Journal articles on the topic 'Calculation of strain energy release rate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Calculation of strain energy release rate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Jin Fang, and Qun Zhao. "Typical Calculation Method of Stress Intensity Factors and Crack Growth Criterions on Infinite Plate Containing Hole-Edge Cracks." Advanced Materials Research 568 (September 2012): 154–58. http://dx.doi.org/10.4028/www.scientific.net/amr.568.154.
Full textZheng, Weiling, and Christos Kassapoglou. "Energy method for the calculation of the energy release rate of delamination in composite beams." Journal of Composite Materials 53, no. 4 (2018): 425–43. http://dx.doi.org/10.1177/0021998318785952.
Full textLU, Zhiguo, Wenjun JU, Fuqiang GAO, et al. "A New Bursting Liability Evaluation Index for Coal –The Effective Elastic Strain Energy Release Rate." Energies 12, no. 19 (2019): 3734. http://dx.doi.org/10.3390/en12193734.
Full textCheng, Chen, and Shui Wan. "Based on ANSYS the Application of Virtual Crack Close Technique in the Calculation of Strain Energy Release Rate in Interface Crack." Applied Mechanics and Materials 178-181 (May 2012): 2444–50. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2444.
Full textLiu, Yinghonglin, Jiang Peng, Wei Li, Chang Yang, Ping Sun, and Xiaowei Yan. "Predicting the Delamination Mechanisms of Multidirectional Laminates Using the Energy Release Rate Obtained from AE Monitoring." Materials Evaluation 80, no. 1 (2022): 34–47. http://dx.doi.org/10.32548/10.32548/2022.me-04254.
Full textLiu, Yinghonglin, Peng Jiang, Wei Li, Chang Yang, Ping Sun, and Xiaowei Yan. "Predicting the Delamination Mechanisms of Multidirectional Laminates Using the Energy Release Rate Obtained from AE Monitoring." Materials Evaluation 80, no. 1 (2022): 34–47. http://dx.doi.org/10.32548/2022.me-04254.
Full textPandey, R. K., and C. T. Sun. "Calculating Strain Energy Release Rate in Cracked Orthotropic Beams." Journal of Thermoplastic Composite Materials 9, no. 4 (1996): 381–95. http://dx.doi.org/10.1177/089270579600900406.
Full textLeFort, P., H. G. deLorenzi, V. Kumar, and M. D. German. "Virtual Crack Extension Method for Energy Release Rate Calculations in Flawed Thin Shell Structures." Journal of Pressure Vessel Technology 109, no. 1 (1987): 101–7. http://dx.doi.org/10.1115/1.3264840.
Full textLong, Teng, Leyu Wang, James D. Lee, and Cing-Dao Kan. "Temperature Effects on Critical Energy Release Rate for Aluminum and Titanium Alloys." Symmetry 16, no. 2 (2024): 142. http://dx.doi.org/10.3390/sym16020142.
Full textFeng, WW, KL Reifsnider, GP Sendeckyj, et al. "A Simple Calculation of Strain-Energy Release Rate for a Nonlinear Double Cantilever Beam." Journal of Composites Technology and Research 7, no. 2 (1985): 64. http://dx.doi.org/10.1520/ctr10297j.
Full textTian, Z., and S. R. Swanson. "Effect of delamination face overlapping on strain energy release rate calculations." Composite Structures 21, no. 4 (1992): 195–204. http://dx.doi.org/10.1016/0263-8223(92)90048-h.
Full textMohamed Ben Ali, Amina, Salah Bouziane, and Hamoudi Bouzerd. "Computation of mode I strain energy release rate of symmetrical and asymmetrical sandwich structures using mixed finite element." Frattura ed Integrità Strutturale 15, no. 56 (2021): 229–39. http://dx.doi.org/10.3221/igf-esis.56.19.
Full textDahlan, Hendery, Meifal Rusli, Mulyadi Bur, and Rika Ampuh Hadiguna. "Kaji Teoritis Pengaruh Variasi Letak Retak Terhadap Perambatan Retak Dengan Pendekatan Double Cantilever Beam (DCB)." Jurnal Inovasi Rekayasa Mekanikal dan Termal 1, no. 2 (2023): 20–26. http://dx.doi.org/10.25077/inomet.1.2.20-26.2023.
Full textSun, C. T., and R. K. Pandey. "Improved method for calculating strain energy release rate based on beam theory." AIAA Journal 32, no. 1 (1994): 184–89. http://dx.doi.org/10.2514/3.11965.
Full textShokrieh, M. M., and A. Zeinedini. "A Novel Method for Calculation of Strain Energy Release Rate of Asymmetric Double Cantilever Laminated Composite Beams." Applied Composite Materials 21, no. 3 (2013): 399–415. http://dx.doi.org/10.1007/s10443-013-9328-5.
Full textRenard, Jacques, and Florence Roudolff. "Analytical and numerical calculation of strain energy release rate during delamination growth in a carbon epoxy laminate." Composites Science and Technology 42, no. 4 (1991): 305–16. http://dx.doi.org/10.1016/0266-3538(91)90059-x.
Full textDvornik, Maksim, and Elena Mikhailenko. "Strength Determination Based on the Results of Modeling the Crack Propagation in a Nanostructured Hard Alloy." Key Engineering Materials 806 (June 2019): 45–50. http://dx.doi.org/10.4028/www.scientific.net/kem.806.45.
Full textNaghinejad, M., and H. R. Ovesy. "Calculation of total energy release rate in post-local buckling delamination of composite laminates." Journal of Composite Materials 51, no. 5 (2016): 623–35. http://dx.doi.org/10.1177/0021998316651482.
Full textPelegri, Assimina A., and Diwakar N. Kedlaya. "On the Energy Release Rate of Fatigued Composites Subjected to Compressive Overloads." Journal of Engineering Materials and Technology 122, no. 4 (2000): 443–49. http://dx.doi.org/10.1115/1.1289140.
Full textJiao, J., C. K. Gurumurthy, E. J. Kramer, Y. Sha, C. Y. Hui, and P. Borgesen. "Measurement of Interfacial Fracture Toughness Under Combined Mechanical and Thermal Stresses." Journal of Electronic Packaging 120, no. 4 (1998): 349–53. http://dx.doi.org/10.1115/1.2792645.
Full textYin, Yanchun, Xingxue Tang, Qinwei Ma, Zhenan Li, and Wei Zhang. "Simulation Research on Energy Evolution and Supply Law of Rock–Coal System under the Influence of Stiffness." Sustainability 15, no. 2 (2023): 1335. http://dx.doi.org/10.3390/su15021335.
Full textWei, Y. T., Z. H. Tian, and X. W. Du. "A Finite Element Model for the Rolling Loss Prediction and Fracture Analysis of Radial Tires." Tire Science and Technology 27, no. 4 (1999): 250–76. http://dx.doi.org/10.2346/1.2135987.
Full textTODOROVIĆ, MARIJA, MATHIEU KOETSIER, NAĐA SIMOVIĆ, IVAN GLIŠOVIĆ, and MARKO PAVLOVIĆ. "DETERMINATION OF MODE I FRACTURE PROPERTIES OF EUROPEAN SPRUCE." Wood Research 68, no. 2 (2023): 334–47. http://dx.doi.org/10.37763/wr.1336-4561/68.2.334347.
Full textHao, Ruiqing, Yuguo Zhou, Lin Liao, Nathan Saye Teah, Wanwen Xue, and Zhiling Liao. "Study on Fracture Characteristics of Layered Sandstone under Asymmetric Loading." Materials 17, no. 10 (2024): 2328. http://dx.doi.org/10.3390/ma17102328.
Full textVeluri, Badrinath, and Henrik Myhre Jensen. "Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures." Key Engineering Materials 525-526 (November 2012): 509–12. http://dx.doi.org/10.4028/www.scientific.net/kem.525-526.509.
Full textRen, Jie, Faning Dang, Huan Wang, Yi Xue, and Jianyin Fang. "Enhancement Mechanism of the Dynamic Strength of Concrete Based on the Energy Principle." Materials 11, no. 8 (2018): 1274. http://dx.doi.org/10.3390/ma11081274.
Full textKong, Guang Ming, Xu Dong Li, and Zhi Tao Mu. "Corrosion Fatigue Crack Propagation of 6151-T6 Aluminum Alloy Based on Virtual Crack Closure Technique." Advanced Materials Research 998-999 (July 2014): 31–34. http://dx.doi.org/10.4028/www.scientific.net/amr.998-999.31.
Full textRezaiee-Pajand, Mohammad, and Nima Gharaei-Moghaddam. "A Force-Based Rectangular Cracked Element." International Journal of Applied Mechanics 13, no. 04 (2021): 2150047. http://dx.doi.org/10.1142/s1758825121500472.
Full textNguyen, Huu-Dien, and Shyh-Chour Huang. "Calculating Strain Energy Release Rate, Stress Intensity Factor and Crack Propagation of an FGM Plate by Finite Element Method Based on Energy Methods." Materials 18, no. 12 (2025): 2698. https://doi.org/10.3390/ma18122698.
Full textKelliher, Dennis S. "Calculating Energy Release Rate as a Function of Crack Length Using a Multiple-Step Crack Closure Technique in Tire Finite Element Models." Tire Science and Technology 46, no. 3 (2018): 130–52. http://dx.doi.org/10.2346/tire.18.460302.
Full textTian, Xinpeng, Dong Yao, and Qun Li. "Thermal buckling response and fracture analysis for delaminated fiber reinforced composite plates under thermo-mechanical coupling." Journal of Composite Materials 52, no. 27 (2018): 3715–30. http://dx.doi.org/10.1177/0021998318769132.
Full textMars, W. V., and M. D. Ellul. "FATIGUE CHARACTERIZATION OF A THERMOPLASTIC ELASTOMER." Rubber Chemistry and Technology 90, no. 2 (2017): 367–80. http://dx.doi.org/10.5254/rct.17.83780.
Full textKotoul, Michal, Petr Skalka, Tomáš Profant, Martin Friák, Petr Řehák, and Petr Šesták. "Prediction of the Critical Energy Release Rate of Nanostructured Solids Using the Laplacian Version of the Strain Gradient Elasticity Theory." Key Engineering Materials 774 (August 2018): 447–52. http://dx.doi.org/10.4028/www.scientific.net/kem.774.447.
Full textHer, Shiuh Chuan, and Wei Bo Su. "Mode I Fracture Toughness of a Tri-Layered Structure with Interfacial Crack." Applied Mechanics and Materials 71-78 (July 2011): 1440–43. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.1440.
Full textMaiti, S. K. "An approximate method for calculation of strain energy release rate associated with kinking of a mode I crack located initially in an orthotropic direction." International Journal of Fracture 32, no. 2 (1986): R33—R36. http://dx.doi.org/10.1007/bf00019791.
Full textTay, Andrew A. O. "Modeling of Interfacial Delamination in Plastic IC Packages Under Hygrothermal Loading." Journal of Electronic Packaging 127, no. 3 (2004): 268–75. http://dx.doi.org/10.1115/1.1938209.
Full textXie, De, and Sherrill B. Biggers. "Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation." Engineering Fracture Mechanics 73, no. 6 (2006): 771–85. http://dx.doi.org/10.1016/j.engfracmech.2005.07.013.
Full textMaussymbayeva, A. D., V. M. Yurov, V. S. Portnov, M. Rabatuly, and G. M. Rakhimova. "Assessment of the influence of the surface layer of coals on gas-dynamic phenomena in the coal seam." Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 2 (April 30, 2024): 5–11. http://dx.doi.org/10.33271/nvngu/2024-2/005.
Full textVallianatos, Filippos, and Georgios Chatzopoulos. "A Complexity View into the Physics of the Accelerating Seismic Release Hypothesis: Theoretical Principles." Entropy 20, no. 10 (2018): 754. http://dx.doi.org/10.3390/e20100754.
Full textThatoi, Dhirendranath, and Prabir Kumar Jena. "Inverse Analysis of Crack in Fixed-Fixed Structure by Neural Network with the Aid of Modal Analysis." Advances in Artificial Neural Systems 2013 (March 3, 2013): 1–8. http://dx.doi.org/10.1155/2013/150209.
Full textXie, De, and Sherrill B. Biggers. "Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part II: Sensitivity study on modeling details." Engineering Fracture Mechanics 73, no. 6 (2006): 786–801. http://dx.doi.org/10.1016/j.engfracmech.2005.07.014.
Full textMaiti, S. K., and P. K. Sarkar. "A method of calculation of total strain energy release rate and its layer-wise distribution for an arbitrary through-the-thickness crack extension in a composite laminate." Engineering Fracture Mechanics 36, no. 4 (1990): 639–46. http://dx.doi.org/10.1016/0013-7944(90)90119-2.
Full textChang, Fu-Kuo, and Zafer Kutlu. "Delamination Effects on Composite Shells." Journal of Engineering Materials and Technology 112, no. 3 (1990): 336–40. http://dx.doi.org/10.1115/1.2903334.
Full textGyekenyesi, J. P. "SCARE: A Postprocessor Program to MSC/NASTRAN for Reliability Analysis of Structural Ceramic Components." Journal of Engineering for Gas Turbines and Power 108, no. 3 (1986): 540–46. http://dx.doi.org/10.1115/1.3239944.
Full textHuang, Y. S., and O. H. Yeoh. "Crack Initiation and Propagation in Model Cord-Rubber Composites." Rubber Chemistry and Technology 62, no. 4 (1989): 709–31. http://dx.doi.org/10.5254/1.3536270.
Full textSun, Chuanpeng, Irina N. Chernysh, John W. Weisel, and Prashant K. Purohit. "Fibrous gels modelled as fluid-filled continua with double-well energy landscape." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2244 (2020): 20200643. http://dx.doi.org/10.1098/rspa.2020.0643.
Full textLobov, Evgeniy, Anastasia Dobrydneva, Ilia Vindokurov, and Mikhail Tashkinov. "Effect of Short Carbon Fiber Reinforcement on Mechanical Properties of 3D-Printed Acrylonitrile Butadiene Styrene." Polymers 15, no. 9 (2023): 2011. http://dx.doi.org/10.3390/polym15092011.
Full textКургузов, Владимир Дмитриевич, та Денис Александрович Кузнецов. "Разрушение хрупких балок при антисимметричном четырехточечном изгибе". Computational Continuum Mechanics 17, № 4 (2025): 393–410. https://doi.org/10.7242/1999-6691/2024.17.4.32.
Full textGiacomazzi, Eugenio, Donato Cecere, Matteo Cimini, and Simone Carpenella. "Direct Numerical Simulation of a Reacting Turbulent Hydrogen/Ammonia/Nitrogen Jet in an Air Crossflow at 5 Bar." Energies 16, no. 23 (2023): 7704. http://dx.doi.org/10.3390/en16237704.
Full textBajurko, Piotr. "Modelling of the Aerospace Structure Demonstrator Subcomponent." Transactions on Aerospace Research 2019, no. 1 (2019): 37–52. http://dx.doi.org/10.2478/tar-2019-0004.
Full text