Journal articles on the topic 'Constrained peptides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Constrained peptides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bozovičar, Krištof, and Tomaž Bratkovič. "Small and Simple, yet Sturdy: Conformationally Constrained Peptides with Remarkable Properties." International Journal of Molecular Sciences 22, no. 4 (2021): 1611. http://dx.doi.org/10.3390/ijms22041611.
Full textReal, Eléonore, Jean-Christophe Rain, Véronique Battaglia, et al. "Antiviral Drug Discovery Strategy Using Combinatorial Libraries of Structurally Constrained Peptides." Journal of Virology 78, no. 14 (2004): 7410–17. http://dx.doi.org/10.1128/jvi.78.14.7410-7417.2004.
Full textGisemba, Solomon A., Michael J. Ferracane, Thomas F. Murray, and Jane V. Aldrich. "A Bicyclic Analog of the Linear Peptide Arodyn Is a Potent and Selective Kappa Opioid Receptor Antagonist." Molecules 29, no. 13 (2024): 3109. http://dx.doi.org/10.3390/molecules29133109.
Full textMoll, Gert N., Anneke Kuipers, Rick Rink, Tjibbe Bosma, Louwe de Vries, and Pawel Namsolleck. "Biosynthesis of lanthionine-constrained agonists of G protein-coupled receptors." Biochemical Society Transactions 48, no. 5 (2020): 2195–203. http://dx.doi.org/10.1042/bst20200427.
Full textDeschamps, J. R., C. George, C. Moore, R. Cudney, and J. L. Flippen-Anderson. "Constrained linear opioid peptides." Acta Crystallographica Section A Foundations of Crystallography 52, a1 (1996): C249. http://dx.doi.org/10.1107/s0108767396089489.
Full textBode, S. A., and D. W. P. M. Löwik. "Constrained cell penetrating peptides." Drug Discovery Today: Technologies 26 (December 2017): 33–42. http://dx.doi.org/10.1016/j.ddtec.2017.11.005.
Full textYin, Hang. "Constrained Peptides as Miniature Protein Structures." ISRN Biochemistry 2012 (September 26, 2012): 1–15. http://dx.doi.org/10.5402/2012/692190.
Full textCorr, M., L. F. Boyd, S. R. Frankel, S. Kozlowski, E. A. Padlan, and D. H. Margulies. "Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex." Journal of Experimental Medicine 176, no. 6 (1992): 1681–92. http://dx.doi.org/10.1084/jem.176.6.1681.
Full textZhou, Lijuan, Fei Cai, Yanjie Li, et al. "Disulfide-constrained peptide scaffolds enable a robust peptide-therapeutic discovery platform." PLOS ONE 19, no. 3 (2024): e0300135. http://dx.doi.org/10.1371/journal.pone.0300135.
Full textKuepper, Arne, Niall M. McLoughlin, Saskia Neubacher, et al. "Constrained peptides mimic a viral suppressor of RNA silencing." Nucleic Acids Research 49, no. 22 (2021): 12622–33. http://dx.doi.org/10.1093/nar/gkab1149.
Full textPineda-Castañeda, Héctor M., Diego S. Insuasty-Cepeda, Víctor A. Niño-Ramírez, Hernando Curtidor, and Zuly J. Rivera-Monroy. "Designing Short Peptides: A Sisyphean Task?" Current Organic Chemistry 24, no. 21 (2020): 2448–74. http://dx.doi.org/10.2174/1385272824999200910094034.
Full textSHEPHERD, Craig M., Hans J. VOGEL, and D. Peter TIELEMAN. "Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations." Biochemical Journal 370, no. 1 (2003): 233–43. http://dx.doi.org/10.1042/bj20021255.
Full textWillick, Gordon, Paul Morley, and James Whitfield. "Constrained Analogs of Osteogenic Peptides." Current Medicinal Chemistry 11, no. 21 (2004): 2867–81. http://dx.doi.org/10.2174/0929867043364153.
Full textLadner, Robert C. "Constrained peptides as binding entities." Trends in Biotechnology 13, no. 10 (1995): 426–30. http://dx.doi.org/10.1016/s0167-7799(00)88997-0.
Full textMorrison, Chris. "Constrained peptides' time to shine?" Nature Reviews Drug Discovery 17, no. 8 (2018): 531–33. http://dx.doi.org/10.1038/nrd.2018.125.
Full textKennedy, Eileen J. "Constrained peptides and biological targets." Bioorganic & Medicinal Chemistry 26, no. 6 (2018): 1117. http://dx.doi.org/10.1016/j.bmc.2018.02.046.
Full textLupold, Shawn E., and Ronald Rodriguez. "Disulfide-constrained peptides that bind to the extracellular portion of the prostate-specific membrane antigen." Molecular Cancer Therapeutics 3, no. 5 (2004): 597–603. http://dx.doi.org/10.1158/1535-7163.597.3.5.
Full textQing, Xiaoyu, Qian Wang, Hanyu Xu, Pei Liu, and Luhua Lai. "Designing Cyclic-Constrained Peptides to Inhibit Human Phosphoglycerate Dehydrogenase." Molecules 28, no. 17 (2023): 6430. http://dx.doi.org/10.3390/molecules28176430.
Full textBLANES-MIRA, Clara, Maria T. PASTOR, Elvira VALERA та ін. "Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library". Biochemical Journal 375, № 1 (2003): 159–66. http://dx.doi.org/10.1042/bj20030509.
Full textRizo, Josep, and Lila M. Gierasch. "Constrained Peptides: Models of Bioactive Peptides and Protein Substructures." Annual Review of Biochemistry 61, no. 1 (1992): 387–416. http://dx.doi.org/10.1146/annurev.bi.61.070192.002131.
Full textJiang, Hongbing, Yidong Xu, Li Li, et al. "Inhibition of Influenza Virus Replication by Constrained Peptides Targeting Nucleoprotein." Antiviral Chemistry and Chemotherapy 22, no. 3 (2011): 119–30. http://dx.doi.org/10.3851/imp1902.
Full textBurns, Virginia A., Benjamin G. Bobay, Anne Basso, John Cavanagh, and Christian Melander. "Targeting RNA with cysteine-constrained peptides." Bioorganic & Medicinal Chemistry Letters 18, no. 2 (2008): 565–67. http://dx.doi.org/10.1016/j.bmcl.2007.11.096.
Full textLevy, Yaakov, and Oren M. Becker. "Energy landscapes of conformationally constrained peptides." Journal of Chemical Physics 114, no. 2 (2001): 993. http://dx.doi.org/10.1063/1.1329646.
Full textCai, Fei, Yuehua Wei, Daniel Kirchhofer, Andrew Chang, and Yingnan Zhang. "Rapid prediction of key residues for foldability by machine learning model enables the design of highly functional libraries with hyperstable constrained peptide scaffolds." PLOS Computational Biology 20, no. 11 (2024): e1012609. http://dx.doi.org/10.1371/journal.pcbi.1012609.
Full textYin, Liusong, Peter Trenh, and Lawrence Stern. "MHC II-peptide complex conformation constrained by interactions throughout the peptide binding groove determines HLA-DM susceptibility (P5014)." Journal of Immunology 190, no. 1_Supplement (2013): 41.8. http://dx.doi.org/10.4049/jimmunol.190.supp.41.8.
Full textKoopmanschap, Gijs, Eelco Ruijter, and Romano VA Orru. "Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics." Beilstein Journal of Organic Chemistry 10 (March 4, 2014): 544–98. http://dx.doi.org/10.3762/bjoc.10.50.
Full textHe, Jian, Randal Eckert, Thanh Pharm, et al. "Novel Synthetic Antimicrobial Peptides against Streptococcus mutans." Antimicrobial Agents and Chemotherapy 51, no. 4 (2007): 1351–58. http://dx.doi.org/10.1128/aac.01270-06.
Full textBag, Subhendu Sekhar, Subhashis Jana, Afsana Yashmeen та Suranjan De. "Triazolo-β-aza-ε-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics". Chemical Communications 51, № 25 (2015): 5242–45. http://dx.doi.org/10.1039/c4cc08414d.
Full textZhang, Dingwa, Deyong He, Xiaoliang Pan, and Lijun Liu. "Rational Design and Intramolecular Cyclization of Hotspot Peptide Segments at YAP–TEAD4 Complex Interface." Protein & Peptide Letters 27, no. 10 (2020): 999–1006. http://dx.doi.org/10.2174/0929866527666200414160723.
Full textBai, Zengbing, and Huan Wang. "Backbone-Enabled Peptide Macrocyclization through Late-Stage Palladium-Catalyzed C–H Activation." Synlett 31, no. 03 (2019): 199–204. http://dx.doi.org/10.1055/s-0039-1691495.
Full textTian, Yuan, Xiangze Zeng, Jingxu Li, et al. "Achieving enhanced cell penetration of short conformationally constrained peptides through amphiphilicity tuning." Chem. Sci. 8, no. 11 (2017): 7576–81. http://dx.doi.org/10.1039/c7sc03614k.
Full textTJERNBERG, Lars O., Agneta TJERNBERG, Niklas BARK та ін. "Assembling amyloid fibrils from designed structures containing a significant amyloid β-peptide fragment". Biochemical Journal 366, № 1 (2002): 343–51. http://dx.doi.org/10.1042/bj20020229.
Full textToniolo, C. "Structure of conformationally constrained peptides: From model compounds to bioactive peptides." Biopolymers 28, no. 1 (1989): 247–57. http://dx.doi.org/10.1002/bip.360280125.
Full textCary, Douglas R., Masaki Ohuchi, Patrick C. Reid, and Keiichi Masuya. "Constrained Peptides in Drug Discovery and Development." Journal of Synthetic Organic Chemistry, Japan 75, no. 11 (2017): 1171–78. http://dx.doi.org/10.5059/yukigoseikyokaishi.75.1171.
Full textFabris, Laura, Sabrina Antonello, Lidia Armelao, et al. "Gold Nanoclusters Protected by Conformationally Constrained Peptides." Journal of the American Chemical Society 128, no. 1 (2006): 326–36. http://dx.doi.org/10.1021/ja0560581.
Full textKang, Chang Won, Sujeewa Ranatunga, Matthew P. Sarnowski, and Juan R. Del Valle. "Solid-Phase Synthesis of Tetrahydropyridazinedione-Constrained Peptides." Organic Letters 16, no. 20 (2014): 5434–37. http://dx.doi.org/10.1021/ol5026684.
Full textMcDevitt, T. C., K. E. Nelson, and P. S. Stayton. "Constrained Cell Recognition Peptides Engineered into Streptavidin." Biotechnology Progress 15, no. 3 (1999): 391–96. http://dx.doi.org/10.1021/bp990043n.
Full textMcDowell, Robert S., and Thomas R. Gadek. "Structural studies of potent constrained RGD peptides." Journal of the American Chemical Society 114, no. 24 (1992): 9245–53. http://dx.doi.org/10.1021/ja00050a001.
Full textSkowron, Kornelia J., Thomas E. Speltz, and Terry W. Moore. "Recent structural advances in constrained helical peptides." Medicinal Research Reviews 39, no. 2 (2018): 749–70. http://dx.doi.org/10.1002/med.21540.
Full textFarrow, Blake, Andrew G. Wang, David N. Bunck, and James R. Heath. "Mimicking Protein Functions with Entropically Constrained Peptides." Biophysical Journal 110, no. 3 (2016): 203a. http://dx.doi.org/10.1016/j.bpj.2015.11.1134.
Full textHelton, Leah G., and Eileen J. Kennedy. "Targeting Plasmodium with constrained peptides and peptidomimetics." IUBMB Life 72, no. 6 (2020): 1103–14. http://dx.doi.org/10.1002/iub.2244.
Full textTóth, Gábor K., Zoltán Kele, and Ferenc Fülöp. "Synthesis of conformationally constrained peptides via solid-phase incorporation of the constraints." Tetrahedron Letters 41, no. 51 (2000): 10095–98. http://dx.doi.org/10.1016/s0040-4039(00)01795-0.
Full textNagarajan, Balaji, and Nehru Viji Sankaranarayanan. "Exploring the Energy Landscape of Conformationally Constrained Peptides in Vacuum and in the Presence of an Explicit Solvent Using the MOLS Technique." Sci 7, no. 3 (2025): 93. https://doi.org/10.3390/sci7030093.
Full textEaholtz, Galen, Anita Colvin, Daniele Leonard, Charles Taylor, and William A. Catterall. "Block of Brain Sodium Channels by Peptide Mimetics of the Isoleucine, Phenylalanine, and Methionine (IFM) Motif from the Inactivation Gate." Journal of General Physiology 113, no. 2 (1999): 279–94. http://dx.doi.org/10.1085/jgp.113.2.279.
Full textRoy, Siddhartha, Piya Ghosh, Israr Ahmed, Madhumita Chakraborty, Gitashri Naiya та Basusree Ghosh. "Constrained α-Helical Peptides as Inhibitors of Protein-Protein and Protein-DNA Interactions". Biomedicines 6, № 4 (2018): 118. http://dx.doi.org/10.3390/biomedicines6040118.
Full textMiles, Jennifer A., David J. Yeo, Philip Rowell, et al. "Hydrocarbon constrained peptides – understanding preorganisation and binding affinity." Chemical Science 7, no. 6 (2016): 3694–702. http://dx.doi.org/10.1039/c5sc04048e.
Full textZheng, Zihao, Aisha M. Mergaert, Irene M. Ong, Miriam A. Shelef, and Michael A. Newton. "MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing." Bioinformatics 37, no. 17 (2021): 2637–43. http://dx.doi.org/10.1093/bioinformatics/btab162.
Full textChakravarty, Sarvajit, Deidre Wilkins, and Donald J. Kyle. "Design of potent, cyclic peptide bradykinin receptor antagonists from conformationally constrained linear peptides." Journal of Medicinal Chemistry 36, no. 17 (1993): 2569–71. http://dx.doi.org/10.1021/jm00069a016.
Full textMa, He, Peiju Qiu, Peta J. Harvey, et al. "In Silico Design of MDM2‐Targeting Peptides from a Naturally Occurring Constrained Peptide." ChemMedChem 14, no. 19 (2019): 1710–16. http://dx.doi.org/10.1002/cmdc.201900366.
Full textWillick, Gordon. "Preface [ Constrained Peptides (Guest Editor: Gordon E. Willick)]." Current Medicinal Chemistry 11, no. 21 (2004): i. http://dx.doi.org/10.2174/0929867043364216.
Full text