Journal articles on the topic 'Catalysis of metal compounds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Catalysis of metal compounds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mamedova, Shafa Agаеvna. "METAL COMPLEX CATALYSIS." Globus 7, no. 5(62) (2021): 31–33. http://dx.doi.org/10.52013/2658-5197-62-5-7.
Full textBaráth, Eszter. "Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts." Synthesis 52, no. 04 (2020): 504–20. http://dx.doi.org/10.1055/s-0039-1691542.
Full textLukey, CA, MA Long, and JL Garnett. "Aromatic Hydrogen Isotope Exchange Reactions Catalyzed by Iridium Complexes in Aqueous Solution." Australian Journal of Chemistry 48, no. 1 (1995): 79. http://dx.doi.org/10.1071/ch9950079.
Full textBaird, Michael C. "Catalysis by organotransition metal compounds: Synergism between the pure and the applied1." Canadian Journal of Chemistry 81, no. 4 (2003): 330–37. http://dx.doi.org/10.1139/v03-065.
Full textMelián-Rodríguez, Saravanamurugan, Meier, Kegnæs, and Riisager. "Ru-Catalyzed Oxidative Cleavage of Guaiacyl Glycerol--Guaiacyl Ether-a Representative -O-4 Lignin Model Compound." Catalysts 9, no. 10 (2019): 832. http://dx.doi.org/10.3390/catal9100832.
Full textYates, D. J. C., S. K. Behal, and B. H. Kear. "Studies of reactions between gaseous organo-silicon compounds and metal surfaces." Journal of Materials Research 3, no. 4 (1988): 714–22. http://dx.doi.org/10.1557/jmr.1988.0714.
Full textXue, Zhong, Zhang та Xu. "Performance of Catalytic Fast Pyrolysis using a γ-Al2O3 Catalyst with Compound Modification of ZrO2 and CeO2". Catalysts 9, № 10 (2019): 849. http://dx.doi.org/10.3390/catal9100849.
Full textSaeid, Soudabeh, Matilda Kråkström, Pasi Tolvanen, et al. "Synthesis and Characterization of Metal Modified Catalysts for Decomposition of Ibuprofen from Aqueous Solutions." Catalysts 10, no. 7 (2020): 786. http://dx.doi.org/10.3390/catal10070786.
Full textQiu, Jikuan, Yue Zhao, Yuling Zhao, et al. "Cu(I)/Ionic Liquids Promote the Conversion of Carbon Dioxide into Oxazolidinones at Room Temperature." Molecules 24, no. 7 (2019): 1241. http://dx.doi.org/10.3390/molecules24071241.
Full textShul’pin, Georgiy B., and Lidia S. Shul’pina. "Oxidation of Organic Compounds with Peroxides Catalyzed by Polynuclear Metal Compounds." Catalysts 11, no. 2 (2021): 186. http://dx.doi.org/10.3390/catal11020186.
Full textNesterov, Dmytro S., and Oksana V. Nesterova. "Catalytic Oxidations with Meta-Chloroperoxybenzoic Acid (m-CPBA) and Mono- and Polynuclear Complexes of Nickel: A Mechanistic Outlook." Catalysts 11, no. 10 (2021): 1148. http://dx.doi.org/10.3390/catal11101148.
Full textTaran, O. P., V. V. Sychev та B. N. Kuznetsov. "γ-Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass". Kataliz v promyshlennosti 1, № 1-2 (2021): 97–116. http://dx.doi.org/10.18412/1816-0387-2021-1-2-97-116.
Full textKunfi, Attila, and Gábor London. "Polydopamine: An Emerging Material in the Catalysis of Organic Transformations." Synthesis 51, no. 14 (2018): 2829–38. http://dx.doi.org/10.1055/s-0037-1610260.
Full textPimerzin, Aleksey, Aleksander Savinov, Anna Vutolkina, et al. "Transition Metal Sulfides- and Noble Metal-Based Catalysts for N-Hexadecane Hydroisomerization: A Study of Poisons Tolerance." Catalysts 10, no. 6 (2020): 594. http://dx.doi.org/10.3390/catal10060594.
Full textHuang, Tiefan, Guan Sheng, Priyanka Manchanda, et al. "Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis." Science Advances 5, no. 11 (2019): eaax6976. http://dx.doi.org/10.1126/sciadv.aax6976.
Full textLiu, Chang Bo, and Chang Sheng Yue. "Metal Sulfide Assisted Coal Catalytic Hydrogenated Microwave Pyrolysis." Materials Science Forum 999 (June 2020): 178–90. http://dx.doi.org/10.4028/www.scientific.net/msf.999.178.
Full textAlvarez-Galvan, M., Jose Campos-Martin, and Jose Fierro. "Transition Metal Phosphides for the Catalytic Hydrodeoxygenation of Waste Oils into Green Diesel." Catalysts 9, no. 3 (2019): 293. http://dx.doi.org/10.3390/catal9030293.
Full textXin, Yunzi, Yuri Ando, Sohei Nakagawa, Harumitsu Nishikawa, and Takashi Shirai. "New possibility of hydroxyapatites as noble-metal-free catalysts towards complete decomposition of volatile organic compounds." Catalysis Science & Technology 10, no. 16 (2020): 5453–59. http://dx.doi.org/10.1039/d0cy00787k.
Full textGaliwango, Emmanuel, Ali H. Al-Marzuoqi, Abbas A. Khaleel, and Mahdi M. Abu-Omar. "Catalytic Depolymerization of Date Palm Waste to Valuable C5–C12 Compounds." Catalysts 11, no. 3 (2021): 371. http://dx.doi.org/10.3390/catal11030371.
Full textMigliori, Massimo, Antonio Condello, Francesco Dalena, Enrico Catizzone, and Girolamo Giordano. "CuZnZr-Zeolite Hybrid Grains for DME Synthesis: New Evidence on the Role of Metal-Acidic Features on the Methanol Conversion Step." Catalysts 10, no. 6 (2020): 671. http://dx.doi.org/10.3390/catal10060671.
Full textZarkadoulas, Athanasios, Ioanna Zgouleta, Nikolaos V. Tzouras, and Georgios C. Vougioukalakis. "Traceless Directing Groups in Sustainable Metal-Catalyzed C–H Activation." Catalysts 11, no. 5 (2021): 554. http://dx.doi.org/10.3390/catal11050554.
Full textGrabchenko, M., N. Mikheeva, G. Mamontov, M. Salaev, L. Liotta, and O. Vodyankina. "Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs." Catalysts 8, no. 7 (2018): 285. http://dx.doi.org/10.3390/catal8070285.
Full textOsipov, Sergey, and Daria Vorobyeva. "Selective Synthesis of 2- and 7-Substituted Indole Derivatives via Chelation-Assisted Metallocarbenoid C–H Bond Functionalization." Synthesis 50, no. 02 (2017): 227–40. http://dx.doi.org/10.1055/s-0036-1591498.
Full textPérez-Mayoral, Elena, Ines Matos, María Bernardo, Marcia Ventura, and Isabel M. Fonseca. "Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis." Catalysts 10, no. 12 (2020): 1407. http://dx.doi.org/10.3390/catal10121407.
Full textBall, Philip. "Single-atom catalysis: a new field that learns from tradition." National Science Review 5, no. 5 (2018): 690–93. http://dx.doi.org/10.1093/nsr/nwy043.
Full textChen, Chueh-An, Chiao-Lin Lee, Po-Kang Yang, Dung-Sheng Tsai, and Chuan-Pei Lee. "Active Site Engineering on Two-Dimensional-Layered Transition Metal Dichalcogenides for Electrochemical Energy Applications: A Mini-Review." Catalysts 11, no. 2 (2021): 151. http://dx.doi.org/10.3390/catal11020151.
Full textDou, Xiaomeng, Wenzhi Li, Chaofeng Zhu, Xiao Jiang, Hou-min Chang, and Hasan Jameel. "Cleavage of aryl–ether bonds in lignin model compounds using a Co–Zn-beta catalyst." RSC Advances 10, no. 71 (2020): 43599–606. http://dx.doi.org/10.1039/d0ra08121c.
Full textCabral Almada, Cédric, Aleksandr Kazachenko, Pascal Fongarland, Denilson Da Silva Perez, Boris N. Kuznetsov, and Laurent Djakovitch. "Supported-Metal Catalysts in Upgrading Lignin to Aromatics by Oxidative Depolymerization." Catalysts 11, no. 4 (2021): 467. http://dx.doi.org/10.3390/catal11040467.
Full textBRUNNER, H., and W. ZETTLMEIER. "ChemInform Abstract: In situ Catalysts in Enantioselective Catalysis with Transition-Metal Compounds." ChemInform 27, no. 36 (2010): no. http://dx.doi.org/10.1002/chin.199636261.
Full textChacón, Gustavo, Jérôme Durand, Isabelle Favier, Emmanuelle Teuma, and Montserrat Gomez. "Ionic liquids in catalysis: molecular and nanometric metal systems." French-Ukrainian Journal of Chemistry 4, no. 1 (2016): 23–36. http://dx.doi.org/10.17721/fujcv4i1p23-36.
Full textLatypova, Adele R., Dmitry V. Filippov, Olga V. Lefedova, Alexey V. Bykov, and Valentin Yu Doluda. "ENVIRONMENTALLY SAFE SYNTHESIS OF HYDROGENATION NICKEL CATALYSTS." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 62, no. 9 (2019): 46–52. http://dx.doi.org/10.6060/ivkkt.20196209.6065.
Full textKung, Mayfair C., Mark V. Riofski, Michael N. Missaghi, and Harold H. Kung. "Organosilicon platforms: bridging homogeneous, heterogeneous, and bioinspired catalysis." Chem. Commun. 50, no. 25 (2014): 3262–76. http://dx.doi.org/10.1039/c3cc48766k.
Full textNghiem, Tai-Lam, Deniz Coban, Stefanie Tjaberings, and André H. Gröschel. "Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis." Polymers 12, no. 10 (2020): 2190. http://dx.doi.org/10.3390/polym12102190.
Full textAlvarado Rupflin, Luis, Chiara Boscagli, and Stephan Schunk. "Platinum Group Metal Phosphides as Efficient Catalysts in Hydroprocessing and Syngas-Related Catalysis." Catalysts 8, no. 3 (2018): 122. http://dx.doi.org/10.3390/catal8030122.
Full textUshikubo, Takashi, and Keisuke Wada. "Japan-France seminar on catalysis with metal compounds." Applied Catalysis 35, no. 1 (1987): 192. http://dx.doi.org/10.1016/s0166-9834(00)82440-9.
Full textTanaka, Ken-ichi. "Intermediate Compounds Formed on Metal Surfaces during Catalysis." Progress of Theoretical Physics Supplement 106 (1991): 419–31. http://dx.doi.org/10.1143/ptps.106.419.
Full textKatsuki, Tsutomu. "Handbook of Enantioselective Catalysis with Transition Metal Compounds." Synthesis 1994, no. 04 (1994): 444. http://dx.doi.org/10.1055/s-1994-25495.
Full textBrown, John M. "Handbook of enantioselective catalysis with transition metal compounds." Journal of Organometallic Chemistry 479, no. 1-2 (1994): c30. http://dx.doi.org/10.1016/0022-328x(94)84125-x.
Full textArisawa, Mieko. "Transition-Metal-Catalyzed Synthesis of Organophosphorus Compounds Involving P–P Bond Cleavage." Synthesis 52, no. 19 (2020): 2795–806. http://dx.doi.org/10.1055/s-0040-1707890.
Full textOllevier, Thierry, Virginie Carreras, and Nour Tanbouza. "The Power of Iron Catalysis in Diazo Chemistry." Synthesis 53, no. 01 (2020): 79–94. http://dx.doi.org/10.1055/s-0040-1707272.
Full textL. Simakova, Irina, Andrey V. Simakov, and Dmitry Yu. Murzin. "Valorization of Biomass Derived Terpene Compounds by Catalytic Amination." Catalysts 8, no. 9 (2018): 365. http://dx.doi.org/10.3390/catal8090365.
Full textOkumura, Hideyuki, K. Arai, Y. Nishiyama, Eiji Yamasue, and Keiichi N. Ishihara. "Revisiting Carbon Based Metallic Compounds – Nanoscale Surface Science and Environmental Catalysis." Materials Science Forum 638-642 (January 2010): 858–63. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.858.
Full textMoirangthem, Soniya D., Bhavna Thingom, and Warjeet S. Laitonjam. "Cd-proline Complex Catalyzed Direct one-Pot three Component Mannich Reaction in Water Medium." JOURNAL OF ADVANCES IN CHEMISTRY 7, no. 1 (2011): 1160–68. http://dx.doi.org/10.24297/jac.v7i1.970.
Full textWetchasat, Piraya, Saros Salakhum, Thidarat Imyen, et al. "One-Pot Synthesis of Ultra-Small Pt Dispersed on Hierarchical Zeolite Nanosheet Surfaces for Mild Hydrodeoxygenation of 4-Propylphenol." Catalysts 11, no. 3 (2021): 333. http://dx.doi.org/10.3390/catal11030333.
Full textAl-Zubaidi, Isam, and Congning Yang. "Waste Management of Spent Petroleum Refinery Catalyst." European Journal of Engineering Research and Science 5, no. 8 (2020): 938–47. http://dx.doi.org/10.24018/ejers.2020.5.8.1929.
Full textGoodwin, Vituruch, Phanwatsa Amnaphiang, Pimpreeya Thungngern, Kong Kah Shin, Parncheewa Udomsap, and Nuwong Chollacoop. "Zeolite Supported Bimetallic Catalyst System: The Effect of Metal Loading for Catalytic Pyrolysis of Jatropha Residue." Key Engineering Materials 751 (August 2017): 494–99. http://dx.doi.org/10.4028/www.scientific.net/kem.751.494.
Full textStamatis, A., G. Malandrinos, M. Louloudi, and N. Hadjiliadis. "New Perspectives on Thiamine Catalysis: From Enzymic to Biomimetic Catalysis." Bioinorganic Chemistry and Applications 2007 (2007): 1–7. http://dx.doi.org/10.1155/2007/23286.
Full textLin, Wenbin. "Metal-Organic Frameworks for Asymmetric Catalysis and Chiral Separations." MRS Bulletin 32, no. 7 (2007): 544–48. http://dx.doi.org/10.1557/mrs2007.104.
Full textLiu, Hongfang, Anh Quang Dao, and Chaoyang Fu. "Activities of Combined TiO2 Semiconductor Nanocatalysts Under Solar Light on the Reduction of CO2." Journal of Nanoscience and Nanotechnology 16, no. 4 (2016): 3437–46. http://dx.doi.org/10.1166/jnn.2016.11854.
Full textLim, Taeho, and Min Su Han. "Preparation of Metal Oxides Containing ppm Levels of Pd as Catalysts for the Reduction of Nitroarene and Evaluation of Their Catalytic Activity by the Fluorescence-Based High-Throughput Screening Method." Catalysts 10, no. 5 (2020): 542. http://dx.doi.org/10.3390/catal10050542.
Full text