Journal articles on the topic 'Bifunctional catalysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bifunctional catalysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dixon, Darren J. "Bifunctional catalysis." Beilstein Journal of Organic Chemistry 12 (May 25, 2016): 1079–80. http://dx.doi.org/10.3762/bjoc.12.102.
Full textElsby, Matthew R., and R. Tom Baker. "Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts." Chemical Society Reviews 49, no. 24 (2020): 8933–87. http://dx.doi.org/10.1039/d0cs00509f.
Full textGao, Jing, Dan Ren, Xueyi Guo, Shaik Mohammed Zakeeruddin, and Michael Grätzel. "Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts." Faraday Discussions 215 (2019): 282–96. http://dx.doi.org/10.1039/c8fd00219c.
Full textMurzin, D. Yu. "Mesolevel Bifunctional Catalysis." Kinetics and Catalysis 61, no. 1 (2020): 80–92. http://dx.doi.org/10.1134/s0023158420010073.
Full textZhong, Chenglin, Qingwen Zhou, Shengwen Li, et al. "Enhanced synergistic catalysis by a novel triple-phase interface design of NiO/Ru@Ni for the hydrogen evolution reaction." Journal of Materials Chemistry A 7, no. 5 (2019): 2344–50. http://dx.doi.org/10.1039/c8ta11171e.
Full textTan, Kian, Xixi Sun, and Amanda Worthy. "Scaffolding Catalysis: Expanding the Repertoire of Bifunctional Catalysts." Synlett 23, no. 03 (2012): 321–25. http://dx.doi.org/10.1055/s-0031-1290321.
Full textChoudhury, Joyanta, and Shrivats Semwal. "Emergence of Stimuli-Controlled Switchable Bifunctional Catalysts." Synlett 29, no. 02 (2017): 141–47. http://dx.doi.org/10.1055/s-0036-1591741.
Full textBreslow, Ronald. "Bifunctional binding and catalysis." Supramolecular Chemistry 1, no. 2 (1993): 111–18. http://dx.doi.org/10.1080/10610279308040656.
Full textKIKUCHI, K., R. HANNAK, M. GUO, A. KIRBY, and D. HILVERT. "Toward bifunctional antibody catalysis." Bioorganic & Medicinal Chemistry 14, no. 18 (2006): 6189–96. http://dx.doi.org/10.1016/j.bmc.2006.05.071.
Full textJahan, Maryam, Satoshi Tominaka та Joel Henzie. "Phase pure α-Mn2O3 prisms and their bifunctional electrocatalytic activity in oxygen evolution and reduction reactions". Dalton Transactions 45, № 46 (2016): 18494–501. http://dx.doi.org/10.1039/c6dt03158g.
Full textChen, Jianfeng, Xing Gong, Jianyu Li, et al. "Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction." Science 360, no. 6396 (2018): 1438–42. http://dx.doi.org/10.1126/science.aat4210.
Full textUdaya, V., S. Rao, and Robert J. Gormley. "Bifunctional catalysis in syngas conversions." Catalysis Today 6, no. 3 (1990): 207–34. http://dx.doi.org/10.1016/0920-5861(90)85003-7.
Full textRoessner, Frank, and Ulf Roland. "Hydrogen spillover in bifunctional catalysis." Journal of Molecular Catalysis A: Chemical 112, no. 3 (1996): 401–12. http://dx.doi.org/10.1016/1381-1169(96)00180-x.
Full textTan, Kian L., Xixi Sun, and Amanda D. Worthy. "ChemInform Abstract: Scaffolding Catalysis: Expanding the Repertoire of Bifunctional Catalysts." ChemInform 43, no. 16 (2012): no. http://dx.doi.org/10.1002/chin.201216240.
Full textBing, Zezheng, Yuanyuan Gao, Zhongyi Liu, and Qiaoyun Liu. "The Improved Cooperation of Metal–Acid Catalysis Using Encapsulation and P Doping Enhances the Preparation of 3-Acetyl-1-Propanol." Catalysts 15, no. 4 (2025): 390. https://doi.org/10.3390/catal15040390.
Full textWu, Jia-Hong, Jianke Pan, and Tianli Wang. "Dipeptide-Based Phosphonium Salt Catalysis: Application to Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines." Synlett 30, no. 19 (2019): 2101–6. http://dx.doi.org/10.1055/s-0039-1690192.
Full textCheng, Hengxu, Haojie Sun, Meizhen Dai, et al. "Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity." Molecules 29, no. 23 (2024): 5721. https://doi.org/10.3390/molecules29235721.
Full textArtús Suàrez, Lluís, David Balcells, and Ainara Nova. "Computational Studies on the Mechanisms for Deaminative Amide Hydrogenation by Homogeneous Bifunctional Catalysts." Topics in Catalysis 65, no. 1-4 (2021): 82–95. http://dx.doi.org/10.1007/s11244-021-01542-w.
Full textTANABE, K. "ChemInform Abstract: Acid-Base Bifunctional Catalysis." ChemInform 26, no. 31 (2010): no. http://dx.doi.org/10.1002/chin.199531290.
Full textAndersen, Mie, Andrew J. Medford, Jens K. Nørskov, and Karsten Reuter. "Analyzing the Case for Bifunctional Catalysis." Angewandte Chemie International Edition 55, no. 17 (2016): 5210–14. http://dx.doi.org/10.1002/anie.201601049.
Full textAndersen, Mie, Andrew J. Medford, Jens K. Nørskov, and Karsten Reuter. "Analyzing the Case for Bifunctional Catalysis." Angewandte Chemie 128, no. 17 (2016): 5296–300. http://dx.doi.org/10.1002/ange.201601049.
Full textCarlier, Samuel, Walid Baaziz, Ovidiu Ersen, and Sophie Hermans. "Synergy between Sulfonic Functions and Ru Nanoparticles Supported on Activated Carbon for the Valorization of Cellulose into Sorbitol." Catalysts 13, no. 6 (2023): 963. http://dx.doi.org/10.3390/catal13060963.
Full textMoczulski, Marek, Piotr Drelich, and Łukasz Albrecht. "Bifunctional catalysis in the stereocontrolled synthesis of tetrahydro-1,2-oxazines." Organic & Biomolecular Chemistry 16, no. 3 (2018): 376–79. http://dx.doi.org/10.1039/c7ob02894f.
Full textZhang, Wenfeng, Hanying Gu, Zhen Li, et al. "General acid and base bifunctional graphene oxide for cooperative catalysis." J. Mater. Chem. A 2, no. 26 (2014): 10239–43. http://dx.doi.org/10.1039/c4ta01446d.
Full textKano, Taichi, and Keiji Maruoka. "Design of chiral bifunctional secondary amine catalysts for asymmetric enamine catalysis." Chemical Communications, no. 43 (2008): 5465. http://dx.doi.org/10.1039/b809301f.
Full textZhang, Rui, Han Wu, Jiantao Li, et al. "Waste Incineration Fly Ash-Based Bifunctional Catalyst for Upgrading Glucose to Levulinic Acid." Catalysts 15, no. 4 (2025): 402. https://doi.org/10.3390/catal15040402.
Full textDeng, Jingyuan, Manussada Ratanasak, Yuma Sako, et al. "Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO2: metal–ligand cooperative catalysis." Chemical Science 11, no. 22 (2020): 5669–75. http://dx.doi.org/10.1039/d0sc01609h.
Full textLiu, Chang, and Zhongwen Liu. "Perspective on CO2 Hydrogenation for Dimethyl Ether Economy." Catalysts 12, no. 11 (2022): 1375. http://dx.doi.org/10.3390/catal12111375.
Full textHu, Hao, Yuhua Xie, Farhad M. D. Kazim, et al. "Synergetic FeCo nanorods embedded in nitrogen-doped carbon nanotubes with abundant metal–NCNT heterointerfaces as efficient air electrocatalysts for rechargeable zinc–air batteries." Sustainable Energy & Fuels 4, no. 10 (2020): 5188–94. http://dx.doi.org/10.1039/d0se01023e.
Full textZhang, Jing, Yong S. Choi, and Brent H. Shanks. "Catalytic deoxygenation during cellulose fast pyrolysis using acid–base bifunctional catalysis." Catalysis Science & Technology 6, no. 20 (2016): 7468–76. http://dx.doi.org/10.1039/c6cy01307d.
Full textJaved, Fahed, Muhammad Rizwan, Maryam Asif, et al. "Intensification of Biodiesel Processing from Waste Cooking Oil, Exploiting Cooperative Microbubble and Bifunctional Metallic Heterogeneous Catalysis." Bioengineering 9, no. 10 (2022): 533. http://dx.doi.org/10.3390/bioengineering9100533.
Full textZhou, Li, Datai Liu, Haiyi Lan, et al. "The origin of different driving forces between O–H/N–H functional groups in metal ligand cooperation: mechanistic insight into Mn(i) catalysed transfer hydrogenation." Catalysis Science & Technology 10, no. 1 (2020): 169–79. http://dx.doi.org/10.1039/c9cy02112d.
Full textWang, Yong, Xin Guan, Fangyan Chen, et al. "Noncovalent immobilization of pyrene-terminated hyperbranched triazole-based polymeric ionic liquid onto graphene for highly active and recyclable catalysis of CO2/epoxide cycloaddition." Catalysis Science & Technology 7, no. 18 (2017): 4173–81. http://dx.doi.org/10.1039/c7cy01259d.
Full textVera, Elizabeth, Brenda Alcántar-Vázquez, Yuhua Duan, and Heriberto Pfeiffer. "Bifunctional application of sodium cobaltate as a catalyst and captor through CO oxidation and subsequent CO2 chemisorption processes." RSC Advances 6, no. 3 (2016): 2162–70. http://dx.doi.org/10.1039/c5ra22749f.
Full textMcGuirk, C. Michael, Jose Mendez-Arroyo, Andrea I. d'Aquino, Charlotte L. Stern, Yuan Liu, and Chad A. Mirkin. "A concerted two-prong approach to the in situ allosteric regulation of bifunctional catalysis." Chemical Science 7, no. 11 (2016): 6674–83. http://dx.doi.org/10.1039/c6sc01454b.
Full textLi, Yuxuan, Xingbo Ge, Leidanyang Wang, Jia Liu, Yong Wang, and Lanxiang Feng. "A free standing porous Co/Mo architecture as a robust bifunctional catalyst toward water splitting." RSC Advances 7, no. 19 (2017): 11568–71. http://dx.doi.org/10.1039/c7ra00007c.
Full textLu, Linfang, Zhiqiang Wang, Shihui Zou, et al. "Ligand-mediated bifunctional catalysis for enhanced oxygen reduction and methanol oxidation tolerance in fuel cells." Journal of Materials Chemistry A 6, no. 39 (2018): 18884–90. http://dx.doi.org/10.1039/c8ta06071a.
Full textPandey, Jay, Bin Hua, Wesley Ng, et al. "Developing hierarchically porous MnOx/NC hybrid nanorods for oxygen reduction and evolution catalysis." Green Chemistry 19, no. 12 (2017): 2793–97. http://dx.doi.org/10.1039/c7gc00147a.
Full textNoyori, Ryoji, Christian A. Sandoval, Kilian Muñiz, and Takeshi Ohkuma. "Metal–ligand bifunctional catalysis for asymmetric hydrogenation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1829 (2005): 901–12. http://dx.doi.org/10.1098/rsta.2004.1536.
Full textLi, Yang, Qingshan Zhao, Junyi Ji, Guoliang Zhang, Fengbao Zhang, and Xiaobin Fan. "Cooperative catalysis by acid–base bifunctional graphene." RSC Advances 3, no. 33 (2013): 13655. http://dx.doi.org/10.1039/c3ra41970c.
Full textGuisnet, Michel. "“Ideal” bifunctional catalysis over Pt-acid zeolites." Catalysis Today 218-219 (December 2013): 123–34. http://dx.doi.org/10.1016/j.cattod.2013.04.028.
Full textSetoyama, Tohru. "Acid–base bifunctional catalysis: An industrial viewpoint." Catalysis Today 116, no. 2 (2006): 250–62. http://dx.doi.org/10.1016/j.cattod.2006.01.031.
Full textHerrmann, J. M. "From catalysis by metals to bifunctional photocatalysis." Topics in Catalysis 39, no. 1-2 (2006): 3–10. http://dx.doi.org/10.1007/s11244-006-0032-7.
Full textMorris, Robert H. "Iron Group Hydrides in Noyori Bifunctional Catalysis." Chemical Record 16, no. 6 (2016): 2644–58. http://dx.doi.org/10.1002/tcr.201600080.
Full textLeeuwen, Piet W. N. M., Israel Cano, and Zoraida Freixa. "Secondary Phosphine Oxides: Bifunctional Ligands in Catalysis." ChemCatChem 12, no. 16 (2020): 3982–94. http://dx.doi.org/10.1002/cctc.202000493.
Full textLiebig, Timo, Michael Abbass, and Ulrich Lüning. "Concave Pyridines for Bifunctional Acid–Base Catalysis." European Journal of Organic Chemistry 2007, no. 6 (2007): 972–80. http://dx.doi.org/10.1002/ejoc.200600842.
Full textSun, Jia, Ning Wang, Zhaozhong Qiu, Lixin Xing, and Lei Du. "Recent Progress of Non-Noble Metal Catalysts for Oxygen Electrode in Zn-Air Batteries: A Mini Review." Catalysts 12, no. 8 (2022): 843. http://dx.doi.org/10.3390/catal12080843.
Full textZhang, Wen-Hui, Yan-you Zhou, Xue-Wen He, Yi Gong, Xiong-Li Liu, and Ying Zhou. "An asymmetric iminium ion catalysis-enabled cascade cycloaddition reaction of chromone-oxindole synthons with enals: construction of a spirooxindole–hexahydroxanthone framework." Organic & Biomolecular Chemistry 17, no. 36 (2019): 8369–73. http://dx.doi.org/10.1039/c9ob01670h.
Full textZhou, Wei, Kang Cheng, Jincan Kang, et al. "New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels." Chemical Society Reviews 48, no. 12 (2019): 3193–228. http://dx.doi.org/10.1039/c8cs00502h.
Full textAl-Naji, Majd, Joost Van Aelst, Yuhe Liao та ін. "Correction: Pentanoic acid from γ-valerolactone and formic acid using bifunctional catalysis". Green Chemistry 22, № 2 (2020): 564. http://dx.doi.org/10.1039/c9gc90122a.
Full text