Academic literature on the topic 'Conducting Polymer Nanocomposite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conducting Polymer Nanocomposite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Conducting Polymer Nanocomposite"

1

Zamiri, Golnoush, and A. S. M. A. Haseeb. "Recent Trends and Developments in Graphene/Conducting Polymer Nanocomposites Chemiresistive Sensors." Materials 13, no. 15 (2020): 3311. http://dx.doi.org/10.3390/ma13153311.

Full text
Abstract:
The use of graphene and its derivatives with excellent characteristics such as good electrical and mechanical properties and large specific surface area has gained the attention of researchers. Recently, novel nanocomposite materials based on graphene and conducting polymers including polyaniline (PANi), polypyrrole (PPy), poly (3,4 ethyldioxythiophene) (PEDOT), polythiophene (PTh), and their derivatives have been widely used as active materials in gas sensing due to their unique electrical conductivity, redox property, and good operation at room temperature. Mixing these two materials exhibit
APA, Harvard, Vancouver, ISO, and other styles
2

Kausar, Ayesha. "Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications." Journal of Plastic Film & Sheeting 35, no. 1 (2018): 65–98. http://dx.doi.org/10.1177/8756087918794009.

Full text
Abstract:
This article presents a state-of-the-art overview on indispensable aspects of polymer/nanowire nanocomposites. Nanowires created from polymers, silver, zinc, copper, nickel, and aluminum have been used as reinforcing agents in conducting polymers and non-conducting thermoplastic/thermoset matrices such as polypyrrole, polyaniline, polythiophene, polyurethane, acrylic polymers, polystyrene, epoxy and rubbers. This review presents the combined influence of polymer matrix and nanowires on the nanocomposite characteristics. This review shows how the nanowire, the nanofiller content, the matrix typ
APA, Harvard, Vancouver, ISO, and other styles
3

Prasad, Brijesh, Siddharth Arora, Vikas Rathi, Varij Panwar, and Pravin P. Patil. "Modelling of PVDF/CNF Conducting Polymer Nanocomposite." International Journal of Mathematical, Engineering and Management Sciences 4, no. 3 (2019): 786–94. http://dx.doi.org/10.33889//ijmems.2019.4.3-061.

Full text
Abstract:
Polymer nanocomposites are highly apricated for the sensor and actuator applications. As they are soft and flexible and can produce higher cyclic loading with good repeatability. But when conductive fillers are woven in the polymer matrix it loses flexibility and enhances the conductivity. Therefore, studying the loading behavior of the nanocomposite becomes important for determining the stability and load bearing capacity of the conducting polymer nanocomposite membranes (CPNC). Therefore, the intent was to design a flexible piezoresistive strain sensor. Finite element analysis (FEA) techniqu
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, Hizb Ullah, Muhammad Tariq Jan, Mahmood Iqbal, et al. "Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor." Zeitschrift für Physikalische Chemie 234, no. 1 (2020): 27–43. http://dx.doi.org/10.1515/zpch-2018-1302.

Full text
Abstract:
AbstractIn the present study, we have synthesized conducting polymer nanocomposites consist of silver nanoparticles (AgNPs), graphene, and polyvinyl acetate (PVAc) emulsion. The synthesized nanocomposite was characterized by UV/Vis, FT-IR, XRD, TGA, and SEM techniques. SEM images showed that AgNPs and graphene sheets are well dispersed in the PVAc matrix. The electrical conductivities of the nanocomposites were examined using the impedance analyzer instrument. It was ascertained that polymer composite containing silver nanoparticles and graphene exhibit higher conductivities. The PVAc-AgNPs/Gr
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Shubham, P. Sudhakara, Abdoulhdi A. Borhana Omran, Jujhar Singh, and R. A. Ilyas. "Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications." Polymers 13, no. 17 (2021): 2898. http://dx.doi.org/10.3390/polym13172898.

Full text
Abstract:
Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like the ease of manufacture along with resilience in processing. Polymer nanocomposites are designed and manufactured to ensure excellent promising properties for anti-static (electrically conducting), anti-corrosion, actuators, sensors, shape memory alloys, biomedical, flexible electronics, solar cells
APA, Harvard, Vancouver, ISO, and other styles
6

Aghelinejad, Mohammadmehdi, and Siu Leung. "Thermoelectric Nanocomposite Foams Using Non-Conducting Polymers with Hybrid 1D and 2D Nanofillers." Materials 11, no. 9 (2018): 1757. http://dx.doi.org/10.3390/ma11091757.

Full text
Abstract:
A facile processing strategy to fabricate thermoelectric (TE) polymer nanocomposite foams with non-conducting polymers is reported in this study. Multilayered networks of graphene nanoplatelets (GnPs) and multi-walled carbon nanotubes (MWCNTs) are deposited on macroporous polyvinylidene fluoride (PVDF) foam templates using a layer-by-layer (LBL) assembly technique. The open cellular structures of foam templates provide a platform to form segregated 3D networks consisting of one-dimensional (1D) and/or two-dimensional (2D) carbon nanoparticles. Hybrid nanostructures of GnP and MWCNT networks sy
APA, Harvard, Vancouver, ISO, and other styles
7

Moheimani, Reza, and M. Hasansade. "A closed-form model for estimating the effective thermal conductivities of carbon nanotube–polymer nanocomposites." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 8 (2018): 2909–19. http://dx.doi.org/10.1177/0954406218797967.

Full text
Abstract:
This paper describes a closed-form unit cell micromechanical model for estimating the effective thermal conductivities of unidirectional carbon nanotube reinforced polymer nanocomposites. The model incorporates the typically observed misalignment and curvature of carbon nanotubes into the polymer nanocomposites. Also, the interfacial thermal resistance between the carbon nanotube and the polymer matrix is considered in the nanocomposite simulation. The micromechanics model is seen to produce reasonable agreement with available experimental data for the effective thermal conductivities of polym
APA, Harvard, Vancouver, ISO, and other styles
8

AlFannakh, Huda, S. S. Arafat, and S. S. Ibrahim. "Synthesis, electrical properties, and kinetic thermal analysis of polyaniline/ polyvinyl alcohol - magnetite nanocomposites film." Science and Engineering of Composite Materials 26, no. 1 (2019): 347–59. http://dx.doi.org/10.1515/secm-2019-0020.

Full text
Abstract:
AbstractPolyaniline-poly vinyl alcohol (PANI-PVA) conducting blends containing 15 wt% aniline were synthesized by in situ polymerization of aniline. Three-phase polymer blended nanocomposites with different contents of magnetite (5, 10 and 15 wt.%) were also synthesized. We measured the current-voltage (I-V) curves for the conducting blend and its magnetite nanocomposite. We also measured their thermal stability, and performed kinetic analysis through thermogravimetric analysis. We observed that the three phase nanocomposites showed enhanced electrical conductivity compared with that of the co
APA, Harvard, Vancouver, ISO, and other styles
9

Thakur, Awalendra K., Dillip K. Pradhan, B. K. Samantaray, and R. N. P. Choudhary. "Studies on an ionically conducting polymer nanocomposite." Journal of Power Sources 159, no. 1 (2006): 272–76. http://dx.doi.org/10.1016/j.jpowsour.2006.04.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alvi, Farah, Manoj K. Ram, Punya A. Basnayaka, Elias Stefanakos, Yogi Goswami, and Ashok Kumar. "Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor." Electrochimica Acta 56, no. 25 (2011): 9406–12. http://dx.doi.org/10.1016/j.electacta.2011.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!