To see the other types of publications on this topic, follow the link: Cobaltocène.

Journal articles on the topic 'Cobaltocène'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cobaltocène.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yamashita, Yu, Samik Jhulki, Dinesh Bhardwaj, Elena Longhi, Shohei Kumagai, Shun Watanabe, Stephen Barlow, Seth R. Marder, and Jun Takeya. "Highly air-stable, n-doped conjugated polymers achieved by dimeric organometallic dopants." Journal of Materials Chemistry C 9, no. 12 (2021): 4105–11. http://dx.doi.org/10.1039/d0tc05931e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Tao, Hao Li, Huaxia Ban, Qiang Sun, Yan Shen, and Mingkui Wang. "Efficient CsSnI3-based inorganic perovskite solar cells based on a mesoscopic metal oxide framework via incorporating a donor element." Journal of Materials Chemistry A 8, no. 7 (2020): 4118–24. http://dx.doi.org/10.1039/c9ta11794f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kwak, In Hye, Hafiz Ghulam Abbas, Ik Seon Kwon, Yun Chang Park, Jaemin Seo, Min Kyung Cho, Jae-Pyoung Ahn, Hee Won Seo, Jeunghee Park, and Hong Seok Kang. "Intercalation of cobaltocene into WS2 nanosheets for enhanced catalytic hydrogen evolution reaction." Journal of Materials Chemistry A 7, no. 14 (2019): 8101–6. http://dx.doi.org/10.1039/c9ta01238a.

Full text
Abstract:
Cobaltocene-intercalated WS2 nanosheets exhibit excellent catalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Rui, San-Huang Ke, Weitao Yang, and Harold U. Baranger. "Cobaltocene as a spin filter." Journal of Chemical Physics 127, no. 14 (October 14, 2007): 141104. http://dx.doi.org/10.1063/1.2796151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ding, Yu, Yu Zhao, Yutao Li, John B. Goodenough, and Guihua Yu. "A high-performance all-metallocene-based, non-aqueous redox flow battery." Energy & Environmental Science 10, no. 2 (2017): 491–97. http://dx.doi.org/10.1039/c6ee02057g.

Full text
Abstract:
An all-metallocene based redox flow battery was constructed using ferrocene catholyte and cobaltocene anolyte with a working potential of ∼1.7 V. The potential can be lifted to 2.1 V via rational functionalization of metallocenes, showing the promise of metallocenes as electroactive materials for stationary energy storage.
APA, Harvard, Vancouver, ISO, and other styles
6

Knaak, Thomas, Manuel Gruber, Sarah Puhl, Florian Benner, Alejandra Escribano, Jürgen Heck, and Richard Berndt. "Interconnected Cobaltocene Complexes on Metal Surfaces." Journal of Physical Chemistry C 121, no. 48 (November 27, 2017): 26777–84. http://dx.doi.org/10.1021/acs.jpcc.7b07302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hernán, Lourdes, Julián Morales, Luis Sánchez, José L. Tirado, and Agustin R. González-Elipe. "Cobaltocene intercalation into misfit layer chalcogenides." J. Chem. Soc., Chem. Commun., no. 9 (1994): 1081–82. http://dx.doi.org/10.1039/c39940001081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beneš, L., J. Votinský, P. Lošťý, J. Kalousová, and J. Klikorka. "Cobaltocene Intercalate of the Layered SnSe2." physica status solidi (a) 89, no. 1 (May 16, 1985): K1—K4. http://dx.doi.org/10.1002/pssa.2210890144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Koley, Sayantanu, Sabyasachi Sen, and Swapan Chakrabarti. "A Novel Way to Enhance the Thermoelectric Efficiency of Carbon Nanotube through Cobaltocene‐decamethyl Cobaltocene Encapsulation." ChemistrySelect 5, no. 4 (January 31, 2020): 1539–46. http://dx.doi.org/10.1002/slct.201904866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

YU, YINXI, HAOBIN WANG, and SHAOWEI CHEN. "COMPUTATIONAL STUDY OF BRIDGE-MEDIATED INTERVALENCE ELECTRON TRANSFER II: COUPLINGS IN DIFFERENT METALLOCENE COMPLEXES." Journal of Theoretical and Computational Chemistry 11, no. 06 (December 2012): 1341–56. http://dx.doi.org/10.1142/s0219633612500915.

Full text
Abstract:
The constrained density functional theory (CDFT) was used to study bridge-mediated electron transfer processes in mixed-valence systems with two identical metallocene (cobaltocene, ruthenocene, and nickelocene) moieties linked by various bridge structures. Based on the electronic coupling matrix elements obtained from the CDFT calculations, the relationship between the bridge linkage and the effectiveness of intervalence transfer was discussed.
APA, Harvard, Vancouver, ISO, and other styles
11

Chauhan, Devika, Anuptha Pujari, Guangqi Zhang, Kinshuk Dasgupta, Vesselin N. Shanov, and Mark J. Schulz. "Effect of a Metallocene Catalyst Mixture on CNT Yield Using the FC-CVD Process." Catalysts 12, no. 3 (March 3, 2022): 287. http://dx.doi.org/10.3390/catal12030287.

Full text
Abstract:
This work studies synthesis of carbon nanotube (CNT) sheet using the high temperature (1400 °C) floating catalyst chemical vapor deposition (FC-CVD) method. Three metallocenes—ferrocene, nickelocene, cobaltocene—and their combinations are used as precursors for metal catalysts in the synthesis process. For the carbon source, an alcohol fuel, a combination of methanol and n-hexane (9:1), is used. First, the metallocenes were dissolved in the alcohol fuel. Then, the fuel mixture was injected into a tube furnace using an ultrasonic atomizer with Ar/H2 carrier gas in a ratio of about 12/1. The synthesis of CNTs from a combination of two or three metallocenes reduces the percentage of metal catalyst impurity in the CNT sheet. However, there is an increase in structural defects in the CNTs when using mixtures of two or three metallocenes as catalysts. Furthermore, the specific electrical conductivity of the CNT sheet was highest when using a mixture of ferrocene and cobaltocene as the catalyst. Overall, the multi-catalyst method described enables tailoring certain properties of the CNT sheet. However, the standard ferrocene catalyst seems most appropriate for large-scale manufacturing at the lowest cost.
APA, Harvard, Vancouver, ISO, and other styles
12

Choi, Jaewu, and P. A. Dowben. "Cobaltocene adsorption and dissociation on Cu(111)." Surface Science 600, no. 15 (August 2006): 2997–3002. http://dx.doi.org/10.1016/j.susc.2006.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lewandowski, Andrzej, Lukasz Waligora, and Maciej Galinski. "Electrochemical Behavior of Cobaltocene in Ionic Liquids." Journal of Solution Chemistry 42, no. 2 (February 2013): 251–62. http://dx.doi.org/10.1007/s10953-013-9957-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sakai, Hiroshi, Takashi Yamazaki, Nobuya Machida, Toshihiko Shigematsu, and Saburo Nasu. "Mössbauer Spectra of FePS3-Cobaltocene Intercalation Compound." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 341, no. 2 (April 1, 2000): 105–10. http://dx.doi.org/10.1080/10587250008026125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yan, Xun-Wang, Zhong-Bing Huang, Guo-Hua Zhong, and Hai-Qing Lin. "Pressure-induced ferromagnetic half-metallicity in cobaltocene." EPL (Europhysics Letters) 113, no. 2 (January 1, 2016): 27005. http://dx.doi.org/10.1209/0295-5075/113/27005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Manova, Elina, Anne Leaustic, Ivan Mitov, Danielle Gonbeau, and Rene Clement. "The NiPS3-Cobaltocene intercalation compound: A new ferromagnet." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 311, no. 1 (March 1998): 155–60. http://dx.doi.org/10.1080/10587259808042381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ignatov, A. Yu, Ya B. Losovyj, L. Carlson, D. LaGraffe, J. I. Brand, and P. A. Dowben. "Pairwise cobalt doping of boron carbides with cobaltocene." Journal of Applied Physics 102, no. 8 (October 15, 2007): 083520. http://dx.doi.org/10.1063/1.2799053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Carlson, L., D. LaGraffe, S. Balaz, A. Ignatov, Y. B. Losovyj, J. Choi, P. A. Dowben, and J. I. Brand. "Doping of boron carbides with cobalt, using cobaltocene." Applied Physics A 89, no. 1 (June 26, 2007): 195–201. http://dx.doi.org/10.1007/s00339-007-4086-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sergentu, Dumitru-Claudiu, Frédéric Gendron, and Jochen Autschbach. "Similar ligand–metal bonding for transition metals and actinides? 5f1 U(C7H7)2−versus 3dn metallocenes." Chemical Science 9, no. 29 (2018): 6292–306. http://dx.doi.org/10.1039/c7sc05373h.

Full text
Abstract:
A computational analysis of the electronic structure, bonding and magnetic properties in the 5f1 U(C7H7)2 complex vs. 3d metallocenes is performed. Notably, it is shown that the proton hyperfine coupling constant in U(C7H7)2 is the same in sign and magnitude to that of the 3d7 cobaltocene, but the two systems do not share a similar covalent metal–ligand bonding.
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Baiquan, Yan Zhuang, Xiongxiong Luo, Shansheng Xu, and Xiuzhong Zhou. "Controlled/“Living” Radical Polymerization of MMA Catalyzed by Cobaltocene." Macromolecules 36, no. 26 (December 2003): 9684–86. http://dx.doi.org/10.1021/ma035334y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, Chang Su, Stephanie Lee, Leonard L. Tinker, Stefan Bernhard, and Yueh-Lin Loo. "Cobaltocene-Doped Viologen as Functional Components in Organic Electronics." Chemistry of Materials 21, no. 19 (October 13, 2009): 4583–88. http://dx.doi.org/10.1021/cm901579h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Luo, Xiongxiong, Yan Zhuang, Xi Zhao, Min Zhang, Shansheng Xu, and Baiquan Wang. "Controlled/living radical polymerization of styrene catalyzed by cobaltocene." Polymer 49, no. 16 (July 2008): 3457–61. http://dx.doi.org/10.1016/j.polymer.2008.05.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pampaloni, Guido, and Ulrich Koelle. "Chemical and electrochemical studies on metal carbonyl/cobaltocene systems." Journal of Organometallic Chemistry 481, no. 1 (November 1994): 1–6. http://dx.doi.org/10.1016/0022-328x(94)85002-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Inoue, Yoshio, Jiro Ishikawa, Masaaki Taniguchi, and Harukichi Hashimoto. "Cobaltocene-Catalyzed Reaction of Carbon Dioxide with Propargyl Alcohols." Bulletin of the Chemical Society of Japan 60, no. 3 (March 1987): 1204–6. http://dx.doi.org/10.1246/bcsj.60.1204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Urones-Garrote, E., D. Ávila-Brande, N. A. Katcho, A. Gómez-Herrero, A. R. Landa-Cánovas, E. Lomba, and L. C. Otero-Díaz. "Spherical carbon nanoparticles produced by direct chlorination of cobaltocene." Carbon 45, no. 8 (July 2007): 1699–701. http://dx.doi.org/10.1016/j.carbon.2007.04.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Koo, Yun Hee, Ryo Yanagisawa, Won-Young Cha, Taniyuki Furuyama, Nagao Kobayashi, and Dongho Kim. "Electron photoejection from dianion of an expanded phthalocyanine." Journal of Porphyrins and Phthalocyanines 22, no. 05 (April 17, 2018): 437–42. http://dx.doi.org/10.1142/s1088424618500359.

Full text
Abstract:
Photoelectron ejection from the dianion of pentabenzotriazasmaragdyrin (PBTAS) which is an expanded phthalocyanine, is observed using femtosecond transient absorption spectroscopy. The PBTAS dianion was produced by chemical reduction using excess cobaltocene as a reductant, which was confirmed by their steady-state absorption spectrum as compared to the absorption spectrum obtained by electrochemical reduction, and characterized by magnetic circular dichroism (MCD). Upon photoexcitation of the PBTASdianion, the generation of a radical anion was confirmed by the characteristic absorption peaks that are observed at 950 and 1000 nm. The radical anion was relaxed to form a dianion with a time constant of 0.7 ps.
APA, Harvard, Vancouver, ISO, and other styles
27

Wöhrle, Dieter, Natascha Baziakina, Olga Suvorova, Sergey Makarov, Valentina Kutureva, Elena Schupak, and Günter Schnurpfeil. "Phthalocyanine coatings on silica and zinc oxide: Synthesis and their activities in the oxidation of sulfide." Journal of Porphyrins and Phthalocyanines 08, no. 12 (December 2004): 1390–401. http://dx.doi.org/10.1142/s1088424604000751.

Full text
Abstract:
The reactivity of phthalonitrile, tetrafluorophthalonitrile and 4,5-dibutoxyphthalonitrile with unmodified surfaces of ZnO and SiO 2 and with the modified systems SiO 2/ Cp 2 Co , ZnO / Cp 2 Co , SiO 2/ Zn ( AcAc )2 prepared by deposition of cobaltocene ( Cp 2 Co ) and zinc acetylacetonate Zn ( AcAc )2, was studied ("in-situ-synthesis") in processes of phthalocyanine coatings. The formation of structural uniform phthalocyanines on carriers were established by UV-vis and mass spectra. The compounds were used then to compare their catalytic and photocatalytic activities in the oxidation of sulfide as a test reaction.
APA, Harvard, Vancouver, ISO, and other styles
28

Schaper, T., and W. Preetz. "Darstellung, spektroskopische Charakterisierung und Kristallstruktur von Dicyclopentadienylcobalt-hexahydro-closo-hexaborat [(C5H5)Co(C5H4)B6H5Hfac]/ Synthesis, Spectroscopic Characterization and Crystal Structure of Dicyclopentadienyl- cobalt-hexahydro-closo-hexaborate [(C5H5)Co(C5H4)B6H5Hfac]." Zeitschrift für Naturforschung B 53, no. 8 (August 1, 1998): 819–22. http://dx.doi.org/10.1515/znb-1998-0806.

Full text
Abstract:
Abstract By reaction of [B6H6Hfac]- with cobaltocene in acetonitrile [(C5H5)Co(C5H4)B6H5Hfac] is formed. Its crystal structure has been determined by single crystal X-ray diffraction analysis (monoclinic, space group P21/n with a = 9.786(2), b = 9.726(2), c = 13.938(2) A, β = 107.2850(3)°, Z = 4). The B6 octahedron is slightly compressedoin the direction of the B-C bond by about 1%, with B-B bond lengths between 1.69 and 1.87 A. The 11B NMR spectrum exhibits a 1:4:1 pattern of a monosubstituted B6 cage. In the IR and Raman spectra characteristic B-H vibrations are observed.
APA, Harvard, Vancouver, ISO, and other styles
29

Zlatar, Matija, Carl-Wilhelm Schläpfer, Emmanuel Penka Fowe, and Claude A. Daul. "Density functional theory study of the Jahn-Teller effect in cobaltocene." Pure and Applied Chemistry 81, no. 8 (July 31, 2009): 1397–411. http://dx.doi.org/10.1351/pac-con-08-06-04.

Full text
Abstract:
A detailed discussion of the potential energy surface of bis(cyclopentadienyl)cobalt(II), cobaltocene, is given. Vibronic coupling coefficients are calculated using density functional theory (DFT). Results are in good agreement with experimental findings. On the basis of our calculation there is no second-order Jahn–Teller (JT) effect as predicted by group theory. The JT distortion can be expressed as a linear combination of all totally symmetric normal modes of the low-symmetry, minimum-energy conformation. The out-of-plane ring deformation is the most important mode. The JT distortion is analyzed by seeking the path of minimal energy of the adiabatic potential energy surface.
APA, Harvard, Vancouver, ISO, and other styles
30

Henrion, O., and W. Jaegermann. "Surface redox reactions of cobaltocene adsorbed onto pyrolytic graphite (HOPG)." Surface Science 387, no. 1-3 (October 1997): L1073—L1078. http://dx.doi.org/10.1016/s0039-6028(97)00514-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

MacInnes, Molly M., Sofiya Hlynchuk, Saurabh Acharya, Nicolai Lehnert, and Stephen Maldonado. "Reduction of Graphene Oxide Thin Films by Cobaltocene and Decamethylcobaltocene." ACS Applied Materials & Interfaces 10, no. 2 (December 14, 2017): 2004–15. http://dx.doi.org/10.1021/acsami.7b15599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Clerc, D. G., and D. A. Cleary. "Lithium intercalation into cobaltocene-intercalated tin disulfide (SnS2{CoCp2}x)." Chemistry of Materials 6, no. 1 (January 1994): 13–14. http://dx.doi.org/10.1021/cm00037a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bildstein, Benno, Andreas Hradsky, Karl-Hans Ongania, and Klaus Wurst. "Redox disproportionation and radical coupling products of formyl(pentamethyl)cobaltocene." Journal of Organometallic Chemistry 563, no. 1-2 (July 1998): 219–25. http://dx.doi.org/10.1016/s0022-328x(98)00567-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ibarz, Anna, Eliseo Ruiz, and Santiago Alvarez. "Theoretical study of the intercalation of cobaltocene in metal chalcogenides." Journal of Materials Chemistry 8, no. 8 (1998): 1893–900. http://dx.doi.org/10.1039/a802240b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hwang, Byunghyun, Min-Sik Park, and Ketack Kim. "Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries." ChemSusChem 8, no. 2 (November 26, 2014): 310–14. http://dx.doi.org/10.1002/cssc.201403021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Clerc, D. G., and D. A. Cleary. "A study of the mechanism of cobaltocene intercalation in Cd2P2S6." Journal of Physics and Chemistry of Solids 56, no. 1 (January 1995): 69–78. http://dx.doi.org/10.1016/0022-3697(94)00138-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fiaud, Jean-Claude, Remi Chauvin, and Robert Bloch. "Flash-vacuum pyrolysis of η5-cyclopentadienyl-dicarbonylcobalt. formation of cobaltocene." Journal of Organometallic Chemistry 315, no. 1 (November 1986): C32—C34. http://dx.doi.org/10.1016/0022-328x(86)80427-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Richer, G., and C. Sandorfy. "The far-ultraviolet absorption spectra of ferrocene, cobaltocene, and nickelocene." Journal of Molecular Structure: THEOCHEM 123, no. 3-4 (August 1985): 317–27. http://dx.doi.org/10.1016/0166-1280(85)80174-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ruhlandt-Senge, Karin, Irina Sens, and Ulrich Müller. "Die Bildung von [Co(C5H5)2]NO3 und [Co(C5H5)2]2[Co(NCO)4] aus Cobaltocen, Ozon und Acetonitril sowie deren Kristallstrukturen / Formation of [Co(C5H5)2]NO3 and [Co(C5H5)2]2[Co(NCO)4] from Cobaltocene, Ozone and Acetonitrile and their Crystal Structures." Zeitschrift für Naturforschung B 46, no. 12 (December 1, 1991): 1689–93. http://dx.doi.org/10.1515/znb-1991-1218.

Full text
Abstract:
The title compounds were obtained by the reaction of cobaltocene with ozone in acetonitrile at -40°C. Their crystal structures were determined by X-ray diffraction. [Co(C5H5)2]NO3: orthorhombic, space group Pnma, a = 1566.4(3), b = 831.6(2), c = 765.7(1) pm, Z = 4, R = 0.055 for 587 observed unique reflexions. [Co(C5H5)2]2[Co(NCO)4]: monoclinic, P 2,/c, a = 1792.6(8), b = 2079.2(9), c = 1311(1) pm, β = 99.18(6)°, Ζ = 8, R = 0.067 for 2994 reflexions. Both compounds contain sandwich-type cobalticenium ions. The cyanato group of the [Co(NCO)4]2- ions are bonded to Co via their N atoms with CoNC angles ranging between 160 and 173°.
APA, Harvard, Vancouver, ISO, and other styles
40

Garcia, Beatriz Ortega, Oxana Kharissova, Francisco Servando Aguirre-Tostado, and Rasika Dias. "Synthesis and Study of Carbon Nanotubes by the Spray Pyrolysis Method Using Different Carbon Sources." MRS Proceedings 1752 (2015): 31–38. http://dx.doi.org/10.1557/opl.2015.208.

Full text
Abstract:
ABSTRACTAccording to the reports of Z.E. Horvath et al [1] and Liu Yun-quan et al [5], carbon nanotubes can be synthesized by spray pyrolysis from different carbon sources (n-pentane, n-hexane, n-heptane, cyclohexane, toluene and acrylonitrile) and several metallocene catalysts (ferrocene, cobaltocene and nickelocene). This paper describes two different existing methods for growth of carbon nanotubes and the influence of applied parameters (oven temperature, synthesis time, catalyst concentration, carrier gas flow and solution flow) on the CNT's morphology. Also, a possible influence of number of carbons in carbon sources and structures of their compounds (linear or aromatic) on properties of formed carbon nanotubes. Transmission Electron Microscopy (TEM), Infrared Spectroscopy (FTIR) and Raman spectroscopy were applied for characterization of obtained materials.
APA, Harvard, Vancouver, ISO, and other styles
41

Fronzoni, G., M. Stener, S. Furlan, and P. Decleva. "Theoretical study of the photoionization shape resonances of cobaltocene and nickelocene." Chemical Physics 273, no. 2-3 (November 2001): 117–33. http://dx.doi.org/10.1016/s0301-0104(01)00494-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Formstone, C. A., E. T. FitzGerald, P. A. Cox, and D. O'Hare. "Photoelectron spectroscopy of the tin dichalcogenides SnS2-xSex intercalated with cobaltocene." Inorganic Chemistry 29, no. 19 (September 1990): 3860–66. http://dx.doi.org/10.1021/ic00344a041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tanaka, H., H. Yamakado, and K. Ohno. "Penning ionization of cobaltocene by collision with He*(23S) metastable atoms." Journal of Electron Spectroscopy and Related Phenomena 88-91 (March 1998): 149–54. http://dx.doi.org/10.1016/s0368-2048(97)00227-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hernan, L., J. Morales, L. Sanchez, J. L. Tirado, J. P. Espinos, and A. R. Gonzalez Elipe. "Diffraction and XPS Studies of Misfit Layer Chalcogenides Intercalated with Cobaltocene." Chemistry of Materials 7, no. 8 (August 1995): 1576–82. http://dx.doi.org/10.1021/cm00056a026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Torres-Gómez, Luis Alfonso, Guadalupe Barreiro-Rodríguez, and Francisco Méndez-Ruíz. "Vapour pressures and enthalpies of sublimation of ferrocene, cobaltocene and nickelocene." Thermochimica Acta 124 (February 1988): 179–83. http://dx.doi.org/10.1016/0040-6031(88)87020-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chan, Calvin K., Antoine Kahn, Qing Zhang, Stephen Barlow, and Seth R. Marder. "Incorporation of cobaltocene as an n-dopant in organic molecular films." Journal of Applied Physics 102, no. 1 (July 2007): 014906. http://dx.doi.org/10.1063/1.2752145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bochkarev, M. N., and M. E. Burin. "Neodymium and dysprosium diiodides in the synthesis of vanadocene and cobaltocene." Russian Chemical Bulletin 53, no. 10 (October 2004): 2179–81. http://dx.doi.org/10.1007/s11172-005-0094-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Titov, A. N., O. N. Suvorova, S. Yu Ketkov, S. G. Titova, and A. I. Merentsov. "Synthesis and investigation of titanium diselenide intercalated with ferrocene and cobaltocene." Physics of the Solid State 48, no. 8 (August 2006): 1466–71. http://dx.doi.org/10.1134/s1063783406080075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

DuBois, Daniel L., Charles W. Eigenbrot, Alex Miedaner, James C. Smart, and R. Curtis Haltiwanger. "Synthesis, molecular structure, and molybdenum complexes of 1,1'-bis(diphenylphosphino)cobaltocene." Organometallics 5, no. 7 (July 1986): 1405–11. http://dx.doi.org/10.1021/om00138a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hwang, Byunghyun, Min-Sik Park, and Ketack Kim. "Corrigendum: Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries." ChemSusChem 8, no. 10 (May 22, 2015): 1641. http://dx.doi.org/10.1002/cssc.201500619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography