Journal articles on the topic 'Dropout prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dropout prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kim, Sangyun, Euteum Choi, Yong-Kee Jun, and Seongjin Lee. "Student Dropout Prediction for University with High Precision and Recall." Applied Sciences 13, no. 10 (2023): 6275. http://dx.doi.org/10.3390/app13106275.
Full textAmeen, Ahmed O., Moshood Alabi Alarape, and Kayode S. Adewole. "STUDENTS’ ACADEMIC PERFORMANCE AND DROPOUT PREDICTION." MALAYSIAN JOURNAL OF COMPUTING 4, no. 2 (2019): 278. http://dx.doi.org/10.24191/mjoc.v4i2.6701.
Full textSong, Zihan, Sang-Ha Sung, Do-Myung Park, and Byung-Kwon Park. "All-Year Dropout Prediction Modeling and Analysis for University Students." Applied Sciences 13, no. 2 (2023): 1143. http://dx.doi.org/10.3390/app13021143.
Full textAmare, Meseret Yihun, and Stanislava Simonova. "Global challenges of students dropout: A prediction model development using machine learning algorithms on higher education datasets." SHS Web of Conferences 129 (2021): 09001. http://dx.doi.org/10.1051/shsconf/202112909001.
Full textAwasthi, Shivani. "Dropout Prediction with Supervised Learning." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem44873.
Full textYujiao, Zhang, Ling Weay Ang, Shi Shaomin, and Sellappan Palaniappan. "Dropout Prediction Model for College Students in MOOCs Based on Weighted Multi-feature and SVM." Journal of Informatics and Web Engineering 2, no. 2 (2023): 29–42. http://dx.doi.org/10.33093/jiwe.2023.2.2.3.
Full textRadovanovic, Sandro, Boris Delibasic, and Milija Suknovic. "Predicting dropout in online learning environments." Computer Science and Information Systems, no. 00 (2020): 53. http://dx.doi.org/10.2298/csis200920053r.
Full textArthana, I. Ketut Resika. "Optimizing Dropout Prediction in University Using Oversampling Techniques for Imbalanced Datasets." International Journal of Information and Education Technology 14, no. 8 (2024): 1052–60. http://dx.doi.org/10.18178/ijiet.2024.14.8.2133.
Full textNicoletti, Maria do Carmo, and Osvaldo Luiz de Oliveira. "A Machine Learning-Based Computational System Proposal Aiming at Higher Education Dropout Prediction." Higher Education Studies 10, no. 4 (2020): 12. http://dx.doi.org/10.5539/hes.v10n4p12.
Full textZhou, Fanhao, and Neil Agarwal. "Student Performance Prediction Based on Decision Trees." Journal of Research in Applied Mathematics 10, no. 12 (2024): 114–20. https://doi.org/10.35629/0743-1012114120.
Full textChi, Zengxiao, Shuo Zhang, and Lin Shi. "Analysis and Prediction of MOOC Learners’ Dropout Behavior." Applied Sciences 13, no. 2 (2023): 1068. http://dx.doi.org/10.3390/app13021068.
Full textBrorson, Hanne H., Espen Ajo Arnevik, and Kim Rand. "Predicting Dropout from Inpatient Substance Use Disorder Treatment: A Prospective Validation Study of the OQ-Analyst." Substance Abuse: Research and Treatment 13 (January 2019): 117822181986618. http://dx.doi.org/10.1177/1178221819866181.
Full textMUKOOYO, HUMPHREY, and JOHN PAUL KASSE. "Towards Sustainable Education: A Machine Learning Model for Early Student Dropout Prediction in Higher Education Institutions." Uganda Higher Education Review 11, no. 2 (2024): 57–68. http://dx.doi.org/10.58653/nche.v11i2.5.
Full textPatel, Kinjal K., and Kiran Amin. "Predictive modeling of dropout in MOOCs using machine learning techniques." Scientific Temper 15, no. 02 (2024): 2199–206. http://dx.doi.org/10.58414/scientifictemper.2024.15.2.32.
Full textWon, Hyun-Sik, Min-Ji Kim, Dohyun Kim, Hee-Soo Kim, and Kang-Min Kim. "University Student Dropout Prediction Using Pretrained Language Models." Applied Sciences 13, no. 12 (2023): 7073. http://dx.doi.org/10.3390/app13127073.
Full textHaryono Setiadi, Indah Paksi Larasati, Esti Suryani, Dewi Wisnu Wardani, Hasan Dwi Cahyono Wardani, and Ardhi Wijayanto. "Comparing Correlation-Based Feature Selection and Symmetrical Uncertainty for Student Dropout Prediction." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 8, no. 4 (2024): 542–54. https://doi.org/10.29207/resti.v8i4.5911.
Full textYukselturk, Erman, Serhat Ozekes, and Yalın Kılıç Türel. "Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program." European Journal of Open, Distance and E-Learning 17, no. 1 (2014): 118–33. http://dx.doi.org/10.2478/eurodl-2014-0008.
Full textCai, Ruichu, Xuexin Chen, Yuan Fang, Min Wu, and Yuexing Hao. "Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers." Bioinformatics 36, no. 16 (2020): 4458–65. http://dx.doi.org/10.1093/bioinformatics/btaa211.
Full textNguyen Thi Cam, Huong, Aliza Sarlan, and Noreen Izza Arshad. "A hybrid model integrating recurrent neural networks and the semi-supervised support vector machine for identification of early student dropout risk." PeerJ Computer Science 10 (November 29, 2024): e2572. http://dx.doi.org/10.7717/peerj-cs.2572.
Full textBethell, Daniel, Simos Gerasimou, and Radu Calinescu. "Robust Uncertainty Quantification Using Conformalised Monte Carlo Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 19 (2024): 20939–48. http://dx.doi.org/10.1609/aaai.v38i19.30084.
Full textCambruzzi, Wagner, Sandro Rigo, and Jorge Luis Victória Barbosa. "Dropout Prediction and Reduction in Distance Education Courses with the Learning Analytics Multitrail Approach." JUCS - Journal of Universal Computer Science 21, no. (1) (2015): 23–47. https://doi.org/10.3217/jucs-021-01-0023.
Full textMduma, Neema. "Data Balancing Techniques for Predicting Student Dropout Using Machine Learning." Data 8, no. 3 (2023): 49. http://dx.doi.org/10.3390/data8030049.
Full textSultana, Sara, Sharifullah Khan, and Muhammad A. Abbas. "Predicting performance of electrical engineering students using cognitive and non-cognitive features for identification of potential dropouts." International Journal of Electrical Engineering & Education 54, no. 2 (2017): 105–18. http://dx.doi.org/10.1177/0020720916688484.
Full textAlghamdi, Saad, Ben Soh, and Alice Li. "A Comprehensive Review of Dropout Prediction Methods Based on Multivariate Analysed Features of MOOC Platforms." Multimodal Technologies and Interaction 9, no. 1 (2025): 3. https://doi.org/10.3390/mti9010003.
Full textBremer, Vincent, Philip I. Chow, Burkhardt Funk, Frances P. Thorndike, and Lee M. Ritterband. "Developing a Process for the Analysis of User Journeys and the Prediction of Dropout in Digital Health Interventions: Machine Learning Approach." Journal of Medical Internet Research 22, no. 10 (2020): e17738. http://dx.doi.org/10.2196/17738.
Full textBaek, Eun-Ju, and Seung-Hyung Lee. "Development of a Machine Learning-Based Model for Predicting Dropout Rates in Regional Universities and Exploration of Influencing Factors through Big Data Analysis: Using University Information Disclosure Data from 2017 to 2023." Korean Association For Learner-Centered Curriculum And Instruction 25, no. 1 (2025): 231–56. https://doi.org/10.22251/jlcci.2025.25.1.231.
Full textPattanaphanchai, Jarutas, Koranat Leelertpanyakul, and Napa Theppalak. "The Investigation of Student Dropout Prediction Model in Thai Higher Education Using Educational Data Mining: A Case Study of Faculty of Science, Prince of Songkla Uni-versity." JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 27, no. 1 (2019): 356–67. http://dx.doi.org/10.29196/jubpas.v27i1.2191.
Full textChen, Zihui. "Exploiting Long Short-term Memory Neural Network for Stock Price Prediction." Applied and Computational Engineering 8, no. 1 (2023): 829–34. http://dx.doi.org/10.54254/2755-2721/8/20230277.
Full textSobreiro, Pedro, José Garcia-Alonso, Domingos Martinho, and Javier Berrocal. "Hybrid Random Forest Survival Model to Predict Customer Membership Dropout." Electronics 11, no. 20 (2022): 3328. http://dx.doi.org/10.3390/electronics11203328.
Full textOjoajogu Enemali, Ephraim, Sulaiman Alhaji Dodo Ibrahim, Ibraheem Salaudeen, and Mahmud Abubakar Abdulmalik. "A CONCRETE DROPOUT NEURAL NETWORK FOR SHEAR SONIC LOG PREDICTION." Romanian Journal of Petroleum & Gas Technology 6 (77), no. 1 (2025): 119–36. https://doi.org/10.51865/jpgt.2025.01.08.
Full textColpo, Miriam Pizzatto, Tiago Thompsen Primo, Marilton Sanchotene de Aguiar, and Cristian Cechinel. "Educational Data Mining for Dropout Prediction: Trends, Opportunities, and Challenges." Revista Brasileira de Informática na Educação 32 (May 20, 2024): 220–56. http://dx.doi.org/10.5753/rbie.2024.3559.
Full textXing, Wanli, and Dongping Du. "Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention." Journal of Educational Computing Research 57, no. 3 (2018): 547–70. http://dx.doi.org/10.1177/0735633118757015.
Full textEnemali, Ephraim Ojoajogu, Sulaiman Dodo Alhaji Ibrahim, Ibraheem Salaudeen, and Mahmud Abdulmalik Abubakar. "A concrete dropout neural network for shear sonic log prediction." Romanian Journal of Petroleum and Gas Technology 6, no. 1 (2025): 119–36. https://doi.org/10.51865/JPGT.2025.01.08.
Full textSari, Eka Yulia, Kusrini Kusrini, and Andi Sunyoto. "Analisis Akurasi Jaringan Syaraf Tiruan Dengan Backpropagation Untuk Prediksi Mahasiswa Dropout." Creative Information Technology Journal 6, no. 2 (2021): 85. http://dx.doi.org/10.24076/citec.2019v6i2.235.
Full textBelleï-Rodriguez, Carmen-Édith, Serge Larivée, and Julien Morizot. "Décrochage scolaire : la relation élève-enseignants peut-elle l'emporter contre le quotient intellectuel?" McGill Journal of Education 55, no. 2 (2021): 439–62. http://dx.doi.org/10.7202/1077976ar.
Full textSobreiro, Pedro, Domingos Dos Santos Martinho, Jose G. Alonso, and Javier Berrocal. "A SLR on Customer Dropout Prediction." IEEE Access 10 (2022): 14529–47. http://dx.doi.org/10.1109/access.2022.3146397.
Full textKumar, Mukesh, A. J. Singh, and Disha Handa. "Literature Survey on Educational Dropout Prediction." International Journal of Education and Management Engineering 7, no. 2 (2017): 8–19. http://dx.doi.org/10.5815/ijeme.2017.02.02.
Full textkamal, Md Sarwar, Linkon Chowdhury, and Sonia Farhana Nimmy. "New Dropout Prediction for Intelligent System." International Journal of Computer Applications 42, no. 16 (2012): 26–31. http://dx.doi.org/10.5120/5777-8093.
Full textOsemwegie, Eric E., Frank I. Amadin, and O. M. Uduehi. "STUDENT DROPOUT PREDICTION USING MACHINE LEARNING." FUDMA JOURNAL OF SCIENCES 7, no. 6 (2023): 347–53. http://dx.doi.org/10.33003/fjs-2023-0706-2103.
Full textPsathas, Georgios, Theano K. Chatzidaki, and Stavros N. Demetriadis. "Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning." Computers 12, no. 10 (2023): 194. http://dx.doi.org/10.3390/computers12100194.
Full textLad, Sakshi S. "Dropout- A Detailed Survey." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (2021): 1573–78. http://dx.doi.org/10.22214/ijraset.2021.36499.
Full textB, Marina, and A. Senthilrajan. "HFIPO-DPNN: A Framework for Predicting the Dropout of Physically Impaired Student from Education." International Journal of Information and Education Technology 13, no. 4 (2023): 696–703. http://dx.doi.org/10.18178/ijiet.2023.13.4.1855.
Full textZhang, Tiancheng, Hengyu Liu, Jiale Tao, et al. "Enhancing Dropout Prediction in Distributed Educational Data Using Learning Pattern Awareness: A Federated Learning Approach." Mathematics 11, no. 24 (2023): 4977. http://dx.doi.org/10.3390/math11244977.
Full textFarzana, Walia, Megan A. Witherow, Ahmed Temtam, et al. "24 Key brain region identification in obesity prediction with structural MRI and probabilistic uncertainty aware model." Journal of Clinical and Translational Science 9, s1 (2025): 9. https://doi.org/10.1017/cts.2024.715.
Full textGoel, Yamini, and Rinkaj Goyal. "On the Effectiveness of Self-Training in MOOC Dropout Prediction." Open Computer Science 10, no. 1 (2020): 246–58. http://dx.doi.org/10.1515/comp-2020-0153.
Full textLi, Ye, and Xiaohu Shi. "Mine Pressure Prediction Study Based on Fuzzy Cognitive Maps." International Journal of Computational Intelligence and Applications 19, no. 03 (2020): 2050023. http://dx.doi.org/10.1142/s1469026820500236.
Full textBremer, V., P. Chow, B. Funk, F. Thorndike, and L. Ritterband. "1204 Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention." Sleep 43, Supplement_1 (2020): A460. http://dx.doi.org/10.1093/sleep/zsaa056.1198.
Full textSiebra, Clauirton Albuquerque, Ramon N. Santos, and Natasha C. Q. Lino. "A Self-Adjusting Approach for Temporal Dropout Prediction of E-Learning Students." International Journal of Distance Education Technologies 18, no. 2 (2020): 19–33. http://dx.doi.org/10.4018/ijdet.2020040102.
Full textPutra, Lalu Ganda Rady, Didik Dwi Prasetya, and Mayadi Mayadi. "Student Dropout Prediction Using Random Forest and XGBoost Method." INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi 9, no. 1 (2025): 147–57. https://doi.org/10.29407/intensif.v9i1.21191.
Full textG.Dongre, Prof (Dr) Ganesh. "Predicting Student Dropout Rates in Higher Education: A Comparative Study of Machine Learning Algorithms." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 11 (2024): 1–8. http://dx.doi.org/10.55041/ijsrem38488.
Full text