To see the other types of publications on this topic, follow the link: Butanetriol.

Journal articles on the topic 'Butanetriol'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Butanetriol.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Burgé, G., A. L. Flourat, B. Pollet, H. E. Spinnler, and F. Allais. "3-Hydroxypropionaldehyde (3-HPA) quantification by HPLC using a synthetic acrolein-free 3-hydroxypropionaldehyde system as analytical standard." RSC Advances 5, no. 112 (2015): 92619–27. http://dx.doi.org/10.1039/c5ra18274c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Chun, Travis B. Meador, Wolf Dummann, and Kai-Uwe Hinrichs. "Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments." Rapid Communications in Mass Spectrometry 28 (December 27, 2013): 332–38. https://doi.org/10.1002/rcm.6792.

Full text
Abstract:
RATIONALE: Glycerol serves as the principal backbone moiety bound to various acyl/alkyl chains for membrane lipids of <em>Eukarya</em>, <em>Bacteria</em>, and <em>Archaea</em>. In this study, we report a suite of unusual tetraether lipids in which one of the two conventional glycerol backbones is substituted by butanetriol or pentanetriol. METHODS: Identification of these lipids was achieved via diagnostic fragments and their expected acetylation products using liquid chromatography/mass spectrometry (LC/MS), and their diagnostic ether cleavage products using gas chromatography/mass spectromet
APA, Harvard, Vancouver, ISO, and other styles
3

Ren, Tan, and Dexi Liu. "Synthesis of cationic lipids from 1,2,4-butanetriol." Tetrahedron Letters 40, no. 2 (1999): 209–12. http://dx.doi.org/10.1016/s0040-4039(98)02381-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Lei, Fan Yang, Hongbing Sun, et al. "Synthetic pathway optimization for improved 1,2,4-butanetriol production." Journal of Industrial Microbiology & Biotechnology 43, no. 1 (2015): 67–78. http://dx.doi.org/10.1007/s10295-015-1693-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Becker, Kevin W., Felix J. Elling, Marcos Y. Yoshinaga, Andrea Söllinger, Tim Urich, and Kai-Uwe Hinrichs. "Unusual Butane- and Pentanetriol-Based Tetraether Lipids in Methanomassiliicoccus luminyensis, a Representative of the Seventh Order of Methanogens." Applied and Environmental Microbiology 82, no. 15 (2016): 4505–16. http://dx.doi.org/10.1128/aem.00772-16.

Full text
Abstract:
ABSTRACTA new clade of archaea has recently been proposed to constitute the seventh methanogenic order, theMethanomassiliicoccales, which is related to theThermoplasmatalesand the uncultivated archaeal clades deep-sea hydrothermal ventEuryarchaeotagroup 2 and marine group IIEuryarchaeotabut only distantly related to other methanogens. In this study, we investigated the membrane lipid composition ofMethanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory ofM. luminyensiscomprises a unique assemblage of novel lipids as well as lipids otherwis
APA, Harvard, Vancouver, ISO, and other styles
6

Coffinet, Sarah, Travis B. Meador, Lukas Mühlena, et al. "Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)." Biogeosciences 17, no. 2 (2020): 317–30. http://dx.doi.org/10.5194/bg-17-317-2020.

Full text
Abstract:
Abstract. Butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs) are membrane lipids, recently discovered in sedimentary environments and in the methanogenic archaeon Methanomassiliicoccus luminyensis. They possess an unusual structure, which challenges fundamental assumptions in lipid biochemistry. Indeed, they bear a butanetriol or a pentanetriol backbone instead of a glycerol at one end of their core structure. In this study, we unambiguously located the additional methyl group of the BDGT compound on the C3 carbon of the lipid backbone via high-field nuclear magnetic r
APA, Harvard, Vancouver, ISO, and other styles
7

Niu, Wei, Mapitso N. Molefe, and J. W. Frost. "Microbial Synthesis of the Energetic Material Precursor 1,2,4-Butanetriol." Journal of the American Chemical Society 125, no. 43 (2003): 12998–99. http://dx.doi.org/10.1021/ja036391+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ren, Tan, and Dexi Liu. "ChemInform Abstract: Synthesis of Cationic Lipids from 1,2,4-Butanetriol." ChemInform 30, no. 13 (2010): no. http://dx.doi.org/10.1002/chin.199913267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abdel-Ghany, Salah E., Irene Day, Adam L. Heuberger, Corey D. Broeckling, and Anireddy S. N. Reddy. "Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes." Metabolic Engineering 20 (November 2013): 109–20. http://dx.doi.org/10.1016/j.ymben.2013.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Parr, Tim, and Donna Hanson-Parr. "Cyclotetramethylene tetranitramine/glycidyl azide polymer/butanetriol trinitrate propellant flame structure." Combustion and Flame 137, no. 1-2 (2004): 38–49. http://dx.doi.org/10.1016/j.combustflame.2004.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Borsuk, Katarzyna, Jadwiga Frelek, Robert ?ysek, Zofia Urba?czyk-Lipkowska, and Marek Chmielewski. "Six-membered cyclic sulfites derived from glucofuranose and 1,2,4-butanetriol." Chirality 13, no. 9 (2001): 533–40. http://dx.doi.org/10.1002/chir.1173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Jingyun, Yuanyuan Xia, Bo Wei, Wei Shen, Haiquan Yang, and Xianzhong Chen. "Metabolic engineering of Candida tropicalis for efficient 1,2,4-butanetriol production." Biochemical and Biophysical Research Communications 710 (May 2024): 149876. http://dx.doi.org/10.1016/j.bbrc.2024.149876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Luk, Kin-Chun, and Chung-Chen Wei. "Preparation of Derivtives of (R)-1,2,4-Butanetriol from L-Ascorbic Acid." Synthesis 1988, no. 03 (1988): 226–28. http://dx.doi.org/10.1055/s-1988-27521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Helmke, Hendrik, and Dieter Hoppe. "Chelation-Directed Asymmetric Lithiation and C-Substitution of 1,2,4-Butanetriol Acetonide." Synlett 1995, no. 09 (1995): 978–80. http://dx.doi.org/10.1055/s-1995-5115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Callant, Dominique, Dirk Stanssens, and Johannes G. de Vries. "(S)-3,3-dimethyl-1,2,4-butanetriol as ligand for titanium catalysed asymmetric silylcyanation." Tetrahedron: Asymmetry 4, no. 2 (1993): 185–88. http://dx.doi.org/10.1016/s0957-4166(00)82333-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Alberto, R., G. Anderegg, and K. May. "Synthesis of Tc(IV) alcoholato complexes with methanol, ethyleneglycol and 1,2,4-butanetriol." Polyhedron 5, no. 12 (1986): 2107–8. http://dx.doi.org/10.1016/s0277-5387(00)87146-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yamada-Onodera, Keiko, Akihiro Norimoto, Naoki Kawada, Rika Furuya, Hiroaki Yamamoto, and Yoshiki Tani. "Production of optically active 1,2,4-butanetriol from corresponding racemate by Microbial stereoinversion." Journal of Bioscience and Bioengineering 103, no. 5 (2007): 494–96. http://dx.doi.org/10.1263/jbb.103.494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ali, Tehane, Tiffany M. Pham, Kou-San Ju, and Harinantenaina L. Rakotondraibe. "Ent-homocyclopiamine B, a Prenylated Indole Alkaloid of Biogenetic Interest from the Endophytic Fungus Penicillium concentricum." Molecules 24, no. 2 (2019): 218. http://dx.doi.org/10.3390/molecules24020218.

Full text
Abstract:
Ent-homocyclopiamine B (1), a new prenylated indole alkaloid bearing an alicyclic nitro group along with 2-methylbutane-1,2,4-triol (2) were isolated from an endophytic fungus Penicillium concentricum of the liverwort Trichocolea tomentella (Trichocoleaceae). The structure of 1 was elucidated through extensive spectroscopic analyses and comparison with data reported for a structurally related nitro-bearing Penicillium metabolite, clopiamine C (3), which contain an indolizidine ring instead of the quinolizine ring in 1. The new compound, ent-homocyclopiamine B, exhibited slight growth inhibitio
APA, Harvard, Vancouver, ISO, and other styles
19

Mahmood, Adeem, Hamad Alkhathlan, Saima Parvez, Merajuddin Khan, and Sohail Shahzad. "Chelation-Assisted Substrate-Controlled Asymmetric Lithiation-Allylboration of Chiral Carbamate 1,2,4-Butanetriol Acetonide." Molecules 20, no. 6 (2015): 9890–905. http://dx.doi.org/10.3390/molecules20069890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tian, Mei, Shuang-jie Wu, Xiao-Wei Tian, et al. "Mesomorphic properties of chiral three-arm liquid crystals containing 1,2,4-butanetriol as core." Journal of Molecular Structure 1107 (March 2016): 202–13. http://dx.doi.org/10.1016/j.molstruc.2015.11.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Raskil’dina, G. Z., Yu G. Borisova, and S. S. Zlotskii. "Condensation of 1,2,4-Butanetriol with Carbonyl Compounds and Reactions of Hydroxyalkyl-1,3-dioxacyclanes." Russian Journal of General Chemistry 88, no. 8 (2018): 1601–5. http://dx.doi.org/10.1134/s107036321808008x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bamba, Takahiro, Takahiro Yukawa, Gregory Guirimand, et al. "Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering." Metabolic Engineering 56 (December 2019): 17–27. http://dx.doi.org/10.1016/j.ymben.2019.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Puri, Vishwajeet, and Chhitar M. Gupta. "Out-to-in translocation of butanetriol-containing phospholipid analogs in human erythrocyte membrane." Biochimica et Biophysica Acta (BBA) - Biomembranes 1373, no. 1 (1998): 59–66. http://dx.doi.org/10.1016/s0005-2736(98)00087-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Min-Hsien, and Chuan-Wen Liu. "Comparative simulation study of chemical synthesis of energetic (R)-1,2,4-butanetriol trinitrate plasticizer." International Journal of Quantum Chemistry 117, no. 16 (2017): e25402. http://dx.doi.org/10.1002/qua.25402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

HELMKE, H., and D. HOPPE. "ChemInform Abstract: Chelation-Directed Asymmetric Lithiation and C-Substitution of 1,2,4- Butanetriol Acetonide." ChemInform 27, no. 2 (2010): no. http://dx.doi.org/10.1002/chin.199602041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Valdehuesa, Kris Niño G., Huaiwei Liu, Kristine Rose M. Ramos, et al. "Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli." Process Biochemistry 49, no. 1 (2014): 25–32. http://dx.doi.org/10.1016/j.procbio.2013.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Zichen, Jingwei Kou, Yiping Cao, et al. "Transient modeling of column adsorption–desorption processes for pre-concentration of D-1,2,4-butanetriol." Separation and Purification Technology 275 (November 2021): 118674. http://dx.doi.org/10.1016/j.seppur.2021.118674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Meng, Qiyu, Jiemiao Yu, Liangrong Yang, Yanqing Li, Mo Xian, and Huizhou Liu. "Efficient recovery of bio-based 1,2,4-butanetriol by using boronic acid anionic reactive extraction." Separation and Purification Technology 255 (January 2021): 117728. http://dx.doi.org/10.1016/j.seppur.2020.117728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Arora, Ashish, and Chhitar M. Gupta. "Novel thermal phase transition behavior of phosphatidylcholine analogs containing 1,2,4-butanetriol as their backbone." Biochimica et Biophysica Acta (BBA) - Biomembranes 1324, no. 1 (1997): 61–68. http://dx.doi.org/10.1016/s0005-2736(96)00208-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Nannan, Jinbao Wang, Yang Zhang, and Haijun Gao. "Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli." Enzyme and Microbial Technology 93-94 (November 2016): 51–58. http://dx.doi.org/10.1016/j.enzmictec.2016.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kwon, Soon Ji, and Soo Y. Ko. "Orthogonally Protected, Enantiopuresyn-2-Amino-1,3,4-butanetriol: A General Building Block forsyn-Amino Alcohols." Journal of Organic Chemistry 66, no. 20 (2001): 6833–35. http://dx.doi.org/10.1021/jo015886j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

CALLANT, D., D. STANSSENS, and J. G. DE VRIES. "ChemInform Abstract: (R)-3,3-Dimethyl-1,2,4-butanetriol as Ligand for Titanium-Catalyzed Asymmetric Silylcyanation." ChemInform 24, no. 26 (2010): no. http://dx.doi.org/10.1002/chin.199326046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Feng, Xinjun, Wenjie Gao, Yifei Zhou, et al. "Coupled biosynthesis and esterification of 1,2,4‐butanetriol to simplify its separation from fermentation broth." Engineering in Life Sciences 19, no. 6 (2019): 444–51. http://dx.doi.org/10.1002/elsc.201800131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Van der Eycken, E., H. De Wilde, L. Deprez, and M. Vandewalle. "L-(S)-Erythrulose: The synthesis of (R)-1,2,4-butanetriol and of some related C4 chirons." Tetrahedron Letters 28, no. 40 (1987): 4759–60. http://dx.doi.org/10.1016/s0040-4039(00)96619-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jeong, Yu Ra, Ye Eun Kim, and Sang Hyup Lee. "Review on the Structural Features and Biological Activities of Reuterin." Yakhak Hoeji 66, no. 4 (2022): 169–74. http://dx.doi.org/10.17480/psk.2022.66.4.169.

Full text
Abstract:
Reuterin, one of the low-molecular organic compounds, contains an aldehyde and alcohol group with three carbons. It also possesses a certain degree of complexity in chemical structure because of the presence of aldehyde group. In an aqueous solution of reuterin, monomeric, hydrate, and dimeric forms coexist in equilibrium. Reuterin has diverse biological activities, including antibacterial, anticancer, antiinflammatory, and antifungal activities. Specifically, it displays stronger antibacterial activities and lower toxicities than the existing antimicrobial agents such as glutaraldehyde. Due t
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Yong, Zheng Mei, Ling-Chen Zhou, et al. "Pyrolysis reaction mechanisms of nitroglycerin (NG) and 1,2,4-butanetriol trinitrate (BTTN) using the ReaxFF force field." Computational and Theoretical Chemistry 1241 (November 2024): 114900. http://dx.doi.org/10.1016/j.comptc.2024.114900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hu, Shewei, Qian Gao, Xin Wang, et al. "Efficient production of d-1,2,4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts." Frontiers of Chemical Science and Engineering 12, no. 4 (2018): 772–79. http://dx.doi.org/10.1007/s11705-018-1731-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhu, Chun, Travis B. Meador, Wolf Dummann, and Kai-Uwe Hinrichs. "Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments." Rapid Communications in Mass Spectrometry 28, no. 4 (2013): 332–38. http://dx.doi.org/10.1002/rcm.6792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Xin, Nana Xu, Shewei Hu, et al. "d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli." Bioresource Technology 250 (February 2018): 406–12. http://dx.doi.org/10.1016/j.biortech.2017.11.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ji, Yangyang, Yunfeng Cui, Xiangtao Liu, et al. "Biocatalytic production of (S)-1,2,4-butanetriol from d-xylose by whole cells of engineered Escherichia coli." Molecular Catalysis 562 (June 2024): 114230. http://dx.doi.org/10.1016/j.mcat.2024.114230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Dang Quan, Huai Yun Zhang, Lin Lin Guo, and Kuan Peng. "Analysis of Biomedical Prospect of Leaves from Liriodendron Chinense (Hemsl.) Sarg by GC/MS." Key Engineering Materials 480-481 (June 2011): 1341–45. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.1341.

Full text
Abstract:
Liriodendron chinense (Hemsl.) Sarg (Chinese tulip tree) has a long history of utilization and plantation, but the chemical components of benzene/ethanol extractives of Liriodendron chinense (Hemsl.) Sarg leaves were unrevealed. The analytical result by method of GC/MS showed that the chemical components of benzene/ethanol extractives of freeze-dried Liriodendron chinense were identified as 55 constituent, and the main components are as: 2-Propenenitrile, 2-chloro- (13.75%), 1-Mercapto-2-heptadecanon (13.10 %), 1-Mercapto-2-heptadecanon (12.77%), Ethanol, 2-butoxy- (12.03%), 1-Docosanol (10.74
APA, Harvard, Vancouver, ISO, and other styles
42

Sagawa, Shoichi, Hiroyuki Abe, Yasunori Hase, and Takashi Inaba. "Catalytic Asymmetric Aminolysis of 3,5,8-Trioxabicyclo[5.1.0]octane Providing an Optically Pure 2-Amino-1,3,4-butanetriol Equivalent." Journal of Organic Chemistry 64, no. 13 (1999): 4962–65. http://dx.doi.org/10.1021/jo9900883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Romero, Carmen M., Manuel S. Páez, and Ingolf Lamprecht. "Enthalpies of dilution of aqueous solutions of n-butanol, butanediols, 1,2,4-butanetriol, and 1,2,3,4-butanetetrol at 298.15K." Thermochimica Acta 437, no. 1-2 (2005): 26–29. http://dx.doi.org/10.1016/j.tca.2005.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bañares, Angelo B., Kris Niño G. Valdehuesa, Kristine Rose M. Ramos, Grace M. Nisola, Won-Keun Lee, and Wook-Jin Chung. "Discovering a novel d-xylonate-responsive promoter: the PyjhI-driven genetic switch towards better 1,2,4-butanetriol production." Applied Microbiology and Biotechnology 103, no. 19 (2019): 8063–74. http://dx.doi.org/10.1007/s00253-019-10073-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Romero, Carmen M., and Manuel S. Páez. "Volumetric Properties of Aqueous Binary Mixtures of 1-Butanol, Butanediols, 1,2,4-Butanetriol and Butanetetrol at 298.15 K." Journal of Solution Chemistry 36, no. 2 (2007): 237–45. http://dx.doi.org/10.1007/s10953-006-9106-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yukawa, Takahiro, Takahiro Bamba, Gregory Guirimand, Mami Matsuda, Tomohisa Hasunuma, and Akihiko Kondo. "Optimization of 1,2,4‐butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance." Biotechnology and Bioengineering 118, no. 1 (2020): 175–85. http://dx.doi.org/10.1002/bit.27560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Yujun, Lin Chen, Antu Thomas, and An-Ping Zeng. "Development of a New 1,2,4-butanetriol Biosynthesis Pathway in an Engineered Homoserine-producing Strain of Escherichia coli." Synthetic Biology and Engineering 1, no. 1 (2023): 1–13. http://dx.doi.org/10.35534/sbe.2023.10007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Zhong Feng, Xian Yan Zhou, Feng Juan Wu, and Qing Zhi Ma. "GC/MS Analysis on Biomedical Resources of Extractives of Eucalyptus Leaves for Biomedical Engineering." Advanced Materials Research 129-131 (August 2010): 719–23. http://dx.doi.org/10.4028/www.scientific.net/amr.129-131.719.

Full text
Abstract:
To further utilize Eucalyptus leaves in biomedicine and put forward new ideas for biomedical manufacturing, the biomedical resources of extractives of Eucalyptus camaldulensis and Eucalyptus urophylla leaves were analyzed by GC/MS. The results showed that: 1) The main constituents of benzene/ethanol extractives in E. camaldulensis leaves were 1-butanol, 4-butoxy- (14.97%), 2-furancarboxaldehyde, 5-(hydroxym ethyl)- (12.16%), 1,2,3-benzenetriol (10.97%), d-allose(8.59%), 1,4,7,10,13,16-hexaoxanonadecane, 18-propyl-(6.82%), 1,1'-biphenyl, 2,4'- dimethyl- (6.21%), 1-benzoxiren-3-ol(5.58%), α-toco
APA, Harvard, Vancouver, ISO, and other styles
49

Valdehuesa, Kris Niño G., Won-Keun Lee, Kristine Rose M. Ramos, et al. "Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli." Bioprocess and Biosystems Engineering 38, no. 9 (2015): 1761–72. http://dx.doi.org/10.1007/s00449-015-1417-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kwon, Soon Ji, and Soo Y. Ko. "ChemInform Abstract: Orthogonally Protected, Enantiopure syn-2-Amino-1,3,4-butanetriol: A General Building Block for syn-Amino Alcohols." ChemInform 33, no. 11 (2010): no. http://dx.doi.org/10.1002/chin.200211061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!