosis by direct stimulation of myofibroblasts." American Journal of Physiology-Gastrointestinal and Liver Physiology 277, no. 1 (July 1, 1999): G245—G255. http://dx.doi.org/10.1152/ajpgi.1999.277.1.g245.
Full textHansen, Niko, Adriana Bryant, Roslyn McCormack, Hannah Johnson, Travis Lindsay, Kael Stelck, and Matthew T. Bernards. "Assessment of the performance of nonfouling polymer hydrogels utilizing citizen scientists." PLOS ONE 16, no. 12 (December 31, 2021): e0261817. http://dx.doi.org/10.1371/journal.pone.0261817.
Full textBosch, Paula, Desislava Staneva, Evgenia Vasileva-Tonkova, Petar Grozdanov, Ivanka Nikolova, Rositsa Kukeva, Radostina Stoyanova, and Ivo Grabchev. "Hyperbranched Polymers Modified with Dansyl Units and Their Cu(II) Complexes. Bioactivity Studies." Materials 13, no. 20 (October 14, 2020): 4574. http://dx.doi.org/10.3390/ma13204574.
Full textWhitfield, Chris. "Bacterial extracellular polysaccharides." Canadian Journal of Microbiology 34, no. 4 (April 1, 1988): 415–20. http://dx.doi.org/10.1139/m88-073.
Full textMeng, En, Chin-Li Chen, Chuan-Chieh Liu, Cheng-Che Liu, Shu-Jen Chang, Juin-Hong Cherng, Hsiao-Hsien Wang, and Sheng-Tang Wu. "Bioapplications of Bacterial Cellulose Polymers Conjugated with Resveratrol for Epithelial Defect Regeneration." Polymers 11, no. 6 (June 15, 2019): 1048. http://dx.doi.org/10.3390/polym11061048.
Full textMontdargent, Béatrice, and Didier Letourneur. "Toward New Biomaterials." Infection Control & Hospital Epidemiology 21, no. 6 (June 2000): 404–10. http://dx.doi.org/10.1086/501782.
Full textKroiča, Juta, Ingus Skadiņš, Ilze Salma, Aigars Reinis, Marina Sokolova, Dagnija Rostoka, and Natālija Bērza. "Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana." Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 70, no. 4 (August 1, 2016): 220–26. http://dx.doi.org/10.1515/prolas-2016-0035.
Full textSchulze, Holger, Harry Wilson, Ines Cara, Steven Carter, Edward N. Dyson, Ravikrishnan Elangovan, Stephen Rimmer, and Till T. Bachmann. "Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers." Sensors 21, no. 5 (March 8, 2021): 1872. http://dx.doi.org/10.3390/s21051872.
Full textWang, Yin, and Hui Sun. "Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents." Pharmaceutics 13, no. 12 (December 7, 2021): 2108. http://dx.doi.org/10.3390/pharmaceutics13122108.
Full textAndoy, Nesha May Octavio, Meera Patel, Ching Lam Jane Lui, and Ruby May Arana Sullan. "Immobilization of Polyethyleneimine (PEI) on Flat Surfaces and Nanoparticles Affects Its Ability to Disrupt Bacterial Membranes." Microorganisms 9, no. 10 (October 19, 2021): 2176. http://dx.doi.org/10.3390/microorganisms9102176.
Full textAksoyoglu, M. Alphan, Rudolf Podgornik, Sergey M. Bezrukov, Philip A. Gurnev, Murugappan Muthukumar, and V. Adrian Parsegian. "Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin." Proceedings of the National Academy of Sciences 113, no. 32 (July 27, 2016): 9003–8. http://dx.doi.org/10.1073/pnas.1602716113.
Full textNoureddine, Mahmoudi. "Study of composite-based natural fibers and renewable polymers, using bacteria to ameliorate the fiber/matrix interface." Journal of Composite Materials 53, no. 4 (July 2, 2018): 455–61. http://dx.doi.org/10.1177/0021998318785965.
Full textSchertzer, Jeffrey W., and Eric D. Brown. "Use of CDP-Glycerol as an Alternate Acceptor for the Teichoic Acid Polymerase Reveals that Membrane Association Regulates Polymer Length." Journal of Bacteriology 190, no. 21 (August 19, 2008): 6940–47. http://dx.doi.org/10.1128/jb.00851-08.
Full textWang, Tingting, Lei Xu, Huiying Shen, Xiuming Cao, Qufu Wei, Reza A. Ghiladi, and Qingqing Wang. "Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose." Cellulose 27, no. 2 (November 11, 2019): 991–1007. http://dx.doi.org/10.1007/s10570-019-02852-9.
Full textWenzel, Michaela, Ilkay N. Celik Gulsoy, Yongqiang Gao, Zihao Teng, Joost Willemse, Martijn Middelkamp, Mariska G. M. van Rosmalen, et al. "Control of septum thickness by the curvature of SepF polymers." Proceedings of the National Academy of Sciences 118, no. 2 (December 21, 2020): e2002635118. http://dx.doi.org/10.1073/pnas.2002635118.
Full textRong, Fan, Yizhang Tang, Tengjiao Wang, Tao Feng, Jiang Song, Peng Li, and Wei Huang. "Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review." Antioxidants 8, no. 11 (November 15, 2019): 556. http://dx.doi.org/10.3390/antiox8110556.
Full textLeong, Jiayu, Chuan Yang, Jason Tan, Bing Qian Tan, Sherwin Hor, James L. Hedrick, and Yi Yan Yang. "Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect." Biomaterials Science 8, no. 24 (2020): 6920–29. http://dx.doi.org/10.1039/d0bm00752h.
Full textBonenfant, Danielle, François-René Bourgeois, Murielle Mimeault, Frédéric Monette, Patrick Niquette, and Robert Hausler. "Synthesis and structure-activity study of quaternary ammonium functionalized β-cyclodextrin-carboxymethylcellulose polymers." Water Science and Technology 63, no. 12 (June 1, 2011): 2827–32. http://dx.doi.org/10.2166/wst.2011.630.
Full textBarbero, Cesar Alfredo, and Diego Fernando Acevedo. "Manufacturing Functional Polymer Surfaces by Direct Laser Interference Patterning (DLIP): A Polymer Science View." Nanomanufacturing 2, no. 4 (November 29, 2022): 229–64. http://dx.doi.org/10.3390/nanomanufacturing2040015.
Full textDoi, Yoshiharu. "Microbial Synthesis and Properties of Polyhydroxy-alkanoates." MRS Bulletin 17, no. 11 (November 1992): 39–42. http://dx.doi.org/10.1557/s0883769400046649.
Full textŠerá, Jana, Florence Huynh, Faith Ly, Štěpán Vinter, Markéta Kadlečková, Vendula Krátká, Daniela Máčalová, Marek Koutný, and Christopher Wallis. "Biodegradable Polyesters and Low Molecular Weight Polyethylene in Soil: Interrelations of Material Properties, Soil Organic Matter Substances, and Microbial Community." International Journal of Molecular Sciences 23, no. 24 (December 15, 2022): 15976. http://dx.doi.org/10.3390/ijms232415976.
Full textArmentano, Ilaria, Carla Renata Arciola, Elena Fortunati, Davide Ferrari, Samantha Mattioli, Concetta Floriana Amoroso, Jessica Rizzo, Jose M. Kenny, Marcello Imbriani, and Livia Visai. "The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review." Scientific World Journal 2014 (2014): 1–18. http://dx.doi.org/10.1155/2014/410423.
Full textFoster, Leanna L., Shin-ichi Yusa, and Kenichi Kuroda. "Solution-Mediated Modulation of Pseudomonas aeruginosa Biofilm Formation by a Cationic Synthetic Polymer." Antibiotics 8, no. 2 (May 10, 2019): 61. http://dx.doi.org/10.3390/antibiotics8020061.
Full textRehm, Bernd H. A. "Bacterial polymers: biosynthesis, modifications and applications." Nature Reviews Microbiology 8, no. 8 (June 28, 2010): 578–92. http://dx.doi.org/10.1038/nrmicro2354.
Full textGolabi, Mohsen, Anthony P. F. Turner, and Edwin W. H. Jager. "Tunable conjugated polymers for bacterial differentiation." Sensors and Actuators B: Chemical 222 (January 2016): 839–48. http://dx.doi.org/10.1016/j.snb.2015.09.033.
Full textBarton, Alan J., Richard D. Sagers, and William G. Pitt. "Bacterial adhesion to orthopedic implant polymers." Journal of Biomedical Materials Research 30, no. 3 (March 1996): 403–10. http://dx.doi.org/10.1002/(sici)1097-4636(199603)30:3<403::aid-jbm15>3.0.co;2-k.
Full textWulandari, Erna, Rachel Budhisatria, Alexander H. Soeriyadi, Mark Willcox, Cyrille Boyer, and Edgar H. H. Wong. "Releasable antimicrobial polymer-silk coatings for combating multidrug-resistant bacteria." Polymer Chemistry 12, no. 48 (2021): 7038–47. http://dx.doi.org/10.1039/d1py01219c.
Full textKregiel, Dorota, Anna Rygala, Beata Kolesinska, Maria Nowacka, Agata S. Herc, and Anna Kowalewska. "Antimicrobial and Antibiofilm N-acetyl-L-cysteine Grafted Siloxane Polymers with Potential for Use in Water Systems." International Journal of Molecular Sciences 20, no. 8 (April 24, 2019): 2011. http://dx.doi.org/10.3390/ijms20082011.
Full textPan, Yuanfeng, Qiuyang Xia, and Huining Xiao. "Cationic Polymers with Tailored Structures for Rendering Polysaccharide-Based Materials Antimicrobial: An Overview." Polymers 11, no. 8 (August 1, 2019): 1283. http://dx.doi.org/10.3390/polym11081283.
Full textLópez-Fernández, Ana M., Ignacio Muñoz Resta, Rosa de Llanos, and Francisco Galindo. "Photodynamic Inactivation of Pseudomonas aeruginosa by PHEMA Films Loaded with Rose Bengal: Potentiation Effect of Potassium Iodide." Polymers 13, no. 14 (July 6, 2021): 2227. http://dx.doi.org/10.3390/polym13142227.
Full textPrasad. B, Venkata Nagendra, and Latha D. "Investigating the Synergistic Antibacterial Activity of Epiphytic Bacterial Polyketides and Biopolymer Alginates from Marine Microalgae." Journal of University of Shanghai for Science and Technology 23, no. 10 (October 4, 2021): 115–35. http://dx.doi.org/10.51201/jusst/21/09704.
Full textGoto, Hiromasa. "Polymerisation on Bio-Tissues." International Letters of Chemistry, Physics and Astronomy 68 (July 2016): 18–23. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.68.18.
Full textGoto, Hiromasa. "Polymerisation on Bio-Tissues." International Letters of Chemistry, Physics and Astronomy 68 (July 19, 2016): 18–23. http://dx.doi.org/10.56431/p-50cxcl.
Full textEL-KAFAFI, El-Sayed, Sunil MUKHERJEE, Mahmoud EL-SHAMI, Jean-Luc PUTAUX, Maryse A. BLOCK, Isabelle PIGNOT-PAINTRAND, Silva LERBS-MACHE, and Denis FALCONET. "The plastid division proteins, FtsZ1 and FtsZ2, differ in their biochemical properties and sub-plastidial localization." Biochemical Journal 387, no. 3 (April 26, 2005): 669–76. http://dx.doi.org/10.1042/bj20041281.
Full textSienkiewicz, Natalia, and Sylwia Członka. "Natural Additives Improving Polyurethane Antimicrobial Activity." Polymers 14, no. 13 (June 21, 2022): 2533. http://dx.doi.org/10.3390/polym14132533.
Full textCarpa, Rahela, Anca Butiuc-Keul, Iulia Lupan, Lucian Barbu-Tudoran, Vasile Muntean, and Cristina Dobrotă. "Poly-β-hydroxybutyrate accumulation in bacterial consortia from different environments." Canadian Journal of Microbiology 58, no. 5 (May 2012): 660–67. http://dx.doi.org/10.1139/w2012-037.
Full textFletcher, Madilyn, Jeannine M. Lessmann, and George I. Loeb. "Bacterial surface adhesives and biofilm matrix polymers of marine and freshwater bacteria†." Biofouling 4, no. 1-3 (August 1991): 129–40. http://dx.doi.org/10.1080/08927019109378203.
Full text