Academic literature on the topic 'Chaos of Devaney'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chaos of Devaney.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chaos of Devaney"

1

Lu, Tianxiu, Peiyong Zhu, and Xinxing Wu. "The Retentivity of Chaos under Topological Conjugation." Mathematical Problems in Engineering 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/817831.

Full text
Abstract:
The definitions of Devaney chaos (DevC), exact Devaney chaos (EDevC), mixing Devaney chaos (MDevC), and weak mixing Devaney chaos (WMDevC) are extended to topological spaces. This paper proves that these chaotic properties are all preserved under topological conjugation. Besides, an example is given to show that the Li-Yorke chaos is not preserved under topological conjugation if the domain is extended to a general metric space.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Xiaoyi, and Yu Huang. "Devaney chaos revisited." Topology and its Applications 160, no. 3 (2013): 455–60. http://dx.doi.org/10.1016/j.topol.2012.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jian, Jie Li, and Siming Tu. "Devaney chaos plus shadowing implies distributional chaos." Chaos: An Interdisciplinary Journal of Nonlinear Science 26, no. 9 (2016): 093103. http://dx.doi.org/10.1063/1.4962131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fadel, Asmaa, and Syahida Che Dzul-Kifli. "Some Chaos Notions on Dendrites." Symmetry 11, no. 10 (2019): 1309. http://dx.doi.org/10.3390/sym11101309.

Full text
Abstract:
Transitivity is a key element in a chaotic dynamical system. In this paper, we present some relations between transitivity, stronger and alternative notions of it on compact and dendrite spaces. The relation between Auslander and Yorke chaos and Devaney chaos on dendrites is also discussed. Moreover, we prove that Devaney chaos implies strong dense periodicity on dendrites while the converse is not true.
APA, Harvard, Vancouver, ISO, and other styles
5

Kwietniak, Dominik, and Michal Misiurewicz. "Exact Devaney chaos and entropy." Qualitative Theory of Dynamical Systems 6, no. 1 (2005): 169–79. http://dx.doi.org/10.1007/bf02972670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Xinxing, and Peiyong Zhu. "Devaney chaos and Li-Yorke sensitivity for product systems." Studia Scientiarum Mathematicarum Hungarica 49, no. 4 (2012): 538–48. http://dx.doi.org/10.1556/sscmath.49.2012.4.1226.

Full text
Abstract:
This paper mainly discusses how Devaney chaos and Li-Yorke sensitivity carry over to product systems. First, two results on the periodic points of product systems are obtained. By using them, the following two results are Proved: (1) A finite product system is mixing and Devaney chaotic if and only if each factor system is mixing and Devaney chaotic. (2) An infinite product map Π i=1∞fi is mixing and Devaney chaotic if and only if each factor map fi is mixing and Devaney chaotic and sup {min P(fi): i ∈ ℕ} < + ∞, where P(fi) is the set of all periods of fi. Besides, we obtain that the product system is Li-Yorke sensitive (sensitive) if and only if there exists a factor system that is Li-Yorke sensitive (sensitive).
APA, Harvard, Vancouver, ISO, and other styles
7

Tian, Chuanjun. "Chaos in the Sense of Devaney for Two-Dimensional Time-Varying Generalized Symbolic Dynamical Systems." International Journal of Bifurcation and Chaos 27, no. 04 (2017): 1750060. http://dx.doi.org/10.1142/s0218127417500602.

Full text
Abstract:
This paper studies chaos in the sense of Devaney for a class of two-dimensional time-varying generalized symbol systems of the form [Formula: see text] where [Formula: see text] for [Formula: see text], [Formula: see text] is an integer, [Formula: see text] and [Formula: see text] are two well-defined functions. By introducing a more restrictive concept of chaos in the sense of Devaney, some sufficient conditions for this system to be completely chaotic in the sense of Devaney are derived.
APA, Harvard, Vancouver, ISO, and other styles
8

Oprocha, Piotr. "Relations between distributional and Devaney chaos." Chaos: An Interdisciplinary Journal of Nonlinear Science 16, no. 3 (2006): 033112. http://dx.doi.org/10.1063/1.2225513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Hao, Yuming Shi, and Hua Shao. "Devaney Chaos in Nonautonomous Discrete Systems." International Journal of Bifurcation and Chaos 26, no. 11 (2016): 1650190. http://dx.doi.org/10.1142/s021812741650190x.

Full text
Abstract:
This paper is concerned with Devaney chaos in nonautonomous discrete systems. It is shown that in its definition, the two former conditions, i.e. transitivity and density of periodic points, in a set imply the last one, i.e. sensitivity, in the case that the set is unbounded, while a similar result holds under two additional conditions in the other case that the set is bounded. Some chaotic behavior is studied for a class of nonautonomous discrete systems, each of which is governed by a convergent sequence of continuous maps. In addition, the concepts of some pseudo-orbits and shadowing properties are introduced for nonautonomous discrete systems, and it is shown that some shadowing properties of the system and density of periodic points imply that the system is Devaney chaotic under the condition that the sequence of continuous maps is uniformly convergent in a compact metric space.
APA, Harvard, Vancouver, ISO, and other styles
10

Barrachina, Xavier, and J. Alberto Conejero. "Devaney Chaos and Distributional Chaos in the Solution of Certain Partial Differential Equations." Abstract and Applied Analysis 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/457019.

Full text
Abstract:
The notion of distributional chaos has been recently added to the study of the linear dynamics of operators andC0-semigroups of operators. We will study this notion of chaos for some examples ofC0-semigroups that are already known to be Devaney chaotic.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Chaos of Devaney"

1

Pereira, Weber Flávio [UNESP]. "Sobre o caos de Devaney." Universidade Estadual Paulista (UNESP), 2001. http://hdl.handle.net/11449/94257.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2001-12-11Bitstream added on 2014-06-13T20:47:37Z : No. of bitstreams: 1 pereira_wf_me_sjrp.pdf: 614166 bytes, checksum: 6df9d771c65c6fa8d098e4e0aba88fb5 (MD5)<br>Neste trabalho estudamos os sistemas dinâmicos caóticos através da definição apresentada por Devaney, composta basicamente de três condições. Investigamos todas as implicações possíveis entre essas condições. Por fim, analisamos o estudo apresentando uma definição mais sucinta e provamos a sua equivalência com a apresentada por Devaney.<br>In this work we study the chaotic dynamic systems through the definition presented by Devaney, basically composed of three conditions. We investigate all the possible implications among these conditions. Finally, we finish the study presenting briefer definition and prove its equivalence to the one presented by Devaney.
APA, Harvard, Vancouver, ISO, and other styles
2

Pereira, Weber Flávio. "Sobre o caos de Devaney /." São José do Rio Preto : [s.n.], 2001. http://hdl.handle.net/11449/94257.

Full text
Abstract:
Orientador: Adalberto Spezamiglio<br>Banca: Heloísa Helena Marino Silva<br>Banca: Luiz Augusto da Costa Ladeira<br>Resumo: Neste trabalho estudamos os sistemas dinâmicos caóticos através da definição apresentada por Devaney, composta basicamente de três condições. Investigamos todas as implicações possíveis entre essas condições. Por fim, analisamos o estudo apresentando uma definição mais sucinta e provamos a sua equivalência com a apresentada por Devaney.<br>Abstract: In this work we study the chaotic dynamic systems through the definition presented by Devaney, basically composed of three conditions. We investigate all the possible implications among these conditions. Finally, we finish the study presenting briefer definition and prove its equivalence to the one presented by Devaney.<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
3

Brandão, Dienes de Lima. "Sobre o caos de Devaney e implicações /." São José do Rio Preto, 2019. http://hdl.handle.net/11449/191142.

Full text
Abstract:
Orientador: Weber Flávio Pereira<br>Resumo: A Teoria dos Sistemas Dinâmicos pode ser aplicada em diversas áreas da ciência, para, por exemplo, modelar fenômenos e problemas: Biológicos, da Física, Mecânica, Eletrônica, Economia, etc. Um sistema pode ser definido como um conjunto de elementos agrupados que mantêm alguma interação, de modo que existam relações de causa e efeito. Dizemos que é dinâmico quando algumas grandezas que compõem os elementos variam no tempo, sendo o tempo discreto quando a variável tempo é um número inteiro. Na busca de uma compreensão qualitativa e/ou topológica de um sistema, revela-se uma gama muito grande de movimentos que podem ser tanto regulares quanto caóticos. O termo “caos” só foi introduzido por James Yorke e TienYien Li em 1975, num artigo que simplificava um dos resultados da escola russa: o Teorema de Sharkovskii de 1964. Esporadicamente, antes e depois da introdução do termo, os sistemas caóticos apareciam na literatura aplicada, o mais famoso deles foi por Edward Norton Lorenz em 1963, que se propôs a modelar a convecção atmosférica. Em seus estudos ele descobriu que, para o seu modelo matemático, ínfimas modificações nas coordenadas iniciais mudavam de forma significativa os resultados finais, daí originou o termo popular do fenômeno (Efeito Borboleta). Mais tarde, em 1989, Robert Luke Devaney no seu livro: “An Introduction to Chaotic Dynamical Systems” [11], definiu um sistema como caótico se ele tem uma dependência sensível das condições iniciais, é topologicamente transitivo e suas ... (Resumo completo, clicar acesso eletrônico abaixo)<br>Abstract: Dynamical Systems Theory can be applied in various areas of science, for example, to model phenomena and problems: biology, physics, mechanics, electronics, economics, etc. A system can be defined as a set of grouped elements that maintain someinteraction. Wesaythatitisdynamicwhensomemagnitudesthatmakeupthe elementsvaryintime,beingdiscretetimewhenthevariabletimeisaninteger. Inthe pursuit of a qualitative and/or topological understanding of a system, a wide range of movements that can be both regular or chaotic is revealed. The term “chaos” was only introduced by James Yorke and TienYien Li in 1975, in an article that simplified one of the results of the Russian school: the 1964 Sharkovskii’s Theorem. Sporadically, before and after the introduction of the term, chaotic systems appeared in applied literature, the most famous of which was by Edward Norton Lorenz in 1963, who set out to model atmospheric convection. In his studies he found that for his created system, minor modifications to the initial coordinates significantly changed the final results, hence the popular term of the phenomenon (Butterfly Effect). Later, in 1989, Robert Luke Devaney in his book, “An Introduction to Chaotic Dynamical Systems” [11], defined a system as chaotic if it has a sensitive dependence on initial conditions, is topologically transitive, and its periodic orbits form a dense set. The main objective of this work is to study and present the evolution of the definition of discrete time Chaotic Dynamic Sy... (Complete abstract click electronic access below)<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
4

Barrachina, Civera Xavier. "Distributional chaos of C0-semigroups of operators." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/28241.

Full text
Abstract:
El caos distribucional fue introducido por Schweizer y Smítal en [SS94] a partir de la noción de caos de Li-Yorke con el fín de implicar la entropía topológica positiva para aplicaciones del intervalo compacto en sí mismo. El caos distribucional para operadores fue estudiado por primera vez en [Opr06] y fue analizado en el contexto lineal de dimensión infinita en [MGOP09]. El concepto de caos distribucional para un operador (semigrupo) consiste en la existencia de un conjunto no numerable y un numero real positivo ¿ tal que para dos elementos distintos cualesquiera del conjunto no numerable, tanto la densidad superior del conjunto de iteraciones (tiempos) en las cuales la diferencia entre las órbitas de dichos elementos es mayor que ¿, como la densidad superior del conjunto de iteraciones (tiempos) en las cuales dicha diferencia es tan pequeña como se quiera, es igual a uno. Esta tesis est'a dividida en seis capítulos. En el primero, hacemos un resumen del estado actual de la teoría de la din'amica caótica para C0-semigrupos de operadores lineales. En el segundo capítulo, mostramos la equivalencia entre el caos distribucional de un C0-semigrupo y el caos distribucional de cada uno de sus operadores no triviales. Tambi'en caracterizamos el caos distribucional de un C0-semigrupo en t'erminos de la existencia de un vector distribucionalmente irregular. La noción de hiperciclicidad de un operador (semigrupo) consiste en la existencia de un elemento cuya órbita por el operador (semigrupo) sea densa. Si adem'as el conjunto de puntos periódicos es denso, diremos que el operador (semigrupo) es caótico en el sentido de Devaney. Una de las herramientas mas útiles para comprobar si un operador es hipercíclico es el Criterio de Hiperciclicidad, enunciado inicialmente por Kitai en 1982. En [BBMGP11], Bermúdez, Bonilla, Martínez-Gim'enez y Peris presentan elCriterio para Caos Distribucional (CDC en ingl'es) para operadores. Enunciamos y probamos una versión del CDC para C0-semigrupos. En el contexto de C0-semigrupos, Desch, Schappacher y Webb tambi'en estudiaron en [DSW97] la hiperciclicidad y el caos de Devaney para C0-semigrupos, dando un criterio para caos de Devaney basado en el espectro del generador in¿nitesimal del C0- semigrupo. En el tercer capítulo, establecemos un criterio de existencia de una variedad distribucionalmente irregular densa (DDIM en sus siglas en ingl'es) en t'erminos del espectro del generador in¿nitesimal del C0-semigrupo. En el Capítulo 4, se dan algunas condiciones su¿cientes para que el C0-semigrupo de traslación en espacios L p ponderados sea distribucionalmente caótico en función de la función peso admisible. Ademas, establecemos una analogía completa entre el estudio del caos distribucional para el C0-semigrupo de traslación y para los operadores de desplazamiento hacia atras o ¿backward shifts¿ en espacios ponderados de sucesiones. El capítulo quinto está dedicado al estudio de la existencia de C0-semigrupos para los cuales todo vector no nulo es un vector distribucionalmente irregular. Tambi'en damos un ejemplo de uno de dichos C0-semigrupos que además no es hipercíclico. En el Capítulo 6, el criterio DDIM se aplica a varios ejemplos de C0-semigrupos. Algunos de ellos siendo los semigrupos de solución de ecuaciones en derivadas parciales, como la ecuación hiperbólica de transferencia de calor o la ecuación de von Foerster-Lasota y otros son la solución de un sistema in¿nito de ecuaciones diferenciales ordinarias usado para modelizar la dinámica de una población de c'elulas bajo proliferación y maduración simultáneas.<br>Barrachina Civera, X. (2013). Distributional chaos of C0-semigroups of operators [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/28241<br>TESIS<br>Premiado
APA, Harvard, Vancouver, ISO, and other styles
5

Redona, Jeffrey Francis. "The Mandelbrot set." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1166.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chaos of Devaney"

1

Rosier, Lionel. "Chaotic Dynamical Systems Associated with Tilings of RN." In Chaos Synchronization and Cryptography for Secure Communications. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61520-737-4.ch002.

Full text
Abstract:
In this chapter, we consider a class of discrete dynamical systems defined on the homogeneous space associated with a regular tiling of RN, whose most familiar example is provided by the N-dimensional torus TN. It is proved that any dynamical system in this class is chaotic in the sense of Devaney, and that it admits at least one positive Lyapunov exponent. Next, a chaos-synchronization mechanism is introduced and used for masking information in a communication setup.
APA, Harvard, Vancouver, ISO, and other styles
2

Kato, Hisao. "Minimal sets and Chaos in the Sense of Devaney on Continuum-Wise Expansive Homeomorphisms." In Continua. CRC Press, 2020. http://dx.doi.org/10.1201/9781003072379-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Devaney's Definition of Chaos." In Chaotic Dynamics. Cambridge University Press, 2016. http://dx.doi.org/10.1017/9781316285572.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Devaney’s Formulation of Chaos." In Discrete Dynamical Systems and Chaotic Machines. CRC Press, 2013. http://dx.doi.org/10.1201/b14979-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chaos of Devaney"

1

Zhanjiang, Ji, Qin Guijiang, and Zhai Cong. "Chain Recurrent Point and Devaney Chaos of Topological Groups." In 2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE). IEEE, 2018. http://dx.doi.org/10.1109/icscse.2018.00184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhan-jiang, Ji. "Devaney Chaos And Expansive Map On The Hyperspace Of Topological Group Action." In 2019 International Conference on Robots & Intelligent System (ICRIS). IEEE, 2019. http://dx.doi.org/10.1109/icris.2019.00108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhan-Jiang, Ji, Zhai Cong, and Xu Cheng-Zhang. "The Research of G- expansive Map and Devaney’s G-Chaos Condition on Metric G-Space." In 2018 International Conference on Smart Grid and Electrical Automation (ICSGEA). IEEE, 2018. http://dx.doi.org/10.1109/icsgea.2018.00066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!