Academic literature on the topic 'Diffusion (physique) – Modèles mathématiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion (physique) – Modèles mathématiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diffusion (physique) – Modèles mathématiques"
Pecker, Jean-Claude. "Modèles mathématiques et réalité physique." Le Débat 56, no. 4 (1989): 166. http://dx.doi.org/10.3917/deba.056.0166.
Full textBoczar, J., A. Dorobczynski, and J. Miakotoi. "Modèle de transfert et de diffusion de masse dans un écoulement, en présence de gradients de vitesse et de gradients du coefficient de diffusion turbulente." Revue des sciences de l'eau 5, no. 3 (April 12, 2005): 353–79. http://dx.doi.org/10.7202/705136ar.
Full textEs-Sette, Btissame, Youssef Ajdor, Fatiha Zidane, Abdelbassit Fakhraddine, and Ali Foutlane. "Évolution des métaux traces dans les eaux de l'oued Sebou en période humide — Approche par modélisation mathématique." Water Quality Research Journal 40, no. 2 (May 1, 2005): 222–32. http://dx.doi.org/10.2166/wqrj.2005.025.
Full textOpatowski, L., M. Domenech de Cellès, S. Souissi, L. Kardaś-Słoma, L. Temime, and D. Guillemot. "Contribution des modèles mathématiques à la compréhension de la dynamique de diffusion des bactéries multi-résistantes à l’hôpital." Journal des Anti-infectieux 15, no. 4 (December 2013): 193–203. http://dx.doi.org/10.1016/j.antinf.2013.09.002.
Full textDesrochers, Nora, and Ginette Paquet. "Recherche socio-évaluative de l’impact de l’intervention marrainage du Groupe Les Relevailles." Santé mentale au Québec 10, no. 1 (June 7, 2006): 8–14. http://dx.doi.org/10.7202/030262ar.
Full textCHIRA, Rodica-Gabriela. "Sophie Hébert-Loizelet and Élise Ouvrard. (Eds.) Les carnets aujourd’hui. Outils d’apprentissage et objets de recherche. Presses universitaires de Caen, 2019. Pp. 212. ISBN 979-2-84133-935-8." Journal of Linguistic and Intercultural Education 13 (December 1, 2020): 195–200. http://dx.doi.org/10.29302/jolie.2020.13.12.
Full textDunoyer, Christiane. "Monde alpin." Anthropen, 2019. http://dx.doi.org/10.17184/eac.anthropen.101.
Full textDissertations / Theses on the topic "Diffusion (physique) – Modèles mathématiques"
Logvinova, Kira. "Modèles mathématiques pour la diffusion en milieux poreux hétérogènes." Avignon, 2005. http://www.theses.fr/2005AVIG0501.
Full textMercet, Cédric. "Modélisation tridimentionnelle de l'évolution des transferts à l'échelle du pore." Bordeaux 1, 2000. http://www.theses.fr/2000BOR12307.
Full textUrruty, Patrick. "Solutions fortes et solutions renormalisées pour des équations générales de la diffusion en milieu poreux." Pau, 1997. http://www.theses.fr/1997PAUU3006.
Full textGouné, Mohamed. "Etude et caractérisation de la diffusion de l'azote à 843 K dans les systèmes binaires Fe-N et ternaires Fe-N-V et Fe-N-Mn : modélisation des phénomènes de diffusion-précipitation." Vandoeuvre-les-Nancy, INPL, 2001. http://www.theses.fr/2001INPL011N.
Full textGiorgi, Pierre-Antoine. "Analyse mathématique de modèles cinétiques en physique des plasmas." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0609.
Full textThis thesis deals with the study of some kinetic models encountered in plasma physics.The first model considered is a 1D Vlasov-Poisson system representing the dynamics of two species of particles (ions and electrons) in a bounded set, x ∈ (0,1), with direct reflection boundary conditions. In the linear case, generalized characteristics are defined, ensuring the time s=0 to be reached after a finite number of bounces, the problematic case being when the electric field points outward of the boundary. Then, for initial conditions even in the velocity variable, a global continuous solution is built by means of generalized characteristics and a fixed point argument. Local uniqueness of a continuous solution is shown, in a frame where two successive bounces at the same boundary cannot occur. The second model was obtained as the limit of a Vlasov-Poisson system in the finite Larmor radius regime.For solutions satisfying a decay assumption, a Wasserstein stability estimate is proven, and a new proof of the existence of such solutions is given. The advection field is then Lipschitz continuous. Finally, numerical simulations are performed to investigate the kinetic response of electrons to an external drive. A beating between two waves, one at the external frequency, the other at the Landau frequency, is revealed
Bourgade, Jean-Pierre. "Obtention de modèles de diffusion à partir d'équations cinétiques : modélisation, étude mathématique et simulation." Phd thesis, Université Paul Sabatier - Toulouse III, 2004. http://tel.archives-ouvertes.fr/tel-00008808.
Full textPainchaud-April, Guillaume. "Cavités diélectriques - Formalisme de diffusion et applications." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30497/30497.pdf.
Full textTwo-dimensional resonant dielectric microcavities present an important potential in various domains ranging from bio-detection to production of laser radiation. Their small footprint - typically tens of microns over their longest axis - conjugated to a strong capacity to retain the electromagnetic field - quality factors reaching values of 10^9 - make them excellent candidates for a large number of high-tech applications where tight energy management, high precision and low volumes are critical parameters. Moreover, the implantation of microcavities benefit from well-mastered micro-etching techniques. One of the the most challenging issues related to microcavities remains the merging of high quality factors, the fundamental characteristic of microcavities, and the capacity to produce highly directional radiation emission. This thematic forms the leitmotiv of this thesis. First, attention is focused on the development of a formalism framing the characterisation of dielectric cavities. An original method using the scattering matrix is presented for this purpose. Then, a perturbation study of the dielectric disc cavity is carried out. The results gathered from this investigation are used as guidelines for further applications. Second, the scattering formalism is applied to the simplest refractive index deformation of the disc cavity, the annular cavity. Some transition ‘rules’ from non-directional emission to directional emission are obtained. Also, a discussion about the waveguidecavity coupling is presented. This type of configuration is often found in experimental setups using microcavities. Finally, a proposal derived from results obtained throughout the thesis is presented. The operation principle exploits the coupling from a dielectric ring used as an electromagnetic field reservoir to a second strongly directional ‘parasitic’ cavity. This document is written in English to ease its distribution both for evaluation purposes and consultation by the Community.
Cois, Olivier. "Systèmes linéaires non entiers et identification par modèle non entier : application en thermique." Bordeaux 1, 2002. http://www.theses.fr/2002BOR12534.
Full textThis thesis deals with system representation and identification by fractional models. Chapter 1 recalls the definitions and main properties of the fractional operators. Chapter 2 proposes the study of a continuous MIMO complex-fractional system through a generalized state space representation. A stability theorem is established from the output analytical expression. Chapter 3 deals with the modeling of diffusive processes using fractional differentiation operators. The heat transfer trough 6 different finite and semi-infinite media is studied. Approximations using integer or fractional transfer functions are then established and compared. Chapter 4 is devoted to system identification by fractional model. Equation error methods as well as output error methods are developed. Finally, chapter 5 gives an application of system identification to the solving of a thermal inverse problem. An example, consisting of the estimation of the thermal cut conditions, is given
Buet, Christophe. "Analyse mathématique et numérique dequelques modèles hydrodynamiques et cinétiques de la physique des plasmas." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011120.
Full texttion mathématique et la simulation numérique pour la physique des plasmas. Ce mémoire présente
mes contributions dans ce domaine.
Reynier, Alain. "Modelisation et prediction de la migration des additifs des emballages alimentaires." Reims, 2000. http://www.theses.fr/2000REIMS004.
Full textBooks on the topic "Diffusion (physique) – Modèles mathématiques"
Vandenberg, A. Modèle physique de l'infiltration, du drainage et du ruissellement dans des sols à couches multiples. [s.l: s.n.], 1989.
Find full textShukla, Bhagwan S. Diffusion coefficient and mixing depth through environmental radioactivity (models and applications). Hamilton, Ont: Environmental Research & Publications, 2010.
Find full textJensen, Frank. Introduction to computational chemistry. 2nd ed. Chichester, England: John Wiley & Sons, 2007.
Find full textKikuchi, Noboru. Contact problems in elasticity: A study of variational inequalities and finite element methods. Philadelphia: SIAM, 1988.
Find full textManevich, L. I. Mechanics of periodically heterogeneous structures. Berlin: Springer, 2002.
Find full textSlawinski, Michael. Wavefronts and Rays: As Characteristics and Asymptotics. World Scientific Publishing Co Pte Ltd, 2011.
Find full textWave Propagation: Scattering and Emission in Complex Media. World Scientific Publishing Company, 2005.
Find full textBook chapters on the topic "Diffusion (physique) – Modèles mathématiques"
KOROLIOUK, Dimitri, and Vladimir S. KOROLIUK. "Approximation de la diffusion des systèmes et réseaux de files d’attente." In Théorie des files d’attente 1, 75–110. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9001.ch3.
Full textRIGNEAULT, Hervé, and Julien DUBOISSET. "Imagerie Raman cohérente." In Spectroscopies vibrationnelles, 273–88. Editions des archives contemporaines, 2020. http://dx.doi.org/10.17184/eac.4204.
Full text