Journal articles on the topic 'Concept drift'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Concept drift.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Museba, Tinofirei, Fulufhelo Nelwamondo, and Khmaies Ouahada. "ADES: A New Ensemble Diversity-Based Approach for Handling Concept Drift." Mobile Information Systems 2021 (June 1, 2021): 1–17. http://dx.doi.org/10.1155/2021/5549300.
Full textZhu, Jiaqi, Shaofeng Cai, Fang Deng, Beng Chin Ooi, and Wenqiao Zhang. "METER: A Dynamic Concept Adaptation Framework for Online Anomaly Detection." Proceedings of the VLDB Endowment 17, no. 4 (2023): 794–807. http://dx.doi.org/10.14778/3636218.3636233.
Full textSakurai, Guilherme Yukio, Jessica Fernandes Lopes, Bruno Bogaz Zarpelão, and Sylvio Barbon Junior. "Benchmarking Change Detector Algorithms from Different Concept Drift Perspectives." Future Internet 15, no. 5 (2023): 169. http://dx.doi.org/10.3390/fi15050169.
Full textToor, Affan Ahmed, Muhammad Usman, Farah Younas, Alvis Cheuk M. Fong, Sajid Ali Khan, and Simon Fong. "Mining Massive E-Health Data Streams for IoMT Enabled Healthcare Systems." Sensors 20, no. 7 (2020): 2131. http://dx.doi.org/10.3390/s20072131.
Full textM, Thangam, Bhuvaneswari A, and Sangeetha J. "A Framework to Detect and Classify Time-based Concept Drift." Indian Journal of Science and Technology 16, no. 48 (2023): 4631–37. https://doi.org/10.17485/IJST/v16i48.583.
Full textYang, Lingkai, Sally McClean, Mark Donnelly, Kevin Burke, and Kashaf Khan. "Detecting and Responding to Concept Drift in Business Processes." Algorithms 15, no. 5 (2022): 174. http://dx.doi.org/10.3390/a15050174.
Full textYao, Yuan. "Concept Drift Visualization." Journal of Information and Computational Science 10, no. 10 (2013): 3021–29. http://dx.doi.org/10.12733/jics20101915.
Full textWebb, Geoffrey I., Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean. "Characterizing concept drift." Data Mining and Knowledge Discovery 30, no. 4 (2016): 964–94. http://dx.doi.org/10.1007/s10618-015-0448-4.
Full textSun, Yange, Zhihai Wang, Yang Bai, Honghua Dai, and Saeid Nahavandi. "A Classifier Graph Based Recurring Concept Detection and Prediction Approach." Computational Intelligence and Neuroscience 2018 (June 7, 2018): 1–13. http://dx.doi.org/10.1155/2018/4276291.
Full textOrtíz Díaz, Agustín, José del Campo-Ávila, Gonzalo Ramos-Jiménez, et al. "Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift." Scientific World Journal 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/235810.
Full textMauricio Gonçalves Júnior, Paulo, and Sylvain Chartier. "Technique Analysis for Multilayer Perceptrons to Deal with Concept Drift in Data Streams." Interdisciplinary Journal of Information, Knowledge, and Management 19 (2024): 034. https://doi.org/10.28945/5405.
Full textSankara Prasanna Kumar, M., A. P. Siva Kumar, and K. Prasanna. "Data Mining Models of High Dimensional Data Streams, and Contemporary Concept Drift Detection Methods: a Comprehensive Review." International Journal of Engineering & Technology 7, no. 3.6 (2018): 148. http://dx.doi.org/10.14419/ijet.v7i3.6.14959.
Full textDries, Anton, and Ulrich Rückert. "Adaptive concept drift detection." Statistical Analysis and Data Mining: The ASA Data Science Journal 2, no. 5-6 (2009): 311–27. http://dx.doi.org/10.1002/sam.10054.
Full textMuhammad Zaly Shah, Muhammad Zafran, Anazida Zainal, Taiseer Abdalla Elfadil Eisa, Hashim Albasheer, and Fuad A. Ghaleb. "A Semisupervised Concept Drift Adaptation via Prototype-Based Manifold Regularization Approach with Knowledge Transfer." Mathematics 11, no. 2 (2023): 355. http://dx.doi.org/10.3390/math11020355.
Full textMahdi, Osama A., Eric Pardede, Nawfal Ali, and Jinli Cao. "Fast Reaction to Sudden Concept Drift in the Absence of Class Labels." Applied Sciences 10, no. 2 (2020): 606. http://dx.doi.org/10.3390/app10020606.
Full textMuseba, Tinofirei, Fulufhelo Nelwamondo, Khmaies Ouahada, and Ayokunle Akinola. "Recurrent Adaptive Classifier Ensemble for Handling Recurring Concept Drifts." Applied Computational Intelligence and Soft Computing 2021 (June 10, 2021): 1–13. http://dx.doi.org/10.1155/2021/5533777.
Full textMcKay, Helen, Nathan Griffiths, Phillip Taylor, Theo Damoulas, and Zhou Xu. "Bi-directional online transfer learning: a framework." Annals of Telecommunications 75, no. 9-10 (2020): 523–47. http://dx.doi.org/10.1007/s12243-020-00776-1.
Full textWares, Scott, John Isaacs, and Eyad Elyan. "Burst Detection-Based Selective Classifier Resetting." Journal of Information & Knowledge Management 20, no. 02 (2021): 2150027. http://dx.doi.org/10.1142/s0219649221500271.
Full textLu, Pengqian, Jie Lu, Anjin Liu, and Guangquan Zhang. "Early Concept Drift Detection via Prediction Uncertainty." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 18 (2025): 19124–32. https://doi.org/10.1609/aaai.v39i18.34105.
Full textPalli, Abdul Sattar, Jafreezal Jaafar, Heitor Murilo Gomes, Manzoor Ahmed Hashmani, and Abdul Rehman Gilal. "An Experimental Analysis of Drift Detection Methods on Multi-Class Imbalanced Data Streams." Applied Sciences 12, no. 22 (2022): 11688. http://dx.doi.org/10.3390/app122211688.
Full textHewahi, Nabil M., and Ibrahim M. Elbouhissi. "Concepts Seeds Gathering and Dataset Updating Algorithm for Handling Concept Drift." International Journal of Decision Support System Technology 7, no. 2 (2015): 29–57. http://dx.doi.org/10.4018/ijdsst.2015040103.
Full textCosta, Albert, Rafael Giusti, and Eulanda M. dos Santos. "Analysis of Descriptors of Concept Drift and Their Impacts." Informatics 12, no. 1 (2025): 13. https://doi.org/10.3390/informatics12010013.
Full textBarddal, Jean Paul, Heitor Murilo Gomes, and Fabrício Enembreck. "Advances on Concept Drift Detection in Regression Tasks Using Social Networks Theory." International Journal of Natural Computing Research 5, no. 1 (2015): 26–41. http://dx.doi.org/10.4018/ijncr.2015010102.
Full textMulimani, Deepa C., Shashikumar G. Totad, and Prakashgoud R. Patil. "Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning." International Journal of Natural Computing Research 10, no. 4 (2021): 1–22. http://dx.doi.org/10.4018/ijncr.2021100101.
Full textYOSHIDA, Kenichi. "Brute force concept drift detection." Procedia Computer Science 225 (2023): 1672–81. http://dx.doi.org/10.1016/j.procs.2023.10.156.
Full textBabko-Malyi, Sergei. "Ion-drift reactor™ concept." Fuel Processing Technology 65-66 (June 2000): 231–46. http://dx.doi.org/10.1016/s0378-3820(99)00100-9.
Full textJu, Chun Hua, and Li Li Mao. "Decision Tree Classification Algorithm within Concept Similarity." Applied Mechanics and Materials 235 (November 2012): 9–14. http://dx.doi.org/10.4028/www.scientific.net/amm.235.9.
Full textGâlmeanu, Honorius, and Răzvan Andonie. "Concept Drift Adaptation with Incremental–Decremental SVM." Applied Sciences 11, no. 20 (2021): 9644. http://dx.doi.org/10.3390/app11209644.
Full textHan, Meng, Chunpeng Li, Fanxing Meng, Feifei He, and Ruihua Zhang. "An Adaptive Active Learning Method for Multiclass Imbalanced Data Streams with Concept Drift." Applied Sciences 14, no. 16 (2024): 7176. http://dx.doi.org/10.3390/app14167176.
Full textHu, Hanqing, and Mehmed Kantardzic. "Heuristic ensemble for unsupervised detection of multiple types of concept drift in data stream classification." Intelligent Decision Technologies 15, no. 4 (2022): 609–22. http://dx.doi.org/10.3233/idt-210115.
Full textLiu, Shinan, Francesco Bronzino, Paul Schmitt, et al. "LEAF: Navigating Concept Drift in Cellular Networks." Proceedings of the ACM on Networking 1, no. 2 (2023): 1–24. http://dx.doi.org/10.1145/3609422.
Full textSandeep Bharadwaj Mannapur. "Understanding Data Drift and Concept Drift in Machine Learning Systems." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, no. 1 (2025): 318–30. https://doi.org/10.32628/cseit25111239.
Full textKumar, Sanjeev, Ravendra Singh, Mohammad Zubair Khan, and Abdulfattah Noorwali. "Design of adaptive ensemble classifier for online sentiment analysis and opinion mining." PeerJ Computer Science 7 (August 5, 2021): e660. http://dx.doi.org/10.7717/peerj-cs.660.
Full textHan, Meng, Fanxing Meng, and Chunpeng Li. "Variance Feedback Drift Detection Method for Evolving Data Streams Mining." Applied Sciences 14, no. 16 (2024): 7157. http://dx.doi.org/10.3390/app14167157.
Full textKim, Minsu, Seong-Hyeon Hwang, and Steven Euijong Whang. "Quilt: Robust Data Segment Selection against Concept Drifts." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 19 (2024): 21249–57. http://dx.doi.org/10.1609/aaai.v38i19.30119.
Full textPriyanka Rajamani and Dr. J. Savitha. "Comparative Analysis of Unsupervised Concept Drift Detection Techniques in High-Dimensional Biomedical Data Streams." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, no. 3 (2025): 437–54. https://doi.org/10.32628/cseit25113302.
Full textRossetto dos Santos, Eloiza, André Grégio, and Paulo Lisboa de Almeida. "Avaliação de Abordagens para Classificação de Malware Bancário sob a presença de Concept Drift." Anais do Computer on the Beach 16 (May 27, 2025): 053–60. https://doi.org/10.14210/cotb.v16.p053-060.
Full textPalli, Abdul Sattar, Jafreezal Jaafar, Abdul Rehman Gilal, et al. "Online Machine Learning from Non-stationary Data Streams in the Presence of Concept Drift and Class Imbalance: A Systematic Review." Journal of Information and Communication Technology 23, no. 1 (2024): 105–39. http://dx.doi.org/10.32890/jict2024.23.1.5.
Full textBudiman, Arif, Mohamad Ivan Fanany, and Chan Basaruddin. "Adaptive Online Sequential ELM for Concept Drift Tackling." Computational Intelligence and Neuroscience 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/8091267.
Full textSato, Denise Maria Vecino, Sheila Cristiana De Freitas, Jean Paul Barddal, and Edson Emilio Scalabrin. "A Survey on Concept Drift in Process Mining." ACM Computing Surveys 54, no. 9 (2022): 1–38. http://dx.doi.org/10.1145/3472752.
Full textDesale, Ketan Sanjay, and Swati Shinde. "Real-Time Concept Drift Detection and Its Application to ECG Data." International Journal of Online and Biomedical Engineering (iJOE) 17, no. 10 (2021): 160. http://dx.doi.org/10.3991/ijoe.v17i10.25473.
Full textYang, Rui, Shuliang Xu, and Lin Feng. "An Ensemble Extreme Learning Machine for Data Stream Classification." Algorithms 11, no. 7 (2018): 107. http://dx.doi.org/10.3390/a11070107.
Full textGower-Winter, Brandon, Georg Krempl, Sergey Dragomiretskiy, Tineke Jelsma, and Arno Siebes. "Identifying Predictions That Influence the Future: Detecting Performative Concept Drift in Data Streams." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 11 (2025): 11726–34. https://doi.org/10.1609/aaai.v39i11.33276.
Full textAlthabiti, Mashail, and Manal Abdullah*. "Streaming Data Classification With Concept Drift." Bioscience Biotechnology Research Communications 12, no. 1 (2019): 177–84. http://dx.doi.org/10.21786/bbrc/12.1/20.
Full textIwashita, Adriana Sayuri, and Joao Paulo Papa. "An Overview on Concept Drift Learning." IEEE Access 7 (2019): 1532–47. http://dx.doi.org/10.1109/access.2018.2886026.
Full textGama, João, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. "A survey on concept drift adaptation." ACM Computing Surveys 46, no. 4 (2014): 1–37. http://dx.doi.org/10.1145/2523813.
Full textCase, John, Sanjay Jain, Susanne Kaufmann, Arun Sharma, and Frank Stephan. "Predictive learning models for concept drift." Theoretical Computer Science 268, no. 2 (2001): 323–49. http://dx.doi.org/10.1016/s0304-3975(00)00274-7.
Full textGonçalves Jr, Paulo Mauricio, and Roberto Souto Maior de Barros. "RCD: A recurring concept drift framework." Pattern Recognition Letters 34, no. 9 (2013): 1018–25. http://dx.doi.org/10.1016/j.patrec.2013.02.005.
Full textLifna, C. S., and M. Vijayalakshmi. "Identifying Concept-drift in Twitter Streams." Procedia Computer Science 45 (2015): 86–94. http://dx.doi.org/10.1016/j.procs.2015.03.093.
Full textLu, Ning, Guangquan Zhang, and Jie Lu. "Concept drift detection via competence models." Artificial Intelligence 209 (April 2014): 11–28. http://dx.doi.org/10.1016/j.artint.2014.01.001.
Full text