Journal articles on the topic 'CIC-IDS 2017 dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CIC-IDS 2017 dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Imene, BENSID, Dr MAHIMOUD Aissa, and Dr BOUDJADJA Rafik. "Analyzing and Exploring CIC-IDS 2017 Dataset." International Journal of Political Science 9, no. 1 (2023): 10–15. http://dx.doi.org/10.20431/2454-9452.0901002.
Full textImene, BENSID, Dr MAHIMOUD Aissa, and Dr BOUDJADJA Rafik. "Analyzing and Exploring CIC-IDS 2017 Dataset." International Journal of Research Studies in Computer Science and Engineering 9, no. 1 (2023): 10–15. http://dx.doi.org/10.20431/2349-4859.0901002.
Full textYulianto, Arif, Parman Sukarno, and Novian Anggis Suwastika. "Improving AdaBoost-based Intrusion Detection System (IDS) Performance on CIC IDS 2017 Dataset." Journal of Physics: Conference Series 1192 (March 2019): 012018. http://dx.doi.org/10.1088/1742-6596/1192/1/012018.
Full textMohammad, Rasheed, Faisal Saeed, Abdulwahab Ali Almazroi, Faisal S. Alsubaei, and Abdulaleem Ali Almazroi. "Enhancing Intrusion Detection Systems Using a Deep Learning and Data Augmentation Approach." Systems 12, no. 3 (2024): 79. http://dx.doi.org/10.3390/systems12030079.
Full textNitin W. Wanhade. "Accelerating Intrusion Detection Dataset Analysis- A Framework Using AutoGen Agents for CIC-IDS 2017." Journal of Information Systems Engineering and Management 10, no. 5s (2025): 671–81. https://doi.org/10.52783/jisem.v10i5s.758.
Full textGutiérrez-Galeano, Leopoldo, Juan-José Domínguez-Jiménez, Jörg Schäfer, and Inmaculada Medina-Bulo. "LLM-Based Cyberattack Detection Using Network Flow Statistics." Applied Sciences 15, no. 12 (2025): 6529. https://doi.org/10.3390/app15126529.
Full textJi, Changpeng, Haofeng Yu, and Wei Dai. "Network Traffic Anomaly Detection Based on Spatiotemporal Feature Extraction and Channel Attention." Processes 12, no. 7 (2024): 1418. http://dx.doi.org/10.3390/pr12071418.
Full textJinsi, Jose, and V. Jose Deepa. "Deep learning algorithms for intrusion detection systems in internet of things using CIC-IDS 2017 dataset." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 1 (2023): 1134–41. https://doi.org/10.11591/ijece.v13i1.pp1134-1141.
Full textJose, Jinsi, and Deepa V. Jose. "Deep learning algorithms for intrusion detection systems in internet of things using CIC-IDS 2017 dataset." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 1 (2023): 1134. http://dx.doi.org/10.11591/ijece.v13i1.pp1134-1141.
Full textMao, Junyi, Xiaoyu Yang, Bo Hu, Yizhen Lu, and Guangqiang Yin. "Intrusion Detection System Based on Multi-Level Feature Extraction and Inductive Network." Electronics 14, no. 1 (2025): 189. https://doi.org/10.3390/electronics14010189.
Full textSayegh, Hussein Ridha, Wang Dong, Bahaa Hussein Taher, Muhanad Mohammed Kadum, and Ali Mansour Al-madani. "Optimal intrusion detection for imbalanced data using Bagging method with deep neural network optimized by flower pollination algorithm." PeerJ Computer Science 11 (March 17, 2025): e2745. https://doi.org/10.7717/peerj-cs.2745.
Full textUllah, Safi, Muazzam A. Khan, Jawad Ahmad, et al. "HDL-IDS: A Hybrid Deep Learning Architecture for Intrusion Detection in the Internet of Vehicles." Sensors 22, no. 4 (2022): 1340. http://dx.doi.org/10.3390/s22041340.
Full textAdithya Nallamuthu, Suresh. "A Hybrid Genetic-Neuro Algorithm for Cloud Intrusion Detection System." Journal of Computational Science and Intelligent Technologies 1, no. 2 (2020): 15–25. http://dx.doi.org/10.53409/mnaa.jcsit20201203.
Full textZhang, Chunhui, Jian Li, Naile Wang, and Dejun Zhang. "Research on Intrusion Detection Method Based on Transformer and CNN-BiLSTM in Internet of Things." Sensors 25, no. 9 (2025): 2725. https://doi.org/10.3390/s25092725.
Full textSachdev, Rithik, Shreya Mishra, and Shekhar Sharma. "Comparison of Supervised Learning Algorithms for DDOS Attack Detection." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (2022): 1766–72. http://dx.doi.org/10.22214/ijraset.2022.46506.
Full textZekan, Marko, Igor Tomičić, and Markus Schatten. "Low-sample classification in NIDS using the EC-GAN method." JUCS - Journal of Universal Computer Science 28, no. 12 (2022): 1330–46. http://dx.doi.org/10.3897/jucs.85703.
Full textZekan, Marko, Igor Tomičić, and Markus Schatten. "Low-sample classification in NIDS using the EC-GAN method." JUCS - Journal of Universal Computer Science 28, no. (12) (2022): 1330–46. https://doi.org/10.3897/jucs.85703.
Full textLi, Qingfeng, Boyu Wang, Xueyan Wen, and Yuao Chen. "Malicious traffic prediction model for ResNet based on Maple-IDS dataset." PLOS One 20, no. 5 (2025): e0322000. https://doi.org/10.1371/journal.pone.0322000.
Full textKarthiga, B., Danalakshmi Durairaj, Nishad Nawaz, Thiruppathy Kesavan Venkatasamy, Gopi Ramasamy, and A. Hariharasudan. "Intelligent Intrusion Detection System for VANET Using Machine Learning and Deep Learning Approaches." Wireless Communications and Mobile Computing 2022 (October 13, 2022): 1–13. http://dx.doi.org/10.1155/2022/5069104.
Full textJeamaon, Aomduan, and Chaiyaporn Khemapatapan. "Development Cyber Risk Assessment for Intrusion Detection Using Enhanced Random Forest." ECTI Transactions on Computer and Information Technology (ECTI-CIT) 18, no. 4 (2024): 429–42. http://dx.doi.org/10.37936/ecti-cit.2024184.256185.
Full textMartins Onyekwelu, Onuorah, Sun Yanxia, and Daniel Mashao. "Deep Learning-Based Intrusion Detection System: Embracing Long Short-Term Memory (LSTM) and Roughly Balanced Bagging Synergies." Inteligencia Artificial 28, no. 76 (2025): 40–65. https://doi.org/10.4114/intartif.vol28iss76pp40-65.
Full textYe, Jiawei, Yanting Chen, Aierpanjiang Simayi, Yu Liu, Zhihui Lu, and Jie Wu. "A Network Traffic Characteristics Reconstruction Method for Mitigating the Impact of Packet Loss in Edge Computing Scenarios." Future Internet 17, no. 5 (2025): 208. https://doi.org/10.3390/fi17050208.
Full textAbdou, Vadhil Fatimetou, Salihi Mohamed Lemine, and Nanne Mohamedade Farouk. "Machine learning-based intrusion detection system for detecting web attacks." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 711–21. https://doi.org/10.11591/ijai.v13.i1.pp711-721.
Full textVashisht, Sanchit, Shalli Rani, and Mohammad Shabaz. "Towards a secure Metaverse: Leveraging hybrid model for IoT anomaly detection." PLOS ONE 20, no. 4 (2025): e0321224. https://doi.org/10.1371/journal.pone.0321224.
Full textAnwar, Raja Waseem, Mohammad Abrar, Abdu Salam, and Faizan Ullah. "Federated learning with LSTM for intrusion detection in IoT-based wireless sensor networks: a multi-dataset analysis." PeerJ Computer Science 11 (March 28, 2025): e2751. https://doi.org/10.7717/peerj-cs.2751.
Full textBakhshi, Taimur, and Bogdan Ghita. "Anomaly Detection in Encrypted Internet Traffic Using Hybrid Deep Learning." Security and Communication Networks 2021 (September 21, 2021): 1–16. http://dx.doi.org/10.1155/2021/5363750.
Full textAdesokan-Imran, Temilade Oluwatoyin, Anuoluwapo Deborah Popoola, Valerie Ojinika Ejiofor, Ademola Oluwaseun Salako, and Ogechukwu Scholastica Onyenaucheya. "Predictive Cybersecurity Risk Modeling in Healthcare by Leveraging AI and Machine Learning for Proactive Threat Detection." Journal of Engineering Research and Reports 27, no. 4 (2025): 144–65. https://doi.org/10.9734/jerr/2025/v27i41463.
Full textKummerow, André, Esrom Abrha, Markus Eisenbach, and Dennis Rösch. "Unsupervised Anomaly Detection and Explanation in Network Traffic with Transformers." Electronics 13, no. 22 (2024): 4570. http://dx.doi.org/10.3390/electronics13224570.
Full textAkram, Urooj, Wareesa Sharif, Mobeen Shahroz, et al. "IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System." Sensors 23, no. 14 (2023): 6379. http://dx.doi.org/10.3390/s23146379.
Full textAbdou Vadhil, Fatimetou, Mohamed Lemine Salihi, and Mohamedade Farouk Nanne. "Machine learning-based intrusion detection system for detecting web attacks." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 711. http://dx.doi.org/10.11591/ijai.v13.i1.pp711-721.
Full textGuo, Derui, and Yufei Xie. "Research on Network Intrusion Detection Model Based on Hybrid Sampling and Deep Learning." Sensors 25, no. 5 (2025): 1578. https://doi.org/10.3390/s25051578.
Full textHuang, Wanwei, Haobin Tian, Sunan Wang, Chaoqin Zhang, and Xiaohui Zhang. "Integration of simulated annealing into pigeon inspired optimizer algorithm for feature selection in network intrusion detection systems." PeerJ Computer Science 10 (July 16, 2024): e2176. http://dx.doi.org/10.7717/peerj-cs.2176.
Full textKareem, Morenikeji Kabirat, Olaniyi Dada Aborisade, Saidat Adebukola Onashoga, Tole Sutikno, and Olaniyi Mathew Olayiwola. "Efficient model for detecting application layer distributed denial of service attacks." Bulletin of Electrical Engineering and Informatics 12, no. 1 (2023): 441–50. http://dx.doi.org/10.11591/eei.v12i1.3871.
Full textAbdulsalam, S. O., R. A. Ayofe, M. F. Edafeajiroke, J. F. Ajao, and R. S. Babatunde. "Development of an intrusion detection system using mayfly feature selection and artificial neural network algorithms." LAUTECH Journal of Engineering and Technology 8, no. 2 (2024): 148–60. http://dx.doi.org/10.36108/laujet/4202.81.0241.
Full textAlsyaibani, Omar Muhammad Altoumi, Ema Utami, Suwanto Raharjo, and Anggit Dwi Hartanto. "Stacked LSTM-GRU Model for Traffic Anomalies Detection." Telematika 15, no. 2 (2022): 81–91. http://dx.doi.org/10.35671/telematika.v15i2.1855.
Full textGong, Xingyu, Ke Cao, Na Li, and Pengtao Jia. "Network Anomaly Traffic Detection Algorithm Based on RIC-SC-DeCN." Computational Intelligence and Neuroscience 2022 (May 24, 2022): 1–9. http://dx.doi.org/10.1155/2022/8315442.
Full textJumabek, Alikhanov, SeungSam Yang, and YoungTae Noh. "CatBoost-Based Network Intrusion Detection on Imbalanced CIC-IDS-2018 Dataset." Journal of Korean Institute of Communications and Information Sciences 46, no. 12 (2021): 2191–97. http://dx.doi.org/10.7840/kics.2021.46.12.2191.
Full textVasilica, Bogdan-Valentin, Florin-Daniel Anton, Radu Pietraru, Silvia-Oana Anton, and Beatrice-Nicoleta Chiriac. "Enhancing Security in Smart Robot Digital Twins Through Intrusion Detection Systems." Applied Sciences 15, no. 9 (2025): 4596. https://doi.org/10.3390/app15094596.
Full textChimphlee, Witcha, and Siriporn Chimphlee. "Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 817. http://dx.doi.org/10.11591/ijai.v13.i1.pp817-826.
Full textChimphlee, Witcha, and Siriporn Chimphlee. "Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 817–26. https://doi.org/10.11591/ijai.v13.i1.pp817-826.
Full textAl-Dulaimi, Reem Talal Abdulhameed, and Ayça Kurnaz Türkben. "A Hybrid Tree Convolutional Neural Network with Leader-Guided Spiral Optimization for Detecting Symmetric Patterns in Network Anomalies." Symmetry 17, no. 3 (2025): 421. https://doi.org/10.3390/sym17030421.
Full textSongma, Surasit, Theera Sathuphan, and Thanakorn Pamutha. "Optimizing Intrusion Detection Systems in Three Phases on the CSE-CIC-IDS-2018 Dataset." Computers 12, no. 12 (2023): 245. http://dx.doi.org/10.3390/computers12120245.
Full textAlromaihi, Noora, Mohsen Rouached, and Aymen Akremi. "Design and Analysis of an Effective Architecture for Machine Learning Based Intrusion Detection Systems." Network 5, no. 2 (2025): 13. https://doi.org/10.3390/network5020013.
Full textBaklizi, Mahmoud Khalid, Issa Atoum, Mohammad Alkhazaleh, et al. "Web Attack Intrusion Detection System Using Machine Learning Techniques." International Journal of Online and Biomedical Engineering (iJOE) 20, no. 03 (2024): 24–38. http://dx.doi.org/10.3991/ijoe.v20i03.45249.
Full textAli, Zeeshan, Adnan Akram, Naeem Aslam, and Muhammad Saeed Khurram. "Supervised Learning Approach for Intrusion Detection in Unbalanced Network Traffic." VFAST Transactions on Software Engineering 13, no. 2 (2025): 01–12. https://doi.org/10.21015/vtse.v13i2.2116.
Full textGupta, Saksham, and Aditya Sharma. "CyberWatch: Deep Learning-Driven Network Intrusion Detection." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 01 (2024): 1–6. http://dx.doi.org/10.55041/ijsrem28322.
Full textSanthoshi, Polisheetty. "Revolutionizing Intrusion Detection: An Incremental Majority Voting Strategy with Machine Learning." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem42579.
Full textShyaa, Methaq A., Zurinahni Zainol, Rosni Abdullah, Mohammed Anbar, Laith Alzubaidi, and José Santamaría. "Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming Combiner." Sensors 23, no. 7 (2023): 3736. http://dx.doi.org/10.3390/s23073736.
Full textSiriporn, Chimphlee, and Chimphlee Witcha. "Machine learning to improve the performance of anomalybased network intrusion detection in big data." Machine learning to improve the performance of anomalybased network intrusion detection in big data 30, no. 2 (2023): 1106–19. https://doi.org/10.11591/ijeecs.v30.i2.pp1106-1119.
Full textNajafi Mohsenabad, Hadi, and Mehmet Ali Tut. "Optimizing Cybersecurity Attack Detection in Computer Networks: A Comparative Analysis of Bio-Inspired Optimization Algorithms Using the CSE-CIC-IDS 2018 Dataset." Applied Sciences 14, no. 3 (2024): 1044. http://dx.doi.org/10.3390/app14031044.
Full text