Academic literature on the topic 'Commutative semigroups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Commutative semigroups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Commutative semigroups"

1

G, Ramesh, and Mahendran S. "Some Properties of Commutative Ternary Right Almost Semigroups." Indian Journal of Science and Technology 16, no. 45 (2023): 4255–66. https://doi.org/10.17485/IJST/v16i45.1937.

Full text
Abstract:
Abstract <strong>Objective/Background:</strong>&nbsp;In this paper, the concept of commutative ternary right almost semigroups is introduced. The properties of ternary right almost semigroups and commutative ternary right almost semigroups are also discussed. Finally, regular only and the regularity are also explored in ternary right almost semigroups.&nbsp;<strong>Methods:</strong>&nbsp;Properties of ternary right almost semigroup have been employed to carry out this research work to obtain all the characterizations of commutative ternary right almost semigroups, regular and normal corresponding to that ternary semigroup.<strong>&nbsp;Findings:</strong>&nbsp;We call an algebraic structure is a ternary semigroup if is a Semigroup, is a ternary semigroup under ternary multiplication. Let be a groupoid. Then it is a right almost semigroup ( -semigroup), if we have for all (i) -semigroup - -cyclic if for all (ii) -semigroup - -cyclic if for all In this ternary structure we try to study commutative ternary semigroups concept and obtain their properties.<strong>&nbsp;Novelty:</strong>&nbsp;In this study, we define the notion of some properties of commutative ternary right almost semigroups, regular and normal. We also find some of their interesting results. AMS Subject Classification code: 20M12, 20N10 <strong>Keywords:</strong>&nbsp;Ternary semigroups, Ternary right almost semigroup, Commutative ternary right almost semigroups, Quasi- commutative ternary right almost semigroups, Regular ternary right semigroups and Normal ternary right almost semigroups &nbsp;
APA, Harvard, Vancouver, ISO, and other styles
2

Et. al., Dr D. Mrudula Devi. "A characterization of Commutative Semigroups." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (2021): 5150–55. http://dx.doi.org/10.17762/turcomat.v12i3.2065.

Full text
Abstract:
This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup is u – inverse semigroup. We will also prove that if (S,.) is a H - semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.
APA, Harvard, Vancouver, ISO, and other styles
3

Gigoń, Roman S. "Some results on $$\mathcal {L}$$-commutative semigroups." Semigroup Forum 101, no. 2 (2020): 385–99. http://dx.doi.org/10.1007/s00233-020-10099-1.

Full text
Abstract:
Abstract We prove first that every $$\mathcal {H}$$ H -commutative semigroup is stable. Using this result [and some results from the standard text (Nagy, Special classes of semigroups, Kluwer, Dordrecht, 2001)], we give two equivalent conditions for a semigroup to be an archimedean $$\mathcal {H}$$ H -commutative semigroup containing an idempotent element. It turns out that this result can be partially extended to $$\mathcal {L}$$ L -commutative semigroups and quasi-commutative semigroups.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmadidelir, K., C. M. Campbell, and H. Doostie. "Almost Commutative Semigroups." Algebra Colloquium 18, spec01 (2011): 881–88. http://dx.doi.org/10.1142/s1005386711000769.

Full text
Abstract:
The commutativity degree of groups and rings has been studied by certain authors since 1973, and the main result obtained is [Formula: see text], where Pr (A) is the commutativity degree of a non-abelian group (or ring) A. Verifying this inequality for an arbitrary semigroup A is a natural question, and in this paper, by presenting an infinite class of finite non-commutative semigroups, we prove that the commutativity degree may be arbitrarily close to 1. We name this class of semigroups the almost commutative or approximately abelian semigroups.
APA, Harvard, Vancouver, ISO, and other styles
5

Dudek, Józef, and Andrzej Kisielewicz. "Totally commutative semigroups." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 51, no. 3 (1991): 381–99. http://dx.doi.org/10.1017/s144678870003456x.

Full text
Abstract:
AbstractA semigroup is totally commutative if each of its essentially binary polynomials is commutative, or equivalently, if in every polynomial (word) every two essential variables commute. In the present paper we describe all varieties (equational classes) of totally commutative semigroups, lattices of subvarieties for any variety, and their free spectra.
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Gaohua, Huadong Su, and Beishang Ren. "Commutative Zero-divisor Semigroups of Graphs with at Most Four Vertices." Algebra Colloquium 16, no. 02 (2009): 341–50. http://dx.doi.org/10.1142/s1005386709000339.

Full text
Abstract:
The zero-divisor graph of a commutative semigroup with zero is a graph whose vertices are the nonzero zero-divisors of the semigroup, with two distinct vertices joined by an edge in case their product in the semigroup is zero. In this paper, we study commutative zero-divisor semigroups determined by graphs. We determine all corresponding zero-divisor semigroups of all simple graphs with at most four vertices.
APA, Harvard, Vancouver, ISO, and other styles
7

Kelarev, A. V. "The regular radical of semigroup rings of commutative semigroups." Glasgow Mathematical Journal 34, no. 2 (1992): 133–41. http://dx.doi.org/10.1017/s001708950000865x.

Full text
Abstract:
A description of regular group rings is well known (see [12]). Various authors have considered regular semigroup rings (see [17], [8], [10], [11], [4]). These rings have been characterized for many important classes of semigroups, although the general problem turns out to be rather difficult and still has not got a complete solution. It seems natural to describe the regular radical in semigroup rings for semigroups of the classes mentioned. In [10], the regular semigroup rings of commutative semigroups were described. The aim of the present paper is to characterize the regular radical ρ(R[S]) for each associative ring R and commutative semigroup S.
APA, Harvard, Vancouver, ISO, and other styles
8

Easdown, David, and Victoria Gould. "Commutative orders." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 126, no. 6 (1996): 1201–16. http://dx.doi.org/10.1017/s0308210500023362.

Full text
Abstract:
A subsemigroup S of a semigroup Q is a left (right) order in Q if every q ∈ Q can be written as q = a*b(q = ba*) for some a, b ∈S, where a* denotes the inverse of a in a subgroup of Q and if, in addition, every square-cancellable element of S lies in a subgroup of Q. If S is both a left order and a right order in Q, we say that S is an order in Q. We show that if S is a left order in Q and S satisfies a permutation identity xl…xn = x1π…xnπ where 1 &lt; 1π and nπ&lt;n, then S and Q are commutative. We give a characterisation of commutative orders and decide the question of when one semigroup of quotients of a commutative semigroup is a homomorphic image of another. This enables us to show that certain semigroups have maximum and minimum semigroups of quotients. We give examples to show that this is not true in general.
APA, Harvard, Vancouver, ISO, and other styles
9

Dekov, Deko V. "Embeddability and the word problem." Journal of Symbolic Logic 60, no. 4 (1995): 1194–98. http://dx.doi.org/10.2307/2275882.

Full text
Abstract:
Let be a finitely presented variety with operations Ω and let be the variety having the same set of operations Ω but defined by the empty set of identities. A partial-algebra is a set P with a set of mappings containing for each n-ary operation f of Ω a mapping , where D ⊆ Pn. An incomplete -algebra is a partial -algebra which satisfies the defining identities of , insofar as they can be applied to the partial operations of (Trevor Evans [4, p. 67]). We call an incomplete -algebra a partial Evans-algebra if it can be embedded in a member of the variety .If the class of all partial Evans -algebras is (first-order) finitely axiomatizable, then the word problem for the variety is solvable. (Evans [4, 5]). In 1953 Evans [5, p. 79] raised the question of whether the converse is true. In this paper we show that the answer is in the negative.Let CSg denote the variety of commutative semigroups. We call an incomplete CSg-algebra an incomplete commutative semigroup and we call a partial Evans CSg-algebra a partial Evans commutative semigroup. It is known (A. I. Malcev [9] see also Evans [6]) that the variety of commutative semigroups has solvable word problem. We show (Theorem 1) that the class of all partial Evans commutative semigroups is not finitely axiomatizable. Therefore the solvability of the word problem for the variety of commutative semigroups does not imply finite axiomatizability of the class of all partial Evans commutative semigroups.
APA, Harvard, Vancouver, ISO, and other styles
10

Easdown, D., and W. D. Munn. "On semigroups with involution." Bulletin of the Australian Mathematical Society 48, no. 1 (1993): 93–100. http://dx.doi.org/10.1017/s0004972700015495.

Full text
Abstract:
A semigroup S with an involution * is called a special involution semigroup if and only if, for every finite nonempty subset T of S,.It is shown that a semigroup is inverse if and only if it is a special involution semigroup in which every element invariant under the involution is periodic. Other examples of special involution semigroups are discussed; these include free semigroups, totally ordered cancellative commutative semigroups and certain semigroups of matrices. Some properties of the semigroup algebras of special involution semigroups are also derived. In particular, it is shown that their real and complex semigroup algebras are semiprimitive.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Commutative semigroups"

1

Moreira, Joel Moreira. "Partition regular polynomial patterns in commutative semigroups." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1467131194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cordeiro, Luiz Gustavo. "Soficity and Other Dynamical Aspects of Groupoids and Inverse Semigroups." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38022.

Full text
Abstract:
This thesis is divided into four chapters. In the first one, all the pre-requisite theory of semigroups and groupoids is introduced, as well as a few new results - such as a short study of ∨-ideals and quotients in distributive semigroups and a non-commutative Loomis-Sikorski Theorem. In the second chapter, we motivate and describe the sofic property for probability measure-preserving groupoids and prove several permanence properties for the class of sofic groupoids. This provides a common ground for similar results in the particular cases of groups and equivalence relations. In particular, we prove that soficity is preserved under finite index extensions of groupoids. We also prove that soficity can be determined in terms of the full group alone, answering a question by Conley, Kechris and Tucker-Drob. In the third chapter we turn to the classical problem of reconstructing a topological space from a suitable structure on the space of continuous functions. We prove that a locally compact Hausdorff space can be recovered from classes of functions with values on a Hausdorff space together with an appropriate notion of disjointness, as long as some natural regularity hypotheses are satisfied. This allows us to recover (and even generalize) classical theorem by Kaplansky, Milgram, Banach-Stone, among others, as well as recent results of the similar nature, and obtain new consequences as well. Furthermore, we extend the techniques used here to obtain structural theorems related to topological groupoids. In the fourth and final chapter, we study dynamical aspects of partial actions of inverse semigroups, and in particular how to construct groupoids of germs and (partial) crossed products and how do they relate to each other. This chapter is based on joint work with Viviane Beuter.
APA, Harvard, Vancouver, ISO, and other styles
3

Fransson, Linnea. "Monomial Cellular Automata : A number theoretical study on two-dimensional cellular automata in the von Neumann neighbourhood over commutative semigroups." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-51865.

Full text
Abstract:
In this report, we present some of the results achieved by investigating two-dimensional monomial cellular automata modulo m, where m is a non-zero positive integer. Throughout the experiments, we work with the von Neumann neighbourhood and apply the same local rule based on modular multiplication. The purpose of the study is to examine the behaviour of these cellular automata in three different environments, (i.e. the infinite plane, the finite plane and the torus), by means of elementary number theory. We notice how the distance between each pair of cells with state 0 influences the evolution of the automaton and the convergence of its configurations. Similar impact is perceived when the cells attain the values of Euler's-<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cphi" />function or of integers with common divisors with m, when m &gt; 2. Alongside with the states of the cells, the evolution of the automaton, as well as the convergence of its configurations, are also decided by the values attributed to m, whether it is a prime, a prime power or a multiple of primes and/or prime powers.
APA, Harvard, Vancouver, ISO, and other styles
4

Alsulami, Saud M. A. "On Evolution Equations in Banach Spaces and Commuting Semigroups." Ohio University / OhioLINK, 2005. http://www.ohiolink.edu/etd/view.cgi?ohiou1126042587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Choi, Yemon. "Cohomology of commutative Banach algebras and l¹-semigroup algebras." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Malec, Sara. "Intersection Algebras and Pointed Rational Cones." Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/math_diss/14.

Full text
Abstract:
In this dissertation we study the algebraic properties of the intersection algebra of two ideals I and J in a Noetherian ring R. A major part of the dissertation is devoted to the finite generation of these algebras and developing methods of obtaining their generators when the algebra is finitely generated. We prove that the intersection algebra is a finitely generated R-algebra when R is a Unique Factorization Domain and the two ideals are principal, and use fans of cones to find the algebra generators. This is done in Chapter 2, which concludes with introducing a new class of algebras called fan algebras. Chapter 3 deals with the intersection algebra of principal monomial ideals in a polynomial ring, where the theory of semigroup rings and toric ideals can be used. A detailed investigation of the intersection algebra of the polynomial ring in one variable is obtained. The intersection algebra in this case is connected to semigroup rings associated to systems of linear diophantine equations with integer coefficients, introduced by Stanley. In Chapter 4, we present a method for obtaining the generators of the intersection algebra for arbitrary monomial ideals in the polynomial ring.
APA, Harvard, Vancouver, ISO, and other styles
7

Kriegler, Christoph. "Spectral multipliers, R-bounded homomorphisms and analytic diffusion semigroups." Phd thesis, Université de Franche-Comté, 2009. http://tel.archives-ouvertes.fr/tel-00461310.

Full text
Abstract:
Ce travail traite du calcul fonctionnel des op\'rateurs dont le spectre est contenu dans les nombres r\'{e}els positifs. On s'int\'resse en particulier aux th\'{e}or\`{e}mes de multiplicateurs spectraux.\\ On aborde le calcul abstrait et optimal, c'est-\`{a}-dire les homomorphismes $u : C(K) \to B(X)$. Si $X$ est un espace de Hilbert, alors l'extension naturelle $\hat{u} : C(K;[u]') \to B(X)$ de $u$ sur l'ensemble des op\'rateurs est \` nouveau born\'{e}e. En utilisant la $R$-bornitude, un renforcement de la bornitude uniforme, on donne une extension de ce r\'sultat \` des espaces de Banach g\'{e}n\'raux $X$ et on l'applique au calcul $H$ infini et aux bases inconditionnelles dans des espaces $L^p$.\\ On d\'{e}veloppe des calculs associ\'s \` des op\'{e}rateurs sectoriels. Les exemples classiques en sont les th\'or\`mes spectraux de Mihlin et H\"{o}rmander donnant des classes de fonctions lisses qui forment des multiplicateurs de Fourier sur $L^p$. Ces th\'{e}or\`{e}mes ont d\'{e}j\`{a} \'{e}t\'{e} \'{e}tendus \`{a} une large classe d'op\'{e}rateurs de type Laplacien. On les regroupe sous une forme unifi\'{e}e gr\^{a}ce \`{a} la th\'{e}orie des op\'{e}rateurs: on compare le calcul de Mihlin et de H\"rmander \` la bornitude des familles classiques associ\'{e}es \`{a} un op\'rateur sectoriel.\\ Pour la famille des puissances imaginaires, on donne une caract\'{e}risation de leur croissance polynomiale en fonction d'un calcul fonctionnel qui raffine le calcul de Mihlin.\\ On \'tudie des semi-groupes de diffusion qui agissent sur une \'{e}chelle d'espaces de Banach. Il est connu que le semi-groupe a une extension analytique sur un secteur dans le plan complexe si cette \'chelle consiste des espaces $L^p$. On donne une g\'{e}n\'ralisation de ce r\'{e}sultat \`{a} des espaces $L^p$ non commutatifs en utilisant la th\'orie des espaces d'op\'{e}rateurs.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Xumin. "Functional and harmonic analysis of noncommutative Lp spaces associated to compact quantum groups." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD040.

Full text
Abstract:
Cette thèse a pour but d'étudier l'analyse sur les groupes quantiques compacts. Elle se compose de deux parties. La première présente la classification des semi-groupes de Markov invariants sur ces espaces homogènes quantiques. Les générateurs de ces semi-groupes sont considérés comme des opérateurs de Laplace sur ces espaces.La sphère classique , la sphère libre et la sphère semi-libérée sont considérées comme des exemples et les générateurs de semi-groupes de Markov sur ces sphères sont classés. Nous calculons aussi les dimensions spectrales des trois familles de sphères en fonction du comportement asymptotique des valeurs propres de leur opérateur de Laplace.Dans la deuxième partie, nous étudions la convergence des séries de Fourier pour les groupes non abéliens et les groupes quantiques. Il est bien connu qu'un certain nombre de propriétés d'approximation de groupes peuvent être interprétées comme des méthodes de sommation et de convergence moyenne de séries de Fourier non commutatives associées. Nous établissons un critère général d'inégalités maximales pour les identités approximatives de multiplicateurs non commutatifs de Fourier. En conséquence, nous prouvons que pour tout groupe dénombrable discret moyennable, il existe une suite de fonctions définies positives à support fini, telle que les multiplicateurs de Fourier associés sur les espaces Lp non commutatifs satisfassent à la convergence ponctuelle. Nos résultats s'appliquent également à la convergence presque partout des séries de Fourier de fonctions Lp sur des groupes compacts non-abéliens. D'autre part, nous obtenons des bornes indépendantes de la dimension pour les inégalités maximales de Hardy-Littlewood non commutatives dans l'espace à valeurs opérateurs associées à des corps convexes<br>This thesis is devoted to studying the analysis on compact quantum groups. It consists of two parts. First part presents the classification of invariant quantum Markov semigroups on these quantum homogeneous spaces. The generators of these semigroups are viewed as Laplace operators on these spaces.The classical sphere, the free sphere, and the half-liberated sphere are considered as examples and the generators of Markov semigroups on these spheres are classified. We compute spectral dimensions for the three families of spheres based on the asymptotic behavior of the eigenvalues of their Laplace operator.In the second part, we study of convergence of Fourier series for non-abelian groups and quantum groups. It is well-known that a number of approximation properties of groups can be interpreted as some summation methods and mean convergence of associated noncommutative Fourier series. We establish a general criterion of maximal inequalities for approximative identities of noncommutative Fourier multipliers. As a result, we prove that for any countable discrete amenable group, there exists a sequence of finitely supported positive definite functions, so that the associated Fourier multipliers on noncommutative Lp-spaces satisfy the pointwise convergence. Our results also apply to the almost everywhere convergence of Fourier series of Lp-functions on non-abelian compact groups. On the other hand, we obtain the dimension free bounds of noncommutative Hardy-Littlewood maximal inequalities in the operator-valued Lp space associated with convex bodies
APA, Harvard, Vancouver, ISO, and other styles
9

Autord, Marc. "Aspects algorithmiques du retournement de mot." Phd thesis, Université de Caen, 2009. http://tel.archives-ouvertes.fr/tel-00439023.

Full text
Abstract:
Première partie : Le retournement de mot est une opération de réécriture liée à une présentation (de semigroupe dans ce travail). Dans les bons cas, le retournement donne une solution au problème de mot. Sinon, il existe un moyen d'ajouter des relations à une présentation pour la rendre complète. D'un autre côté, les bases de Gröbner fournissent un moyen de compléter une présentation qui résout le problème de mot. On montre que les deux méthodes sont différentes ; une classification des divergences est proposée. On introduit ensuite une extension du retournement pour contourner le défaut de complétude de certaines présentations et on montre son efficacité sur la présentation d'Heisenberg — qui est incomplète. Deuxième partie : On se restreint aux présentations d'Artin-Tits des monoïdes de tresses. On montre que la distance combinatoire maximale entre deux mots de tresse équivalents est au moins quartique en leur largeur. On montre des critères simples pour qu'un diagramme de van Kampen (ou un diagramme de retournement) réalise la distance combinatoire entre deux mots équivalents. On calcule ensuite des bornes pour deux nombres liés au retournement de mot, et plus particulièrement pour les mots de tresse de largeurs arbitrairement grandes : le premier est, partant d'un mot, la longueur maximale d'une suite de retournements et le second la longueur du mot terminal (qui existe et est unique) d'une telle suite. Pour le premier, on montre une minoration quartique en la longueur du mot de départ ; pour le second, on établit une majoration cubique en la longueur.
APA, Harvard, Vancouver, ISO, and other styles
10

Meisner, Maëlis. "Étude unifiée d'équations aux dérivées partielles de type elliptique régies par des équations différentielles à coefficients opérateurs dans un cadre non commutatif : applications concrètes dans les espaces de Hölder et les espaces Lp." Phd thesis, Université du Havre, 2012. http://tel.archives-ouvertes.fr/tel-00712008.

Full text
Abstract:
L'objectif de ce travail est l'étude des équations différentielles complètes du second ordre de type elliptique à coefficients opérateurs dans un espace de Banach X quelconque. Une application concrète de ces équations est détaillée, il s'agit d'un problème de transmission du potentiel électrique dans une cellule biologique où la membrane constitue une couche mince. L'originalité de ce travail réside particulièrement dans le fait que les opérateurs non bornés considérés ne commutent pas nécessairement. Une nouvelle hypothèse dite de non commutativité est alors introduite. L'analyse est faite dans deux cadres fonctionnels distincts: les espaces de Hölder et les espaces Lp (avec X un espace UMD). L'équation est d'abord étudiée sur la droite réelle puis sur un intervalle borné avec conditions aux limites de Dirichlet. On donne des résultats d'existence, d'unicité et de régularité maximale de la solution classique sous des conditions sur les données dans des espaces d'interpolation. Les techniques utilisées sont basées sur la théorie des semi-groupes, le calcul fonctionnel de Dunford et la théorie de l'interpolation. Ces résultats sont tous appliqués à des équations aux dérivées partielles concrètes de type elliptique ou quasi-elliptique.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Commutative semigroups"

1

Grillet, P. A. Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grillet, Pierre Antoine. The Cohomology of Commutative Semigroups. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08212-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trenčevski, Kostadin. Complex commutative vector valued groups. Macedonian Academy of Sciences and Arts, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Commutative semigroups. Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grillet, P. A. Commutative Semigroups. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grillet, P. A. Commutative Semigroups. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grillet, P. A. Commutative Semigroups (Advances in Mathematics). Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dunkl, C. F., and D. E. Ramirez. Representations of Commutative Semitopological Semigroups. Springer London, Limited, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sneddon, I. N., M. Stark, K. A. H. Gravett, and L. Rédei. Theory of Finitely Generated Commutative Semigroups. Elsevier Science & Technology Books, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grillet, Pierre Antoine. Cohomology of Commutative Semigroups: An Overview. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Commutative semigroups"

1

Matsuda, Ryûki. "Semigroups and Semigroup Rings." In Commutative Ring Theory. CRC Press, 2023. http://dx.doi.org/10.1201/9781003421924-37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nagy, Attila. "Commutative semigroups." In Special Classes of Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3316-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shevrin, Lev N., and Alexander J. Ovsyannikov. "Commutative Semigroups." In Semigroups and Their Subsemigroup Lattices. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8751-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grillet, P. A. "Subcomplete Semigroups." In Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grillet, P. A. "Cancellative Semigroups." In Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grillet, P. A. "Subcomplete Semigroups." In Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grillet, P. A. "Elementary Properties." In Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grillet, P. A. "Group-Free Semigroups." In Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grillet, P. A. "Commutative Semigroup Cohomology." In Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grillet, P. A. "The Overpath Method." In Commutative Semigroups. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3389-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Commutative semigroups"

1

Chen, Zhaoying, and Xiu Qing Wang. "Extension of cancelable commutative semigroups." In ICBDT 2022: 2022 5th International Conference on Big Data Technologies. ACM, 2022. http://dx.doi.org/10.1145/3565291.3565314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chowdhury, M. M. "An Authentication Scheme Using Non-Commutative Semigroups." In Third International Symposium on Information Assurance and Security. IEEE, 2007. http://dx.doi.org/10.1109/isias.2007.4299760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chowdhury, M. M. "An Authentication Scheme Using Non-Commutative Semigroups." In Third International Symposium on Information Assurance and Security. IEEE, 2007. http://dx.doi.org/10.1109/ias.2007.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

RÖSLER, MARGIT, and MICHAEL VOIT. "DEFORMATIONS OF CONVOLUTION SEMIGROUPS ON COMMUTATIVE HYPERGROUPS." In Proceedings of the Third German-Japanese Symposium. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701503_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fagnola, Franco, and Michael Skeide. "Restrictions of CP-semigroups to maximal commutative subalgebras." In Noncommutative Harmonic Analysis with Applications to Probability. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Gaohua, Huadong Su, and Yangjiang Wei. "Commutative rings and zero-divisor semigroups of regular polyhedrons." In 5th China–Japan–Korea International Ring Theory Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812818331_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

EMEL’YANOV, EDUARD YU, and MANFRED P. H. WOLFF. "ASYMPTOTIC BEHAVIOUR OF MARKOV SEMIGROUPS ON NON COMMUTATIVE L1-SPACES." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704290_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huynh, D. T. "The complexity of the equivalence problem for commutative semigroups and symmetric vector addition systems." In the seventeenth annual ACM symposium. ACM Press, 1985. http://dx.doi.org/10.1145/22145.22190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suga, Yuji. "A classification for commutative three-element semigroups with local XOR structure and its implementability of card-based protocols." In 2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). IEEE, 2023. http://dx.doi.org/10.1109/icce-taiwan58799.2023.10226886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suga, Yuji. "A classification proof for commutative three-element semigroups with local AND structure and its application to card-based protocols." In 2022 IEEE International Conference on Consumer Electronics - Taiwan. IEEE, 2022. http://dx.doi.org/10.1109/icce-taiwan55306.2022.9869063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!