Academic literature on the topic 'Correlation functions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Correlation functions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Correlation functions"

1

de Elvira, A. Ruiz, and M. J. Ortiz. "Triple correlation functions." Molecular Physics 54, no. 5 (April 10, 1985): 1213–28. http://dx.doi.org/10.1080/00268978500100961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garrido, Pedro L., and Giovanni Gallavotti. "Billiards correlation functions." Journal of Statistical Physics 76, no. 1-2 (July 1994): 549–85. http://dx.doi.org/10.1007/bf02188675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schneider, P., and J. Hartlap. "Constrained correlation functions." Astronomy & Astrophysics 504, no. 3 (July 16, 2009): 705–17. http://dx.doi.org/10.1051/0004-6361/200912424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Heel, Marin, Michael Schatz, and Elena Orlova. "Correlation functions revisited." Ultramicroscopy 46, no. 1-4 (October 1992): 307–16. http://dx.doi.org/10.1016/0304-3991(92)90021-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Wentian. "Mutual information functions versus correlation functions." Journal of Statistical Physics 60, no. 5-6 (September 1990): 823–37. http://dx.doi.org/10.1007/bf01025996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shimoji, Mitsuo, and Toshio Itami. "1.3 Time Correlation Functions and Memory Functions." Defect and Diffusion Forum 43 (January 1986): 22–34. http://dx.doi.org/10.4028/www.scientific.net/ddf.43.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nagao, Taro, and Miki Wadati. "Correlation Functions for Jastrow-Product Wave Functions." Journal of the Physical Society of Japan 62, no. 2 (February 15, 1993): 480–88. http://dx.doi.org/10.1143/jpsj.62.480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sjödahl, Mikael. "Gradient Correlation Functions in Digital Image Correlation." Applied Sciences 9, no. 10 (May 24, 2019): 2127. http://dx.doi.org/10.3390/app9102127.

Full text
Abstract:
The performance of seven different correlation functions applied in Digital Image Correlation has been investigated using simulated and experimentally acquired laser speckle patterns. The correlation functions were constructed as combinations of the pure intensity correlation function, the gradient correlation function and the Hessian correlation function, respectively. It was found that the correlation function that was constructed as the product of all three pure correlation functions performed best for the small speckle sizes and large correlation values, respectively. The difference between the different functions disappeared as the speckle size increased and the correlation value dropped. On average, the random error of the combined correlation function was half that of the traditional intensity correlation function within the optimum region.
APA, Harvard, Vancouver, ISO, and other styles
9

Veysoglu, M. E., and J. A. Kong. "Multi-Scale Correlation Functions." Progress In Electromagnetics Research 14 (1996): 279–315. http://dx.doi.org/10.2528/pier94010105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tyc, Tomáš. "Correlation functions and spin." Physical Review E 62, no. 3 (September 1, 2000): 4221–24. http://dx.doi.org/10.1103/physreve.62.4221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Correlation functions"

1

Nirschl, Michael. "Superconformal symmetry and correlation functions." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peláez, Arzúa Monica Marcela. "Infrared correlation functions in Quantum Chromodynamics." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066491/document.

Full text
Abstract:
Le but de cette thèse est l'étude des fonctions de corrélation des théries Yang-Mills dans le régime infrarouge. Il est connu que, à cause de l'invariance jauge, il est nécessaire de fixer la jauge pour calculer des valeurs moyennes analytiquement. La procedure de fixation gauge standard est la procedure de Faddeev-Popov (FP). Le Lagrangien de FP permet de faire des calculs perturbatifs pour la Chromodynamique Quantique dans le régime de hautes énergies dont les résultats sont comparés avec succès avec des expériences. Cependant, dans le régime de basses énergies, il se trouve que la constante de couplage, calculée avec la procedure antérieure, diverge. En conséquence, la théorie des perturbations standard n'est plus valide. D'autre part, les simulations du réseau trouvent que la constante de couplage est finie avec une valeur modérée même dans le régime infrarouge. Ceci suggère qu'il devrait exister une manière de faire des calculs perturbatifs également dans le régime infrarouge. Cette différence dans la constante de couplage peut être due au fait que la procedure de FP n'est pas bien justifiée dans ce régime. Nous proposons de modifier le Lagrangien de FP avec un terme massif pour les gluons. Cette modification est également justifiée par le fait que le réseau trouve un propagateur du gluon qui paraît massive aux basses énergies. Nous utilisons cette version massive pour calculer à une boucle les fonctions de corrélations à deux et trois points pour une configuration cinématique générale et en dimension quelconque dans la jauge de Landau. On trouve que les comparaisons de notre calcul à une boucle avec les résultat du réseau donnent, en géneral, un très bon accord
The aim of this thesis is to investigate the infrared behaviour of Yang-Mills correlation functions. It is known that the gauge invariance of the theory brings as a consequence the necessity of a gauge fixing procedure in order to compute expectation values analytically. The standard procedure for fixing the gauge is the Faddeev-Popov (FP) procedure which allows one to do perturbation theory in the ultraviolet regime. Perturbative calculations using the FP gauge fixed action successfully reproduce Quantum Chromodynamics observables measured by experiments in the ultraviolet regime. In the infrared regime the coupling constant of the theory computed with the above procedure diverges, and standard perturbation theory does not seem to be valid. However, lattice simulations show that the coupling constant takes finite and not very large value. This suggests that some kind of perturbative calculations should be valid even in the infrared regime. The theoretical justification for the FP procedure depends on the absence of Gribov copies and hence is not valid in the infrared regime (where such copies exist). To correct this we propose to add a mass term for the gluons in the gauge-fixed Lagrangian. The gluon mass term is also motivated by lattice simulations which observe that the gluon propagator behaves as it was massive in the infrared regime. We use this massive extension of the FP gauge fixed action to compute the one loop correction of the two- and three-point correlation functions in the Landau gauge for arbitrary kinematics and dimension. Our one-loop calculations are enough, in general, to reproduce with good accuracy the lattice data available in the literature
APA, Harvard, Vancouver, ISO, and other styles
3

Parry, Andrew Owen. "Correlation functions at continuous wetting transitions." Thesis, University of Bristol, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ding, You. "Spinfoams : simplicity constraints ans correlation functions." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22074/document.

Full text
Abstract:
Dans cette thèse, nous étudions l’implémentation des contraintes de simplicité dans le nouveau modèle de mousses de spin d’Engle-Pereira-Rovelli-Livine, ainsi que les fonctions de corrélation à deux points de ce modèle. Nous définissons d’une manière simple l’espace de Hilbert limite de la théorie, puis montrons directement que toutes les contraintes s’annulent faiblement sur cet espace. Nous observons que la solution générale a cette contrainte (imposée faiblement) dépend d’un nombre quantique, en plus de ceux de la gravitation quantique a boucles. Nous généralisons également cette construction pour la version de Kaminski-Kisielowski-Lewandowski, ou la mousse n’est pas duale à une triangulation. Nous montrons que cette théorie peut aussi être obtenue comme une théorie BF satisfaisant la contrainte de simplicité, cette fois discrétisée sur un 2-complexe cellulaire oriente. Enfin, nous calculons la fonction de corrélation a deux points du modèle de mousses de spin Engle-Pereira-Rovelli-Livine avec la signature lorentzienne, et nous montrons que la fonction a deux points que nous obtenons correspond dans une certaine limite a celle obtenue a partir du calcul de Regge lorentzien
In this thesis we study the implementation of simplicity constraints that defines the recent Engle-Pereira-Rovelli-Livine spinfoam model and two-point correlation functions of this model. We define in a simple way the boundary Hilbert space of the theory; then show directly that all constraints vanish on this space in a weak sense. We point out that the general solution to this constraint (imposed weakly) depends on a quantum number in addition to those of loop quantum gravity. We also generalize this construction to Kami´nski-Kisielowski-Lewandowski version where the foam is not dual to a triangulation. We show that this theory can still be obtained as a constrained BF theory satisfying the simplicity constraint, now discretized on a general oriented 2-cell complex. Finally, we calculate the twopoint correlation function of the Engle-Pereira-Rovelli-Livine spinfoam model in the Lorentzian signature, and show the two-point function we obtain exactly matches the one obtained from Lorentzian Regge calculus in some limit
APA, Harvard, Vancouver, ISO, and other styles
5

Hotchkiss, Alastair Jeremy. "Generalised cross correlation functions for physical applications." Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matusis, Alec (Alec L. ). 1971. "CFT correlation functions from AdS/CFT correspondence." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vachaspati, Pranjal. "Optimizing tensor contractions for nuclear correlation functions." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92687.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 37-38).
Nuclear correlation functions reveal interesting physical properties of atomic nuclei, including ground state energies and scattering potentials. However, calculating their values is computationally intensive due to the fact that the number of terms from quantum chromodynamics in a nuclear wave function scales exponentially with atomic number. In this thesis, we demonstrate two methods for speeding up this computation. First, we represent a correlation function as a sum of the determinants of many small matrices, and exploit similarities between the matrices to speed up the calculations of the determinants. We also investigate representing a correlation function as a sum of functions of bipartite graphs, and use isomorph-free exhaustive generation techniques to find a minimal set of graphs that represents the computation.
by Pranjal Vachaspati.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhong, Deliang. "Correlation Functions in Integrable Higher Dimensional CFTs." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS433.

Full text
Abstract:
Dans cette thèse, nous étudions les fonctions de corrélation à deux points ou plus de la théorie N = 4 super Yang-Mills (SYM) et ses déformations. On pense que cette théorie et ses déformations sont intégrables dans la limite planaire pour toutes les valeurs de la constante de couplage, ce qui nous permet de calculer plus efficacement diverses grandeurs physiques. Nous commençons par passer en revue les bases de la théorie N = 4 SYM et les outils d’intégrabilité nécessaires. Dans la partie II, nous présentons le formalisme en hexagone pour le calcul des constantes de structure de la théorie N = 4 SYM. En utilisant l’ansatz de Bethe imbriqué, nous étudions la constante de structure de deux opérateurs BPS et d’un opérateur non BPS du sous-secteur su (1, 1 | 2) dans les limites de couplage faible et forte. Le résultat de couplage faible est appliqué à l’étude du développement en ondes partielles conformes des fonctions asymptotiques à quatre points. A fort couplage, le résultat est appliqué pour le calcul des constantes de structure Heavy-Heavy-Light. Dans la partie III, nous nous concentrons sur une limite de double échelle particulière de la théorie N = 4 SYM, la limite de fishnet. Le lagrangien est obtenu à partir du processus de déformation et nous en présentons les théorèmes de non-renormalisation. En outre, nous donnons la première preuve de la symétrie du Yangien pour une grande classe de diagrammes de fishnet, en utilisant la fameuse relation RTT de l’intégrabilité. En utilisant les techniques d'intégrabilité héritées de la théorie N = 4 SYM, nous trouvons également que la limite du continuum des diagrammes de Feynman en fishnet peut être décrit comme un modèle sigma AdS
In this thesis, we study two- and higher-point correlation functions of the N = 4 super Yang-Mills theory (SYM) and its deformations. This theory and its deformations are believed to be integrable in the planar limit for any values of the coupling constant, which allow us to compute various physical quantities more efficiently. The basics of N = 4 SYM and the necessary integrability tools are reviewed in the very beginning. In part II, we review the hexagon formalism for computing structure constant in N = 4 SYM. Using the nested Bethe ansatz techniques, we investigate the structure constant of two BPS operators and one non-BPS operator in the su(1, 1|2) subsector in both weak and strong coupling limit. The weak coupling result is applied to the study of the conformal partial wave expansion of asymptotic four-point functions. At strong coupling, the result is applied to the Heavy-Heavy-Light structure constants. In part III, we focus on a particular double scaling limit of N = 4 SYM, namely the fishnet limit. The Lagrangian is obtained from the deformation process, and we present the non-renormalization theorems about it. Besides, we give the first principle proof of the Yangian symmetry for a large class of fishnet Feynman diagrams, using the famous RTT-formulation of integrability. Using the integrability techniques inherited from N = 4 SYM, we also find that the continuum limit of fishnet Feynman diagrams admit an AdS sigma model description
APA, Harvard, Vancouver, ISO, and other styles
9

Schäfer, Rudi. "Correlation functions and fidelity decay in chaotic systems." [S.l. : s.n.], 2004. http://archiv.ub.uni-marburg.de/diss/z2004/0660/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wilking, Philipp [Verfasser]. "Statistical properties of cosmological correlation functions / Philipp Wilking." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1077289766/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Correlation functions"

1

Multivariate characteristic and correlation functions. Berlin: De Gruyter, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Noback, R. Atmospheric turbulence spectra and correlation functions. Amsterdam: National Aerospace Laboratory, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Forster, Dieter. Hydrodynamic fluctuations, broken symmetry, and correlation functions. Redwood City, Calif: Addison-Wesley, Advanced Book Program, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Korepin, V. E. Quantum inverse scattering method and correlation functions. Cambridge [England]: Cambridge University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yaglom, A. M. Correlation Theory of Stationary and Related Random Functions. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4620-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yaglom, A. M. Correlation Theory of Stationary and Related Random Functions. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4628-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yaglom, A. M. Correlation theory of stationary and related random functions. New York: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yaglom, A. M. Correlation theory of stationary and related random functions. New York: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Correlation theory of stationary and related random functions. New York: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nieto, Juan Miguel. Spinning Strings and Correlation Functions in the AdS/CFT Correspondence. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96020-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Correlation functions"

1

Hohenester, Ulrich. "Correlation Functions." In Graduate Texts in Physics, 407–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30504-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Millington, Peter. "Correlation Functions." In Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics, 63–71. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01186-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mulay, Shashikant, John J. Quinn, and Mark Shattuck. "Correlation Functions." In Springer Series in Solid-State Sciences, 27–135. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00494-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lessard, Charles S. "Correlation Functions." In Signal Processing of Random Physiological Signals, 71–83. Cham: Springer International Publishing, 2006. http://dx.doi.org/10.1007/978-3-031-01610-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Phillies, George D. J. "Correlation Functions." In Elementary Lectures in Statistical Mechanics, 291–301. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1264-5_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Enz, Charles P. "Nonequilibrium Correlation Functions." In Instabilities and Nonequilibrium Structures, 217–39. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3783-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gillioz, Marc. "Conformal Correlation Functions." In SpringerBriefs in Physics, 45–56. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27086-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eu, Byung Chan. "Equilibrium Pair Correlation Functions." In Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics, 561–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41147-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zuevsky, Alexander. "Clusterization of Correlation Functions." In Groups, Modules, and Model Theory - Surveys and Recent Developments, 459–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51718-6_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalikmanov, V. I. "Method of correlation functions." In Statistical Physics of Fluids, 29–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04536-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Correlation functions"

1

Obeso, Eduardo. "Dimensional regularization of Schrödinger Functional correlation functions." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lock, James A. "ELECTRIC HELD AUTOCORRELATION FUNCTIONS FOR BEGINNING MULTIPLE SCATTERING." In Photon Correlation and Scattering. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/pcs.2000.tuc5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lorusso, G. F., V. Capozzi, and A. Minafra. "Study of the Noise of Correlation and Structure Functions." In Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/pcs.1992.tub8.

Full text
Abstract:
The influence of the noise of the statistical estimator used for the interpretation of Dynamic Light Scattering (DLS) measurements on the information available from experiments has been discussed by several authors [1,2]. The knowledge of the behaviour of noise of the used statistical estimator permits an improvement of the accuracy of DLS measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Fister, Leonard, and Jan Martin Pawlowski. "Confinement from Correlation Functions." In Xth Quark Confinement and the Hadron Spectrum. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.171.0180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Durian, D. J. "Detecting and characterizing intermittency using higher-order intensity correlation functions." In Photon Correlation and Scattering. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/pcs.2000.wc3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pérez Rubio, Paula, and Stefan Sint. "Fermionic correlation functions from the staggered Schroedinger functional." In The XXVI International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.066.0221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WEBER, Axel. "A generating functional for equal-time correlation functions." In VIIIth Conference Quark Confinement and the Hadron Spectrum. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.077.0161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huining, W., J. Pulliainen, and M. Hallikainen. "Correlation functions and correlation lengths for dry snow." In IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174). IEEE, 1998. http://dx.doi.org/10.1109/igarss.1998.691586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kirilenko, Mikhail S., and Sergey G. Volotovskiy. "Calculation of Karhunen-Loeve functions of given correlation function." In XVII International Scientific and Technical Conference "Optical Technologies for Telecommunications", edited by Vladimir A. Burdin, Vladimir A. Andreev, Oleg G. Morozov, Anton V. Bourdine, and Albert H. Sultanov. SPIE, 2020. http://dx.doi.org/10.1117/12.2565902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thakor, Satyajit, Terence H. Chan, and Alex Grant. "Characterising correlation via entropy functions." In 2013 IEEE Information Theory Workshop (ITW 2013). IEEE, 2013. http://dx.doi.org/10.1109/itw.2013.6691218.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Correlation functions"

1

Fry, J. N., and E. Gaztanaga. Redshift distortions of galaxy correlation functions. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10160622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fry, J. N., and E. Gaztanaga. Redshift distortions of galaxy correlation functions. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/6519142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, Jianshu, and Gregory A. Voth. A Theory for Time Correlation Functions in Liquids. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cao, Jianshu, and Gregory A. Voth. Semiclassical Approximations to Quantum Dynamical Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada300432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cao, Jianshu, and Gregory A. Voth. A New Perspective on Quantum Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada272579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Franke, Richard. Vertical Correlation Functions for Temperature and Relative Humidity Errors. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada361021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blair, S. C., P. A. Berge, and J. G. Berryman. Two-point correlation functions to characterize microgeometry and estimate permeabilities of synthetic and natural sandstones. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10182383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, David K. Three-Dimensional Correlation and Spectral Functions for Turbulent Velocities in Homogeneous and Surface-Blocked Boundary Layers. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada327709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Taniguchi, M., and P. R. Krishnaiah. Asymptotic Distributions of Functions of the Eigenvalues of the Sample Covariance Matrix and Canonical Correlation Matrix in Multivariate Time Series. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada170282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khrykov, Yevhen M., Alla A. Kharkivska, and Halyna F. Ponomarova. Modeling the training system of masters of public service using Web 2.0. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3862.

Full text
Abstract:
The article concerns grounding the technology of training masters of public service with the use of Web 2.0. This technology is based on the concept of sign-contextual learning, the positions of the laboratory-brigade method, the concept of Web 2.0, case technology, project method, problem learning. The main features of this technology are changes in the correlation between theoretical and practical training, in-class and individual studying; changing teachers’ functions; extensive use of information technology capabilities in learning.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography