Journal articles on the topic 'Buried pipe detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Buried pipe detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kavi, Jonas, and Udaya B. Halabe. "Detection of Buried Pipelines Transporting Hot Fluids Using Infrared Thermography." Journal of Multidisciplinary Engineering Science and Technology 5, no. 11 (2018): 9060–67. https://doi.org/10.5281/zenodo.2597610.
Full textInoue, Koki, Shuichiro Ogake, Kazuma Kobayashi, et al. "An AR Application for the Efficient Construction of Water Pipes Buried Underground." Electronics 12, no. 12 (2023): 2634. http://dx.doi.org/10.3390/electronics12122634.
Full textLiu, Habibi, Chai, Wang, and Chen. "A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique when Locating Gas Pipelines." Energies 12, no. 19 (2019): 3707. http://dx.doi.org/10.3390/en12193707.
Full textWasa, Y., Y. Kondo, F. Yamauchi, and Y. Miyamoto. "Magnetic Field Analysis in Buried Pipe Detection." IEEE Translation Journal on Magnetics in Japan 2, no. 12 (1987): 1120–21. http://dx.doi.org/10.1109/tjmj.1987.4549710.
Full textThiesson, Julien, Alain Tabbagh, Michel Dabas, and Antoine Chevalier. "Characterization of buried cables and pipes using electromagnetic induction loop-loop frequency-domain devices." GEOPHYSICS 83, no. 1 (2018): E1—E10. http://dx.doi.org/10.1190/geo2016-0476.1.
Full textXu, Chuandi, Wanze Li, and Fei Lv. "Study on the Relationship Between Thickness Measurement and Strength Defect of Buried Pipeline." Journal of Physics: Conference Series 2428, no. 1 (2023): 012033. http://dx.doi.org/10.1088/1742-6596/2428/1/012033.
Full textChen, Bo, Jiao Lan, Liang Ge, et al. "Simulation Research on Acoustic Detection Technology of Buried PE Pipes." International Journal of Circuits, Systems and Signal Processing 15 (April 23, 2021): 400–409. http://dx.doi.org/10.46300/9106.2021.15.44.
Full textJazayeri, Sajad, Anja Klotzsche, and Sarah Kruse. "Improving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion." GEOPHYSICS 83, no. 4 (2018): H27—H41. http://dx.doi.org/10.1190/geo2017-0617.1.
Full textLin, Ting, Zhichi Wang, Bin Hu, Yubo Ji, and Xiaoyu Liang. "Simulation and experimental study of buried natural gas pipeline leak detection based on sound source characteristics." Thermal Science, no. 00 (2023): 102. http://dx.doi.org/10.2298/tsci230313102l.
Full textKaziTani, Nabil. "A Combined Probabilistic Approach for Natural Hazards Assessment of Soil-Sewer Pipes (S-SP) Systems." E3S Web of Conferences 150 (2020): 03019. http://dx.doi.org/10.1051/e3sconf/202015003019.
Full textAtojunere, Eganoosi Esme, and Godspower Elvis Amiegbe. "AUTOMATED LEAK AND WATER QUALITY DETECTION SYSTEM FOR PIPED WATER SUPPLY." Malaysian Journal of Science 43, no. 3 (2024): 98–108. http://dx.doi.org/10.22452/mjs.vol43no3.11.
Full textYu, Yicheng, Kirill Horoshenkov, Rob Worley, and Sean Anderson. "Robotic sensing for buried pipes with sound waves." Journal of the Acoustical Society of America 154, no. 4_supplement (2023): A68. http://dx.doi.org/10.1121/10.0022823.
Full textScussel, O., J. M. Muggleton, M. Karimi, et al. "On the Significance of Parameter Uncertainties for Prediction of Leak Noise Wave Speed in Buried Pipes." Journal of Physics: Conference Series 2909, no. 1 (2024): 012009. https://doi.org/10.1088/1742-6596/2909/1/012009.
Full textB. J. Allred, N. R. Fausey, L. Peters, et al. "DETECTION OF BURIED AGRICULTURAL DRAINAGE PIPE WITH GEOPHYSICAL METHODS." Applied Engineering in Agriculture 20, no. 3 (2004): 307–18. http://dx.doi.org/10.13031/2013.16067.
Full textSinha, Sunil K., and Paul W. Fieguth. "Automated detection of cracks in buried concrete pipe images." Automation in Construction 15, no. 1 (2006): 58–72. http://dx.doi.org/10.1016/j.autcon.2005.02.006.
Full textGozum, Murat M., Saber Nasraoui, Georgios Grigoropoulos, Moez Louati, and Mohamed S. Ghidaoui. "A noise-based high-resolution time-reversal method for acoustic defect localization in water pipes." Journal of the Acoustical Society of America 152, no. 6 (2022): 3373–83. http://dx.doi.org/10.1121/10.0016502.
Full textLi, Jingxia, Yang Liu, Hang Xu, Bingjie Wang, Li Liu, and Xinpeng Chen. "A High Signal–Noise Ratio UWB Radar for Buried Pipe Location Using Golay Complementary Sequences." Applied Sciences 9, no. 23 (2019): 5090. http://dx.doi.org/10.3390/app9235090.
Full textPedram, Seyed Kamran, Tat-Hean Gan, and Mahdieh Ghafourian. "Improved Defect Detection of Guided Wave Testing Using Split-Spectrum Processing." Sensors 20, no. 17 (2020): 4759. http://dx.doi.org/10.3390/s20174759.
Full textZhang, Hang, Na Lu, Can Cui, and Shuqiang Du. "Vibration response analysis of free-spanning pipeline based on inner pipe excitation signal." Advances in Mechanical Engineering 10, no. 11 (2018): 168781401881466. http://dx.doi.org/10.1177/1687814018814660.
Full textIyer, Shivprakash, and Sunil K. Sinha. "Segmentation of Pipe Images for Crack Detection in Buried Sewers." Computer-Aided Civil and Infrastructure Engineering 21, no. 6 (2006): 395–410. http://dx.doi.org/10.1111/j.1467-8667.2006.00445.x.
Full textLiu, Ying, Daryoush Habibi, Douglas Chai, et al. "A Comprehensive Review of Acoustic Methods for Locating Underground Pipelines." Applied Sciences 10, no. 3 (2020): 1031. http://dx.doi.org/10.3390/app10031031.
Full textKöpke, U. G. "Transverse Vibration of Buried Pipelines Due to Internal Excitation at a Point." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 207, no. 1 (1993): 41–59. http://dx.doi.org/10.1243/pime_proc_1993_207_206_02.
Full textF. Senin, S., M. S. Jaafar, and R. Hamid. "Locating Underground Water Pipe Leakages Via Interpretation of Ground Penetrating Radar Signals." International Journal of Engineering & Technology 8, no. 1.2 (2019): 72077. http://dx.doi.org/10.14419/ijet.v8i1.2.24875.
Full textGamba, P., and V. Belotti. "Two fast buried pipe detection schemes in Ground Penetrating Radar images." International Journal of Remote Sensing 24, no. 12 (2003): 2467–84. http://dx.doi.org/10.1080/0143116021000050673.
Full textWan Hamat, Wan Sofian, Mohd Fairusham Ghazali, and Gigih Priyandoko. "Ultrasonic Guided Wave Method For Crack Detection In Buried Plastic Pipe." MATEC Web of Conferences 74 (2016): 00012. http://dx.doi.org/10.1051/matecconf/20167400012.
Full textKavi, Jonas, and Udaya B. Halabe. "An Approach for Easy Detection of Buried FRP Composite/Non-Metallic Pipes Using Ground-Penetrating Radar." Sensors 23, no. 20 (2023): 8465. http://dx.doi.org/10.3390/s23208465.
Full textWong, Leslie, Ravin Deo, Suranji Rathnayaka, et al. "Leak Detection in Water Pipes Using Submersible Optical Optic-Based Pressure Sensor." Sensors 18, no. 12 (2018): 4192. http://dx.doi.org/10.3390/s18124192.
Full textSharma, Prabhat, Bambam Kumar, and Dharmendra Singh. "NOVEL ADAPTIVE BURIED NONMETALLIC PIPE CRACK DETECTION ALGORITHM FOR GROUND PENETRATING RADAR." Progress In Electromagnetics Research M 65 (2018): 79–90. http://dx.doi.org/10.2528/pierm17101002.
Full textNi, Sheng-Huoo, Yan-Hong Huang, Kuo-Feng Lo, and Da-Ci Lin. "Buried pipe detection by ground penetrating radar using the discrete wavelet transform." Computers and Geotechnics 37, no. 4 (2010): 440–48. http://dx.doi.org/10.1016/j.compgeo.2010.01.003.
Full textKim, Min-Gi, Hui-Yeon No, Hyeong-Gi Kim, et al. "Comparison of Detection Results Based on Buried Pipe Coating Flaw Measurement Environments." JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING 43, no. 5 (2023): 398–408. http://dx.doi.org/10.7779/jksnt.2023.43.5.398.
Full textMeng, Xu, Zhaogang Huang, Xin Deng, et al. "Leakage detection and localization of buried water pipe using ground penetrating radar." Measurement 254 (October 2025): 117902. https://doi.org/10.1016/j.measurement.2025.117902.
Full textOh, Se-Beom, Yong-Moo Cheong, Deok-Hyun Lee, and Kyung-Mo Kim. "Magnetostrictive Guided Wave Technique Verification for Detection and Monitoring Defects in the Pipe Weld." Materials 12, no. 6 (2019): 867. http://dx.doi.org/10.3390/ma12060867.
Full textPerpar, Matjaž, and Zlatko Rek. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels." Energies 14, no. 18 (2021): 5712. http://dx.doi.org/10.3390/en14185712.
Full textMatos, P. H., J. M. Muggleton, M. J. Brennan, et al. "Enhancing Leak Location in Buried Water Pipes using Array Signal Processing Techniques: the Effect of Wave Velocity Variation." Journal of Physics: Conference Series 2647, no. 8 (2024): 082011. http://dx.doi.org/10.1088/1742-6596/2647/8/082011.
Full textLi, Xinze, Qingbai Wu, Huijun Jin, and Wei Kan. "A New Stress Monitoring Method for Mechanical State of Buried Steel Pipelines under Geological Hazards." Advances in Materials Science and Engineering 2022 (March 24, 2022): 1–14. http://dx.doi.org/10.1155/2022/4498458.
Full textKavi, Jonas, Udaya B. Halabe, and Hota V. S. GangaRao. "Detection of Buried FRP Composite Pipes Using Ground Penetrating Radar." Journal of Multidisciplinary Engineering Science and Technology (JMEST) 6, no. 7 (2020): 10479–84. https://doi.org/10.5281/zenodo.3766364.
Full textAndersen, Bo A. "Increased safety and improved operation of pipelines with integrated condition sensing in flexible risers and flowlines." APPEA Journal 54, no. 1 (2014): 295. http://dx.doi.org/10.1071/aj13029.
Full textYao, Jing, Chengming Hao, Xiaosen Xiang, Shuli Wang, Shiqing Huang, and Yongchao Rao. "Numerical simulation of the impact of casing on the buried metal pipeline cathodic protection potential." Journal of Physics: Conference Series 2834, no. 1 (2024): 012204. http://dx.doi.org/10.1088/1742-6596/2834/1/012204.
Full textYu, Yicheng, Rob Worley, Sean Anderson, and Kirill V. Horoshenkov. "Microphone array analysis for simultaneous condition detection, localization, and classification in a pipe." Journal of the Acoustical Society of America 153, no. 1 (2023): 367–83. http://dx.doi.org/10.1121/10.0016856.
Full textIftimie, N., Gabriel Silviu Dobrescu, and A. Savin. "Imaging Subsurface Water Pipe Using GPR and Evanescent Waves: Experimental and Simulations Data." Applied Mechanics and Materials 772 (July 2015): 359–64. http://dx.doi.org/10.4028/www.scientific.net/amm.772.359.
Full textEluwole, Akinola, Odunayo Emmanuel Bamidele, Akindeji Opeyemi Fajana, et al. "Remote Detection of Leakages from a Compromised Buried Water Supply Pipe through Geophysical Measurements." ABUAD International Journal of Natural and Applied Sciences 4, no. 1 (2024): 27–32. http://dx.doi.org/10.53982/aijnas.2024.0401.04-j.
Full textHe, Tengjiao, Jing Tang, Jun Liao, Lujie Chen, Jian Tang, and Guoqiang Xia. "Experimental Study on the Quantitative Relationship between the Non-contact Magnetic Signal and Detection Height of Ferromagnetic Pipelines." Journal of Physics: Conference Series 2694, no. 1 (2024): 012046. http://dx.doi.org/10.1088/1742-6596/2694/1/012046.
Full textKim, Min-Soo, and Sang-Kwon Lee. "Detection of leak acoustic signal in buried gas pipe based on the time–frequency analysis." Journal of Loss Prevention in the Process Industries 22, no. 6 (2009): 990–94. http://dx.doi.org/10.1016/j.jlp.2008.08.009.
Full textLi, Hui, Liang He, Hua Li, and Deyuan Li. "Simulation of defect detection for the buried petroleum pipe by the X-ray backscatter imaging." Applied Radiation and Isotopes 207 (May 2024): 111278. http://dx.doi.org/10.1016/j.apradiso.2024.111278.
Full textYang, Xuan, Fuming Wang, Xiang Yu, and Shaohui Li. "Numerical and Experimental Study on Propagation Attenuation of Leakage Vibration Acceleration Signal of the Buried Water Pipe." Sustainability 14, no. 23 (2022): 16071. http://dx.doi.org/10.3390/su142316071.
Full textMahal, Houman, Kai Yang, and Asoke Nandi. "Detection of Defects Using Spatial Variances of Guided-Wave Modes in Testing of Pipes." Applied Sciences 8, no. 12 (2018): 2378. http://dx.doi.org/10.3390/app8122378.
Full textMa, Baolong, Ruizhen Gao, Jingjun Zhang, and Xinmin Zhu. "A YOLOX-Based Automatic Monitoring Approach of Broken Wires in Prestressed Concrete Cylinder Pipe Using Fiber-Optic Distributed Acoustic Sensors." Sensors 23, no. 4 (2023): 2090. http://dx.doi.org/10.3390/s23042090.
Full textLei, Ming Feng, Li Min Peng, and Cheng Hua Shi. "Whole Space Comprehensive Advanced Geological Forecast Technique in Shallow Buried Section of Tunnel." Applied Mechanics and Materials 170-173 (May 2012): 1211–17. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.1211.
Full textGrace, Robert A. "Outfall Inspections, Token Repairs, and Major Remedial Works." Marine Technology Society Journal 41, no. 2 (2007): 4–11. http://dx.doi.org/10.4031/002533207787442222.
Full textMendoza, Rosendo, Carlos Araque-Perez, Bruna Marinho, Javier Rey, and Mari Carmen Hidalgo. "Processing GPR Surveys in Civil Engineering to Locate Buried Structures in Highly Conductive Subsoils." Remote Sensing 15, no. 16 (2023): 4019. http://dx.doi.org/10.3390/rs15164019.
Full text