Dissertations / Theses on the topic 'Complex Machinery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Complex Machinery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bentley, Darren. "Intelligent control of complex soil tillage machinery." Thesis, Cranfield University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399714.
Full textLin, Tsan-hwan. "Operation analysis and design of large complex conveyor networks." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/24300.
Full textHeian, Mats Johan. "Factors Influencing Machinery System Selection for Complex Operational Profiles." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25881.
Full textZhao, Wenyu. "A Probabilistic Approach for Prognostics of Complex Rotary Machinery Systems." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1423581651.
Full textKriama, Abdulbast. "3D complex shaped- dissolvable multi level micro/nano mould fabrication." Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2405/.
Full textMcInally, Stephen Geoffrey. "A novel approach to eliciting requirements in the process of designing complex instrument systems." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271332.
Full textLahudkar, Shweta L. "REGULATION OF EUKARYOTIC GENE EXPRESSION BY mRNA CAP BINDING COMPLEX AND CAPPING MACHINERY." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/834.
Full textBuzza, Matthew. "An Evaluation of Classification Algorithms for Machinery Fault Diagnosis." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490702571145903.
Full textEl, Hayek Mustapha Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Optimizing life-cycle maintenance cost of complex machinery using advanced statistical techniques and simulation." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2006. http://handle.unsw.edu.au/1959.4/24955.
Full textLi, S. "Experimental testing and numerical investigation of materials with embedded systems during indentation and complex loading conditions." Thesis, Liverpool John Moores University, 2018. http://researchonline.ljmu.ac.uk/8981/.
Full textCheng, Guilong. "Unraveling Macro-Molecular Machinery by Mass Spectrometry: from Single Proteins to Non-Covalent Protein Complexes." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195466.
Full textIsmail, Hafizul. "Intelligent model-based control of complex multi-link mechanisms." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/97374/.
Full textWang, Xiang. "Molecular dissection of the Sec62/63p complex, a member of protein translocation machinery of the endoplasmic reticulum membrane /." Karlsruhe : Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, 2005. http://bibliothek.fzk.de/zb/berichte/FZKA7163.pdf.
Full textWang, Xian. "Molecular dissection of the Sec62/63p complex, a member of protein translocation machinery of the endoplasmic reticulum membrane." Karlsruhe : FZKA, 2005. http://bibliothek.fzk.de/zb/berichte/FZKA7163.pdf.
Full textSmith, John P. "Effective and efficient non-destructive testing of large and complex shaped aircraft structures." Thesis, University of Central Lancashire, 2004. http://clok.uclan.ac.uk/7646/.
Full textElwany, Alaa H. "Sensor-based prognostics and structured maintenance policies for components with complex degradation." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37198.
Full textMarigo, Michele. "Discrete element method modelling of complex granular motion in mixing vessels : evaluation and validation." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3402/.
Full textMalik, Imran Tarik [Verfasser]. "Modulation of the Clp protease by agonist molecules as a tool to investigate the functional properties of the complex machinery / Imran Tarik Malik." Tübingen : Universitätsbibliothek Tübingen, 2021. http://d-nb.info/1236994221/34.
Full textMenk, Alexander. "Simulation of complex microstructural geometries using X-FEM and the application to solder joint lifetime prediction." Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2519/.
Full textFerreira, Ramos Ana Sofia. "Inhibitors of the mRNA capping machinery and structural studies on macro domains from alphaviruses." Thesis, Aix-Marseille, 2019. http://theses.univ-amu.fr.lama.univ-amu.fr/190708_FERREIRARAMOS_112plefdq222vlt303lhj860uuajmi_TH.pdf.
Full textAlphaviruses such as Chikungunya virus and Venezuelan equine encephalitis virus (VEEV) are (re-)emerging arboviruses. They own an unconventional mRNA capping catalysed by nsP1 and nsP2 leading to the formation of a cap-0 structure (m7GpppN-), which is crucial for virus replication and constitutes an attractive antiviral target. NsP1 catalyses three activities: methyltransferase (MTase), guanylylation (GT) and guanylyltransferase (GTase). A high throughput ELISA was developed to monitor the GT reaction and screen the Prestwick Chemical library®. The IC50 was determined for 18 selected hit compounds. Three series of compounds were selected for further characterization. These compounds poorly inhibit a cellular MTase suggesting their specificity against nsP1. Analogue search and structural activity relationships (SAR) were also initiated to identify the active pharmacophore features. The results show that our strategy is a convenient way to select specific hit compounds targeting the mRNA capping of alphaviruses. NsP3 consists in a Macro domain at the N-terminal, a zinc binding domain and a C-terminal hypervariable region. The Macro domain is essential for the replication through ADP-ribose (ADPr) binding and de-ribosylation of cellular proteins. In order to better understand this mechanism, we initiated a structure-based study of Getah virus (GETV) Macro domain, which contains a peculiar substitution in the catalytic loop. By crystallographic studies we characterized several poses adopted by ADPr in the binding site. Together, these poses may represent several snapshots of the ADP-ribosylhydrolase mechanism, highlighting new residues to be further characterised
Wang, Xian [Verfasser]. "Molecular dissection of the Sec62/63p complex, a member of protein translocation machinery of the endoplasmic reticulum membrane / Forschungszentrum Karlsruhe GmbH, Karlsruhe. Xian Wang." Karlsruhe : FZKA, 2005. http://d-nb.info/977282295/34.
Full textLe, Flohic Julien. "Vers une commande basée modèle des machines complexes : application aux machines-outils et machines d'essais mécaniques." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22551/document.
Full textNowadays, the requirements in productivity and costs mastering have forced the industrial manufacturers to develop new kind of mechanisms. Thus, the complexity of the machine-tools structures and machining processes has increased and new challenges have emerged : flexible structure, vibration, non-negligible dynamic effects, etc ... However, their implementation still comes from methods used for conventional machines. These works are thus about defining overall strategies including consideration of the kind of structure used and the task to realise. Two illustrative contexts are used. In the context of machining, we propose a generic tuning method based on kinematic and dynamic model of machine-tools structure that requires only a few manual modifications, in order to save time for implementation. A new computed torque control law is proposed, it reduces vibration phenomena in dynamical demanding phases. In the context of the mechanical tests, the objective is to demonstrate the feasibility of using parallel machines with 6 degrees of freedom in the context of mechanical tests, whereas the boundary conditions are perfectly controlled. We propose an instrumentation and control scheme that is able to perform mechanical tests with a maximum error of about 0.40 mu m, even in the case of very rigid specimen (concrete for example)
Cherrak, Yassine. "Caractérisation structurale et inhibition d’une nanomachine impliquée dans la compétition bactérienne : le T6SS." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0232.
Full textThe type VI secretion system (T6SS) is a contractile nanomachine found in one third of Gram-negative and translocating toxins into both prokaryotic and eukaryotic cells. This device is used by pathogenic strains to induce virulence and/or to compete with other bacteria, fostering environments colonization including the human gut microbiota.The T6SS assembles a cytoplasmic bacteriophage-related-tail structure anchored to the cell envelope by a membrane complex. The tail is composed of an inner tube wrapped by a sheath whose contraction is thought to translocate the tube, the tip proteins and puncture the prey’s cell wall. The tail is built from an assembly platform, the baseplate, connected to the membrane complex and hence used as an evolutionary adaptor. During my thesis, I have characterized the poorly studied baseplate complex in our model enteroaggregative E. coli (EAEC). After describing the structural properties of TssK and its role as connector, we revealed the assembly pathway, the stoichiometry and the structure of the other baseplate proteins. These works increased significantly our comprehension of the T6SS dynamic and highlighted a key interface we targeted through an interfering peptide. Meanwhile, I studied the membrane complex and its connection with the baseplate complex. This study lead to the high-resolution description of the membrane complex of EAEC and revealed a major role of the lipoprotein TssJ which, surprisingly, is absent in other bacteria such as Acinetobacter baumannii. The investigation of the non-canonical T6SS membrane complex of A. baumannii during my last PhD year suggests an anchoring and assembly mechanism different from EAEC’s
Arruda, Guilherme Ferraz de. "Mineração de dados em redes complexas: estrutura e dinâmica." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062013-085958/.
Full textThe theory of complex networks is a highly interdisciplinary reseach area offering resources for the study of various types of complex systems, from the brain to the society. Many problems of nature can be modeled as networks, such as protein interactions, social organizations, the financial market, the Internet and World Wide Web. The organization of all these complex systems can be represented by graphs, i.e. a set of vertices connected by edges. Such topologies have a fundamental influence on many dynamic processes. For example, highly connected routers are essential to keep traffic on the Internet, while people who have a large number of social contacts may infect many other individuals. Indeed, studies have shown that the structure of brain is related to neurological conditions such as epilepsy, which is relatad to synchronization phenomena. In this text, we present how data mining techniques data can be used to study the relation between complex network topologies and dynamic processes. This study will be conducted with the simulation of synchronization, failures, attacks and the epidemics spreading. The structure of the networks will be characterized by data mining methods, which allow classifying according to a set of theoretical models and to determine patterns of connections present in the organization of different types of complex systems. The analyzes will be performed with applications in neuroscience, systems biology, social networks and the Internet
Sooksawat, Dhassida. "Transition metal complex-based molecular machines." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10045.
Full textEnshaeifar, Shirin. "Eigen-based machine learning techniques for complex and hyper-complex processing." Thesis, University of Surrey, 2016. http://epubs.surrey.ac.uk/811040/.
Full textKhadir, Lahouari. "Étude du phénomène de résonance des pièces complexes en aluminium /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2007. http://theses.uqac.ca.
Full textLa p. de t. porte en outre: Mémoire présenté à l'Université du Québec à Chicoutimi comme exigence partielle de la maîtrise en ingénierie. CaQQUQ Bibliogr.: f. 117-120. Document électronique également accessible en format PDF. CaQQUQ
Stamp, D. I. "Machine learning approaches to complex time series." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399317.
Full textLemoine, Marie-Pierre. "Coopération hommes-machines dans les procédés complexes : Modèles techniques et cognitifs pour le contrôle de trafic aérien." Valenciennes, 1998. https://ged.uphf.fr/nuxeo/site/esupversions/0821b192-7376-49d6-ba14-abc99ab0917a.
Full textLittle, Claire. "Machine learning for understanding complex, interlinked social data." Thesis, Manchester Metropolitan University, 2018. http://e-space.mmu.ac.uk/622001/.
Full textEagle, Nathan Norfleet. "Machine perception and learning of complex social systems." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32498.
Full textIncludes bibliographical references (p. 125-136).
The study of complex social systems has traditionally been an arduous process, involving extensive surveys, interviews, ethnographic studies, or analysis of online behavior. Today, however, it is possible to use the unprecedented amount of information generated by pervasive mobile phones to provide insights into the dynamics of both individual and group behavior. Information such as continuous proximity, location, communication and activity data, has been gathered from the phones of 100 human subjects at MIT. Systematic measurements from these 100 people over the course of eight months has generated one of the largest datasets of continuous human behavior ever collected, representing over 300,000 hours of daily activity. In this thesis we describe how this data can be used to uncover regular rules and structure in behavior of both individuals and organizations, infer relationships between subjects, verify self- report survey data, and study social network dynamics. By combining theoretical models with rich and systematic measurements, we show it is possible to gain insight into the underlying behavior of complex social systems.
by Nathan Norfleet Eagle.
Ph.D.
Gogia, Sumit. "Insight : interactive machine learning for complex graphics selection." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106021.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 89-91).
Modern vector graphics editors support the creation of a wonderful variety of complex designs and artwork. Users produce highly realistic illustrations, stylized representational art, even nuanced data visualizations. In light of these complex graphics, selections, representations of sets of objects that users want to manipulate, become more complex as well. Direct manipulation tools that artists and designers find accessible and useful for editing graphics such as logos and icons do not have the same applicability in these more complex cases. Given that selection is the first step for nearly all editing in graphics, it is important to enable artists and designers to express these complex selections. This thesis explores the use of interactive machine learning techniques to improve direct selection interfaces. To investigate this approach, I created Insight, an interactive machine learning selection tool for making a relevant class of complex selections: visually similar objects. To make a selection, users iteratively provide examples of selection objects by clicking on them in the graphic. Insight infers a selection from the examples at each step, allowing users to quickly understand results of actions and reactively shape the complex selection. The interaction resembles the direct manipulation interactions artists and designers have found accessible, while helping express complex selections by inferring many parameter changes from simple actions. I evaluated Insight in a user study of digital designers and artists, finding that Insight enabled users to effectively and easily make complex selections not supported by state-of-the-art vector graphics editors. My results contribute to existing work by both indicating a useful approach for providing complex representation access to artists and designers, and showing a new application for interactive machine learning.
by Sumit Gogia.
M. Eng.
Verri, Filipe Alves Neto. "Collective dynamics in complex networks for machine learning." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-113054/.
Full textAprendizado de máquina permite que computadores aprendam automaticamente dos dados. Na literatura, métodos baseados em grafos recebem crescente atenção por serem capazes de aprender através de informações locais e globais. Nestes métodos, cada item de dado é um vértice e as conexões são dadas uma regra de afinidade. Todavia, tais técnicas possuem custo de tempo impraticável para grandes grafos. O uso de heurísticas supera este problema, encontrando soluções subótimas em tempo factível. No início, alguns métodos de otimização inspiraram suas heurísticas em processos naturais coletivos, como formigas procurando por comida e enxames de abelhas. Atualmente, os avanços na área de sistemas complexos provêm ferramentas para medir e entender estes sistemas. Redes complexas, as quais são grafos com topologia não trivial, são uma das ferramentas. Elas são capazes de descrever as relações entre topologia, estrutura e dinâmica de sistemas complexos. Deste modo, novos métodos de aprendizado baseados em redes complexas e dinâmica coletiva vêm surgindo. Eles atuam em três passos. Primeiro, uma rede complexa é construída da entrada. Então, simula-se um sistema coletivo distribuído na rede para obter informações. Enfim, a informação coletada é utilizada para resolver o problema. A interação entre indivíduos no sistema permite alcançar uma dinâmica muito mais complexa do que o comportamento individual. Nesta pesquisa, estudei o uso de dinâmica coletiva em problemas de aprendizado de máquina, tanto em casos não supervisionados como semissupervisionados. Especificamente, propus um novo sistema de competição de partículas cuja competição ocorre em arestas ao invés de vértices, aumentando a informação do sistema. Ainda, o sistema proposto é o primeiro modelo de competição de partículas aplicado em aprendizado de máquina com comportamento determinístico. Resultados comprovam várias vantagens do modelo em arestas, includindo detecção de áreas sobrepostas, melhor exploração do espaço e convergência mais rápida. Além disso, apresento uma nova técnica de formação de redes que não é baseada na similaridade dos dados e possui baixa complexidade computational. Uma vez que o custo de inserção e remoção de exemplos na rede é barato, o método pode ser aplicado em aplicações de tempo real. Finalmente, conduzi um estudo analítico em um sistema de alinhamento de partículas. O estudo foi necessário para garantir o comportamento esperado na aplicação do sistema em problemas de detecção de comunidades. Em suma, os resultados da pesquisa contribuíram para várias áreas de aprendizado de máquina e sistemas complexos.
Cupertino, Thiago Henrique. "Machine learning via dynamical processes on complex networks." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032014-154520/.
Full textA extração de conhecimento útil a partir de conjuntos de dados é um conceito chave em sistemas de informação modernos. Por conseguinte, a necessidade de técnicas eficientes para extrair o conhecimento desejado vem crescendo ao longo do tempo. Aprendizado de máquina é uma área de pesquisa dedicada ao desenvolvimento de técnicas capazes de permitir que uma máquina \"aprenda\" a partir de conjuntos de dados. Muitas técnicas já foram propostas, mas ainda há questões a serem reveladas especialmente em pesquisas interdisciplinares. Nesta tese, exploramos as vantagens da representação de dados em rede para desenvolver técnicas de aprendizado de máquina baseadas em processos dinâmicos em redes. A representação em rede unifica a estrutura, a dinâmica e as funções do sistema representado e, portanto, é capaz de capturar as relações espaciais, topológicas e funcionais dos conjuntos de dados sob análise. Desenvolvemos técnicas baseadas em rede para os três paradigmas de aprendizado de máquina: supervisionado, semissupervisionado e não supervisionado. O processo dinâmico de passeio aleatório é utilizado para caracterizar o acesso de dados não rotulados às classes de dados configurando uma nova heurística no paradigma supervisionado, a qual chamamos de facilidade de acesso. Também propomos uma técnica de classificação de dados que combina a visão de alto nível dos dados, por meio da caracterização topológica de rede, com relações de baixo nível, por meio de medidas de similaridade, em uma estrutura geral. Ainda no aprendizado supervisionado, as medidas de rede modularidade e centralidade Katz são aplicadas para classificar conjuntos de múltiplas observações, e um método de construção evolutiva de rede é aplicado ao problema de redução de dimensionalidade. O paradigma semissupervisionado é abordado por meio da extensão da heurística de facilidade de acesso para os casos em que apenas algumas amostras de dados rotuladas e muitas amostras não rotuladas estão disponíveis. É também proposta uma técnica semissupervisionada baseada em forças de interação, para a qual fornecemos heurísticas para selecionar parâmetros e uma análise de estabilidade mediante uma função de Lyapunov. Finalmente, uma técnica não supervisionada baseada em rede utiliza os conceitos de controle pontual e tempo de consenso de processos dinâmicos para derivar uma medida de similaridade usada para agrupar dados. Os dados são representados por uma rede conectada e esparsa na qual os vértices são elementos dinâmicos. Simulações com dados de referência e comparações com técnicas de aprendizado de máquina conhecidas são fornecidos para todas as técnicas propostas. As vantagens da representação de dados em rede e de processos dinâmicos para o aprendizado de máquina são evidenciadas em todos os casos
El, Kaliouby Rana Ayman. "Mind-reading machines : automated inference of complex mental states." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615030.
Full textSpiegler, Sebastian Reiner. "Machine learning for the analysis of morphologically complex languages." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535166.
Full textSilva, Thiago Christiano. "Machine learning in complex networks: modeling, analysis, and applications." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19042013-104641/.
Full textAprendizado de máquina figura-se como uma área de pesquisa que visa a desenvolver métodos computacionais capazes de aprender com a experiência. Embora uma grande quantidade de técnicas de aprendizado de máquina foi proposta e aplicada, com sucesso, em sistemas reais, existem ainda inúmeros problemas desafiantes que necessitam ser explorados. Nos últimos anos, um crescente interesse em técnicas baseadas em redes complexas (grafos de larga escala com padrões de conexão não triviais) foi verificado. Essa emergência é explicada pelas inerentes vantagens que a representação em redes complexas traz, sendo capazes de capturar as relações espaciais, topológicas e funcionais dos dados. Nesta tese, serão investigadas as possíveis vantagens oferecidas por redes complexas quando utilizadas no domínio de aprendizado de máquina. De fato, será mostrado que a abordagem por redes realmente proporciona melhorias nos aprendizados supervisionado, semissupervisionado e não supervisionado. Especificamente, será reformulada uma técnica de competição de partículas para o aprendizado não supervisionado e semissupervisionado por meio da utilização de um sistema dinâmico estocástico não linear. Em complemento, uma análise analítica de tal modelo será desenvolvida, permitindo o entendimento evolucional do modelo no tempo. Além disso, a questão de confiabilidade de dados será investigada no aprendizado semissupervisionado. Tal tópico tem importância prática e é pouco estudado na literatura. Com o objetivo de validar essas técnicas em problemas reais, simulações computacionais em bases de dados consagradas pela literatura serão conduzidas. Ainda nesse trabalho, será proposta uma técnica híbrica de classificação supervisionada que combina tanto o aprendizado de baixo como de alto nível. O termo de baixo nível pode ser implementado por qualquer técnica de classificação tradicional, enquanto que o termo de alto nível é realizado pela extração das características de uma rede construída a partir dos dados de entrada. Nesse contexto, aquele classifica as instâncias de teste segundo qualidades físicas, enquanto que esse estima a conformidade da instância de teste com a formação de padrões dos dados. Os estudos aqui desenvolvidos mostram que o método proposto pode melhorar o desempenho de técnicas tradicionais de classificação, além de permitir uma classificação de acordo com o significado semântico dos dados. Enfim, acredita-se que este estudo possa gerar contribuições relevantes para a área de aprendizado de máquina.
Venkatesan, Vaidehi. "Cuisines as Complex Networks." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1321969310.
Full textShen, Xueying. "Complex lot Sizing problem with parallel machines and setup carryover." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED057/document.
Full textIn this thesis, we study two production planning problems motivated by challenging real-world applications. First, a production planning problem for an apparel manufacturing project is studied and an optimization tool is developed to tackle it. Second, a restricted version of the capacitated lot sizing problem with sequence dependent setups is explored. Various mathematical formulations are developed and complexity analysis is performed to offer a first glance to the problem
Yuan, Weifeng. "Greedy tool heuristic for rough milling of complex pockets /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?IEEM%202002%20YUAN.
Full textIncludes bibliographical references (leaves 48-52). Also available in electronic version. Access restricted to campus users.
Hwang, Jung-Taik. "A fragmentation technique for parsing complex sentences for machine translation." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10204.
Full textIncludes bibliographical references (leaves 110-111).
by Jung-Taik Hwang.
M.Eng.
Malasky, Jeremy S. "Human machine collaborative decision making in a complex optimization system." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32514.
Full textIncludes bibliographical references (p. 149-151).
Numerous complex real-world applications are either theoretically intractable or unable to be solved in a practical amount of time. Researchers and practitioners are forced to implement heuristics in solving such problems that can lead to highly sub-optimal solutions. Our research focuses on inserting a human "in-the-loop" of the decision-making or problem solving process in order to generate solutions in a timely manner that improve upon those that are generated either scolely by a human or solely by a computer. We refer to this as Human-Machine Collaborative Decision-Making (HMCDM). The typical design process for developing human-machine approaches either starts with a human approach and augments it with decision-support or starts with an automated approach and augments it with operator input. We provide an alternative design process by presenting an 1HMCDM methodology that addresses collaboration from the outset of the design of the decision- making approach. We apply this design process to a complex military resource allocation and planning problem which selects, sequences, and schedules teams of unmanned aerial vehicles (UAVs) to perform sensing (Intelligence, Surveillance, and Reconnaissance - ISR) and strike activities against enemy targets. Specifically, we examined varying degrees of human-machine collaboration in the creation of variables in the solution of this problem. We also introduce an IIHMCDM method that combines traditional goal decomposition with a model formulation into an Iterative Composite Variable Approach for solving large-scale optimization problems.
(cont.) Finally, we show through experimentation the potential for improvement in the quality and speed of solutions that can be achieved through the use of an HMCDM approach.
by Jeremy S. Malasky.
S.M.
Banfield, Robert E. "Learning on complex simulations." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002112.
Full textPashike, Amitesh Kumar Singam and Venkat Raj Reddy. "Low Complex Blind Video Quality Predictor based on Support Vector Machines." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3654.
Full textBreve, Fabricio Aparecido. "Aprendizado de máquina em redes complexas." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092010-104722/.
Full textComplex networks is a recent and active scientific research field, which concerns large scale networks with non-trivial topological structure, such as computer networks, telecommunication networks, transport networks, social networks and biological networks. Many of these networks are naturally divided into communities or modules and, therefore, uncovering their structure is one of the main problems related to complex networks study. This problem is related with the machine learning field, which is concerned with the design and development of algorithms and techniques which allow computers to learn, or increase their performance based on experience. Some of the problems identified in traditional learning techniques include: difficulties in identifying irregular forms in the attributes space; uncovering overlap structures of groups or classes, which occurs when elements belong to more than one group or class; and the high computational complexity of some models, which prevents their application in larger data bases. In this work, we deal with these problems through the development of new machine learning models using complex networks and space-temporal dynamics. The developed models have performance similar to those from some state-of-the-art algorithms, at the same time that they present lower computational complexity order than most of them
Zhuo, Yue. "Solution studies of protein complexes of the endocytic machinery : a dissertation /." San Antonio : UTHSC, 2007. http://proquest.umi.com/pqdweb?did=1310415421&sid=2&Fmt=2&clientId=70986&RQT=309&VName=PQD.
Full textAmil, Marletti Pablo. "Machine learning methods for the characterization and classification of complex data." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/668842.
Full textEl presente trabajo de tesis desarrolla nuevos métodos para el análisis y clasificación de imágenes médicas y datos complejos en general. Primero, proponemos un método de aprendizaje automático sin supervisión que ordena imágenes OCT (tomografía de coherencia óptica) de la cámara anterior del ojo en función del grado de riesgo del paciente de padecer glaucoma de ángulo cerrado. Luego, desarrollamos dos métodos de detección automática de anomalías que utilizamos para mejorar los resultados del algoritmo anterior, pero que su aplicabilidad va mucho más allá, siendo útil, incluso, para la detección automática de fraudes en transacciones de tarjetas de crédito. Mostramos también, cómo al analizar la topología de la red vascular de la retina considerándola una red compleja, podemos detectar la presencia de glaucoma y de retinopatía diabética a través de diferencias estructurales. Estudiamos también un modelo de un láser con inyección óptica que presenta eventos extremos en la serie temporal de intensidad para evaluar diferentes métodos de aprendizaje automático para predecir dichos eventos extremos.
Aquesta tesi desenvolupa nous mètodes per a l’anàlisi i la classificació d’imatges mèdiques i dades complexes. Hem proposat, primer, un mètode d’aprenentatge automàtic sense supervisió que ordena imatges OCT (tomografia de coherència òptica) de la cambra anterior de l’ull en funció del grau de risc del pacient de patir glaucoma d’angle tancat. Després, hem desenvolupat dos mètodes de detecció automàtica d’anomalies que hem utilitzat per millorar els resultats de l’algoritme anterior, però que la seva aplicabilitat va molt més enllà, sent útil, fins i tot, per a la detecció automàtica de fraus en transaccions de targetes de crèdit. Mostrem també, com en analitzar la topologia de la xarxa vascular de la retina considerant-la una xarxa complexa, podem detectar la presència de glaucoma i de retinopatia diabètica a través de diferències estructurals. Finalment, hem estudiat un làser amb injecció òptica, el qual presenta esdeveniments extrems en la sèrie temporal d’intensitat. Hem avaluat diferents mètodes per tal de predir-los.
George, David Frederick James. "Reconfigurable cellular automata computing for complex systems on the SPACE machine." University of Western Australia. School of Computer Science and Software Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0020.
Full textGeorge, David Frederick James. "Reconfigurable cellular automata computing for complex systems on the SPACE machine /." Connect to this title, 2005. http://theses.library.uwa.edu.au/adt-WU2006.0020.
Full textAlabdulkareem, Ahmad. "Analyzing cities' complex socioeconomic networks using computational science and machine learning." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119325.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 133-141).
By 2050, it is expected that 66% of the world population will be living in cities. The urban growth explosion in recent decades has raised many questions concerning the evolutionary advantages of urbanism, with several theories delving into the multitude of benefits of such efficient systems. This thesis focuses on one important aspect of cities: their social dimension, and in particular, the social aspect of their complex socioeconomic fabric (e.g. labor markets and social networks). Economic inequality is one of the greatest challenges facing society today, in tandem with the eminent impact of automation, which can exacerbate this issue. The social dimension plays a significant role in both, with many hypothesizing that social skills will be the last bastion of differentiation between humans and machines, and thus, jobs will become mostly dominated by social skills. Using data-driven tools from network science, machine learning, and computational science, the first question I aim to answer is the following: what role do social skills play in today's labor markets on both a micro and macro scale (e.g. individuals and cities)? Second, how could the effects of automation lead to various labor dynamics, and what role would social skills play in combating those effects? Specifically, what are social skills' relation to career mobility? Which would inform strategies to mitigate the negative effects of automation and off-shoring on employment. Third, given the importance of the social dimension in cities, what theoretical model can explain such results, and what are its consequences? Finally, given the vulnerabilities for invading individuals' privacy, as demonstrated in previous chapters, how does highlighting those results affect people's interest in privacy preservation, and what are some possible solutions to combat this issue?
by Ahmad Alabdulkareem.
Ph. D. in Computational Science & Engineering