Academic literature on the topic 'Eccentric rotating cylinders'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eccentric rotating cylinders.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Eccentric rotating cylinders"

1

de Socio, L. M., and L. Marino. "Flow separation between rotating eccentric cylinders." European Journal of Mechanics - B/Fluids 22, no. 1 (2003): 85–97. http://dx.doi.org/10.1016/s0997-7546(02)00006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oikawa, Masayuki, Takashi Karasudani, and Mitsuaki Funakoshi. "Stability of Flow between Eccentric Rotating Cylinders." Journal of the Physical Society of Japan 58, no. 7 (1989): 2355–64. http://dx.doi.org/10.1143/jpsj.58.2355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Szeri, A. Z., and A. Al-Sharif. "Flow between finite, steadily rotating eccentric cylinders." Theoretical and Computational Fluid Dynamics 7, no. 1 (1995): 1–28. http://dx.doi.org/10.1007/bf00312397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hird, L. D., and P. F. Siew. "Small reynolds number flow between eccentric rotating cylinders with a permeable sleeve." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 38, no. 2 (1996): 255–73. http://dx.doi.org/10.1017/s0334270000000643.

Full text
Abstract:
AbstractTwo eccentric rotating cylinders together with a permeable membrane surrounding the inner cylinder are used to model the flow around a modified viscometer. A perturbation method is used to solve for the flow between the membrane and the outer cylinder; the flow between the inner rotor and the membrane is assumed to be governed by Stoke's equation, and the two flow regimes are coupled by the through-flow across the membrane. For moderate values of Reynolds number and eccentricity, the permeability of the membrane plays a negligible role, and the flow through the membrane is found to be eccentricity dependent. High eccentricities result in the formation of eddies which, upon increasing the Reynolds number, move in a direction opposite to that of the rotation of the outer bowl.
APA, Harvard, Vancouver, ISO, and other styles
5

FAN, YURUN, NHAN PHAN-THIEN, and ROGER I. TANNER. "Tangential flow and advective mixing of viscoplastic fluids between eccentric cylinders." Journal of Fluid Mechanics 431 (March 25, 2001): 65–89. http://dx.doi.org/10.1017/s0022112000002998.

Full text
Abstract:
This is a study on the tangential flow and advective mixing of viscoplastic fluids (Bingham plastics) between two eccentric, alternately rotating cylinders. Two geometrical configurations and various rotation modes are considered for a relatively large range of the yield stress. The hp-type finite element method with the mixed formulation is used to solve for the steady velocity and pressure fields. The bi-viscosity and the Papanastasiou models agree quantitatively with each other in predicting the velocity fields and the practically unyielded zones. However, the Papanastasiou model is more robust and economic than the bi-viscosity model in the computation using Newton iteration. In the steady flows, in addition to the motionless zones, we have discovered some plugs with rigid rotation, including rotating plugs stuck onto the outer cylinder and rotating, even counter-rotating, plugs disconnected from both cylinders. The unsteady, periodic flow is composed of a sequence of the steady flows, which is valid in the creeping flow regime. The characteristics of advective mixing in these flows have been studied by analysing the asymptotic coverages of a passive tracer, the distributions of the lineal stretching in the flow and the variations of the mean stretching of the flow with time. The tracer coverage is intuitive but qualitative and, occasionally, it depends on the initial location of the tracer. On the other hand, the distribution of stretching is quantitative and more reliable in reflecting the mixing characteristics. Interestingly, the zones of the lowest stretching in the distribution graphs are remarkably well matched with the regular zones in the tracer-coverage graphs. Furthermore, the mixing efficiency proposed by Ottino (1989) is used to characterize the advective mixing in the two geometrical configurations with various rotation modes. It is important to realize that, for plastic fluids, a major barrier to effective mixing is the unyielded fluid plugs which are controlled by the yield stress and geometrical configurations. Therefore, when designing an eccentric helical annular mixer it is important to pay attention first to the geometric issues then to the operating issues.
APA, Harvard, Vancouver, ISO, and other styles
6

Meena, S., and Prem Kumar Kandaswamy. "The Hydromagnetic Flow between Two Rotating Eccentric Cylinders." International Journal of Fluid Mechanics Research 26, no. 5-6 (1999): 597–617. http://dx.doi.org/10.1615/interjfluidmechres.v26.i5-6.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meena, S., and Prem Kumar Kandaswamy. "The Hydromagnetic Flow between Two Rotating Eccentric Cylinders." International Journal of Fluid Mechanics Research 29, no. 5 (2002): 18. http://dx.doi.org/10.1615/interjfluidmechres.v29.i5.60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuroda, Shigeaki, Ten Min Wang, and Haruno Makioka. "Numerical Analysis of Flow between Eccentric Rotating Cylinders." Transactions of the Japan Society of Mechanical Engineers Series B 61, no. 591 (1995): 3983–88. http://dx.doi.org/10.1299/kikaib.61.3983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rui-Xiu, Dai, Q. Dong, and A. Z. Szeri. "Flow between eccentric rotating cylinders: Bifurcation and stability." International Journal of Engineering Science 30, no. 10 (1992): 1323–40. http://dx.doi.org/10.1016/0020-7225(92)90144-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chawda, Amit, and Marios Avgousti. "Stability of visoelastic flow between eccentric rotating cylinders." Journal of Non-Newtonian Fluid Mechanics 63, no. 2-3 (1996): 97–120. http://dx.doi.org/10.1016/0377-0257(96)01425-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Eccentric rotating cylinders"

1

Liu, Kai. "Viscoelastic flows within eccentric rotating cylinders : journal bearings." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2716.

Full text
Abstract:
Experiments have shown that the addition of small amounts of long-chained polymer additives to a Newtonian fluid produces desirable lubricants. Additives added to oil make the fluid viscoelastic. The effect of viscoelasticity on lubrication characteristics has recently taken on added significance with the move to yet lower-viscosity lubricants for improved energy efficiency. Any factor influencing load-bearing capacity and wear is clearly of renewed importance. The general trend towards the usage of high performance lubricants and environmentally friendly products also support the design of new lubricants. This thesis is aimed at investigating viscoelastic flows within eccentric rotating cylinders (practical application - journal bearings) using a commercial finite element software POLYFLOW. Numerous validations are performed and excellent agreements are achieved. Steady shear and small-amplitude oscillatory shear (SAOS) experiments are performed for specific lubricants including mineral-based and bio-based lubricants to characterize their rheological behavior. Experimental data are fitted by a viscoelastic constitutive model used for numerical simulations. The effects of fluid viscoelasticity between eccentric rotating cylinders on the flow field and on the lubrication performances are revealed in 2D and 3D respectively. From 2D investigation, an increased load capacity on the inner cylinder is found to be achieved by increasing the viscoelasticity of flow. For the first time, to our knowledge, 3D results for an UCM (Upper-Convected Maxwell) fluid at steady state are presented and the flow patterns along the axial direction within the eccentric rotating cylinders are investigated. The viscoelastic effects of those lubricants on the journal bearing performances are revealed and compared at various temperatures. The modeling and numerical simulations used to predict the flow of lubricant in a journal bearing can generate important economic benefits. This research will lead to advanced predictive tools that can be used to improve the design of journal bearing and to propose new economically viable and environmentally friendly lubricants.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Chun Woo. "The application of eccentric rotating cylinder apparatus for the improved study of particle coagulation." Texas A&M University, 2003. http://hdl.handle.net/1969.1/1192.

Full text
Abstract:
Concentric rotating cylinder and turbulent mixing devices have been frequently used in studying mixing and particle coagulation. However, these apparatus develop simple laminar flow (concentric rotating cylinders) or do not have well-defined flow (turbulent mixing devices). In this work, the eccentric rotating cylinder apparatus was investigated to find applicability for the improved study of coagulation based on the modified analytical solution of Ballal and Rivlin. Various eccentricity ratios, rotation speeds and viscosities were simulated to obtain optimum operating conditions. Inertial forces working on the fluid increased as the eccentricity ratio and rotation speed increase. As inertial forces increase, the eddy developed in wide clearance was more skewed in the direction of rotation. Both root-mean-square velocity gradient and average principal strain-rate, were increased by increasing eccentricity ratio. avaerage principal strain-rate were linearly increased as rotation speed increases, which suggested that average prinipal strain-rate can properly represent mixing intensity. Comparison of average principal strain-rate and RMS velocity gradient revealed that RMS velocity gradient overestimated mixing intensity and its error increased as eccentricity ratio increases. This study showed that the eccentric rotating cylinder apparatus has a non-uniform velocity distribution with well-defined fluid dynamics. Therefore, the eccentric rotating cylinder apparatus can be applicable as a model flocculator. However, in order to achieve reliable model predictability, the fluid Reynolds number must be below 200.
APA, Harvard, Vancouver, ISO, and other styles
3

Hird, Lee D. "Analysis of the flow field between two eccentric rotating cylinders in the presence of a slotted sleeve." Curtin University of Technology, School of Mathematics and Statistics, 1997. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=11104.

Full text
Abstract:
Overend et al [68] designed a viscometer to measure the viscosity of slurries that have a tendency to settle. This viscometer consists of a rotating ribbed rotor surrounded by a stationary slotted sleeve; this system is then placed eccentrically within an inclined rotating bowl. It, is claimed that this overcomes most of the difficulties encountered when attempting to obtain accurate measurements for these types of mixtures. If the mixture being sheared within the annulus does not represent the true composition of the slurry being, tested then the results are expected to be inaccurate. The presence of sediment at the bottom of the rotor or the formation of large masses of particles within the flow domain will affect the accuracy of the measurements obtained. This dissertation studies the amount of flow through the slotted sleeve and the region, or regions, of low shear rate within the flow domain. Assuming that end-effects are unimportant and that the slurries can be replaced by a single-phase fluid, three two-dimensional models are proposed. These models are designed to capture the large-slot construction of the sleeve and the, approximate, non-Newtonian behaviour of the slurries. The first two models solve analytically (using a regular perturbation scheme) and numerically (using a finite volume method) the moderate-and large-Reynolds-number flow, and the third model uses a finite volume method to study the flow patterns developed by pseudoplastic fluids. The results show that the mixing of the slurry is expected to be enhanced by moving the concentric system (i.e., the rotor and the slotted sleeve) close to the rotating bowl and using low to moderate speeds for the rotor and bowl. In addition, when the cylinders rotate in the same directions, two (counter-rotating) eddies are present within the flow domain; whereas, only one eddy (rotating counter-clockwise) is ++<br>present when the cylinders rotate in opposite directions. The presence of eddies in the former situation inhibits the flow through the sleeve; while, for moderate rotorspeeds, the flow through the sleeve is enhanced in the latter. When the slurry assumed pseudoplastic, we observe a region of low shear rate located near the dividing streamline present within the flow field. The distribution of shear rate within the flow field is shown to be affected by factors such as the rate of diffusion of the apparent viscosity and the value of the power law index. Therefore, this study suggests that for certain types of slurries, concentrations of particles exist within the domain and that the mixing of slurries can be impeded by the presence of eddies within the main flow field.
APA, Harvard, Vancouver, ISO, and other styles
4

ARAUJO, JOSÉ HENRIQUE CARNEIRO DE. "NUMERICAL SIMULATIONS VIA FINITE ELEMENT OF VISCOUS FLOW BETWEEN CONCENTRIC AND ECCENTRIC CYLINDERS WITH ROTATING INNER AND VARIABLE VISCOSITY." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1987. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19059@1.

Full text
Abstract:
COMISSÃO NACIONAL DE ENERGIA NUCLEAR<br>Efetuou-se um estudo numérico do escoamento entre cilindros concêntricos e excêntricos girantes com efeitos de dissipação viscosa presente. Assumiu-se que o cilindro interno estava girando com uma velocidade angular constante e que o externo estava fixo. Assumimos a condição de contorno de não deslizamento para velocidade em ambas as paredes. A temperatura do fluido nas paredes dos cilindros foi assumida constante e seu campo assumimos ser governado por efeitos de convecção e condução, com uma fonte de energia proveniente da dissipação viscosa do escoamento. A viscosidade do fluido foi assumida variável com a temperatura. A discretização espacial foi feita por elementos finitos através de funções de base lineares, mais uma função estabilizadora para velocidade no caso dos cilindros excêntricos. O método das características foi usado no problema excêntrico. Resultados computacionais ilustram a eficiência da técnica adotada.<br>A computational study of viscous flow between concentric and eccentrically rotating cylinders in presented in which the effect of viscous dissipation is taken into account. The inner cylinder is assumed to be rotating at constant speed with respect to the outer one. We assume a no-alip boundary condition for the velocity on both walls. The temperature of the fluid is assumed to be constant on the cylinders and its distribution is assumed to be governed by both conduction and convection, with a supplementary soure of energy du to the effects of viscous dissipation. The viscosity is assumed to be varies with temperature. The space discretization is based on piecewise linear finite elements, with velocity stabilization in case of the eccentrically cylinders. The method of characteristics is used for time integration in the eccentrically problem. Numerical results illustrate the efficienty of the adopted approach.
APA, Harvard, Vancouver, ISO, and other styles
5

ALMEIDA, INAE RODRIGUES DE. "NON NEWTONIAN FLOW IN ECCENTRIC ANNULAR SPACE WITH ROTATING INNER CYLINDER." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=22824@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>O presente trabalho apresenta um modelo simplificado baseado na teoria de lubrificação e conceito de viscosidade equivalente para estudar o escoamento dos fluidos de perfuração através de um espaço anular excêntrico com rotação da coluna de perfuração. Em razão do comportamento não Newtoniano destes fluidos, é significativa a influência da rotação da coluna na perda de carga, já que a viscosidade dos fluidos varia com a taxa de deformação imposta. Uma completa análise deste problema requer uma solução tridimensional da equação de conservação de quantidade de movimento de fluidos não Newtonianos, cuja solução é extremamente cara computacionalmente, tornando necessário o desenvolvimento de modelos simplificados que descrevam bem os principais fenômenos observados nestes escoamentos. No modelo proposto, as equações que governam o escoamento são simplificadas pela teoria da lubrificação em coordenadas cilíndricas. Desta forma, o escoamento tridimensional é descrito por uma única equação diferencial bidimensional para o campo de pressão. O comportamento mecânico do fluido é avaliado através do método da Viscosidade Newtoniana Equivalente. O modelo proposto foi validado a partir de soluções numéricas para o modelo completo, disponíveis na literatura, avaliando a precisão das simplificações adotadas. Os resultados mostram o intervalo no qual o modelo simplificado é preciso e apresentam o efeito das propriedades dos fluidos, da geometria do poço e da rotação da coluna na perda de carga do escoamento.O presente trabalho apresenta um modelo simplificado baseado na teoria de lubrificação e conceito de viscosidade equivalente para estudar o escoamento dos fluidos de perfuração através de um espaço anular excêntrico com rotação da coluna de perfuração. Em razão do comportamento não Newtoniano destes fluidos, é significativa a influência da rotação da coluna na perda de carga, já que a viscosidade dos fluidos varia com a taxa de deformação imposta. Uma completa análise deste problema requer uma solução tridimensional da equação de conservação de quantidade de movimento de fluidos não Newtonianos, cuja solução é extremamente cara computacionalmente, tornando necessário o desenvolvimento de modelos simplificados que descrevam bem os principais fenômenos observados nestes escoamentos. No modelo proposto, as equações que governam o escoamento são simplificadas pela teoria da lubrificação em coordenadas cilíndricas. Desta forma, o escoamento tridimensional é descrito por uma única equação diferencial bidimensional para o campo de pressão. O comportamento mecânico do fluido é avaliado através do método da Viscosidade Newtoniana Equivalente. O modelo proposto foi validado a partir de soluções numéricas para o modelo completo, disponíveis na literatura, avaliando a precisão das simplificações adotadas. Os resultados mostram o intervalo no qual o modelo simplificado é preciso e apresentam o efeito das propriedades dos fluidos, da geometria do poço e da rotação da coluna na perda de carga do escoamento.O presente trabalho apresenta um modelo simplificado baseado na teoria de lubrificação e conceito de viscosidade equivalente para estudar o escoamento dos fluidos de perfuração através de um espaço anular excêntrico com rotação da coluna de perfuração. Em razão do comportamento não Newtoniano destes fluidos, é significativa a influência da rotação da coluna na perda de carga, já que a viscosidade dos fluidos varia com a taxa de deformação imposta. Uma completa análise deste problema requer uma solução tridimensional da equação de conservação de quantidade de movimento de fluidos não Newtonianos, cuja solução é extremamente cara computacionalmente, tornando necessário o desenvolvimento de modelos simplificados que descrevam bem os principais fenômenos observados nestes escoamentos. No modelo proposto, as equações que governam o escoamento são simplificadas pela teoria da lubrificação em coorde<br>In this work a simplified model based on the Lubrication Theory and on the equivalent viscosity is presented to study the drilling fluid flow dynamics through an eccentric annular space with rotation of the drilling column. As a result of the non-Newtonian behavior of the fluid, the rotation of the column has a significant impact on the pressure drop since the viscosity of the fluids is a function of the strain rate applied. A complete analysis of this problem requires a tridimensional solution of the equation of momentum conservation, which makes the solution computationally expensive. For such, simplified accurate models that describe the main phenomena observed have to be developed. On the proposed model, the flow dynamics equations are simplified by the Lubrication Theory in cylindrical coordinates. Therefore, the tridimensional flow is described by one single two dimensional equation for the pressure field. The mechanical behaviour of the fluid is evaluated through the Equivalent Newtonian Viscosity method. The proposed model, as well as the accuracy of the simplifications used, was validated by comparison with numerical solutions of the complete set of equations available on the literature. The results show the range in which the proposed simplified model is accurate and presents the effects of the fluids properties, well geometry and column rotation on the pressure loss.
APA, Harvard, Vancouver, ISO, and other styles
6

PILLUTLA, JAYANTHI. "LAMINAR NON-NEWTONIAN FLOWS IN ECCENTRIC ANNULI WITH INNER CYLINDER ROTATION." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin998070950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burdette, Steven Roy. "Experiments on the flow of viscoelastic fluids between eccentric rotating cylinders." 1987. http://catalog.hathitrust.org/api/volumes/oclc/17151266.html.

Full text
Abstract:
Thesis (Ph. D.)--University of Wisconsin--Madison, 1987.<br>Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 180-185).
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Eccentric rotating cylinders"

1

de Socio, L., and L. Marino. "Flow separation between rotating, eccentric cylinders - Influence of the Knudsen number." In 39th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Soleimani, Soheil, Nima Sedaghatizadeh, D. D. Ganji, et al. "Numerical Simulation of Two Dimensional Stokes Flow between Eccentric Rotating Circular Cylinders." In INTERNATIONAL CONGRESS ON ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE. AIP, 2011. http://dx.doi.org/10.1063/1.3663184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, T. S. "Convective Flow in Annuli of Stationary and Rotating Horizontal Cylinders." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-137.

Full text
Abstract:
Heat transfer and fluid flow processes in enclosed spaces have been extensively studied due to their importance in energy conversion, storage and transmission systems. Concentric and eccentric annular geometries are most commonly encountered in solar collector-receiver system, cooling system in nuclear reactors etc. For mixed flow in the annulus between concentric or eccentric cylinders in a rotating system, most work were performed for the cases of vertical cylindrical annulus. More recently, the effects of recirculation on the natural convection between the annular region in horizontal rotating cylinders have become a topic of interest to researchers. The applications of these studies include food processing and the interest in seeking improved methods for crystallographic perfection in industrial processes, above studies are for air with Pr≅1.0. However, other effects of rotation on heat transfer characteristics for low Prandtl number fluids are encountered in high power electric machines with heated shafts, such as a mercury slip ring assembly. For the present study, natural convection is driven by vertical temperature gradient and vertical gravity force. The interaction with the effect of rotation of the inner cylinder is expected to lead to complicated flows. Studies show that the mean Nusselt number increases with Rayleigh number. At a Prandtl number of order 1.0 with a fixed Rayleigh number, when the inner cylinder is made to rotate, the mean Nusselt number decreases through out the flow. At lower Prandtl number of the order 0.1 to 0.01, the mean Nusselt number remained fairly constant with respect to the rotational Reynolds number.
APA, Harvard, Vancouver, ISO, and other styles
4

Leong, Jik, and Feng Lai. "Flow and Heat Transfer in Concentric and Eccentric Rotating Cylinders with a Porous Sleeve." In 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Sheng, Kangbin Lei, Xilian Luo, Kiwamu Kase, Elia Merzari, and Hisashi Ninokata. "Simulation of Eccentric-Shaft Journal Microbearing by DSMC." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78572.

Full text
Abstract:
Many micromachines use rotating shafts and other moving parts which carry a load and need fluid bearings for support. Most of them operate with air or water as the lubricating fluid. The present study analyzes air microbearing represented as an eccentric cylinder rotating in a stationary housing. The fluid mechanics and operating characteristics of microbearing are different from their larger cousins. The small length-scale may invalidate the continuum approximation in Navier-Stokes equations, and slip flow, rarefaction, compressibility and other unconventional effects may have to be taken into account. Surface effects dominate in small devices due to a high surface-volume ratio. In this study, two-dimensional eccentric-shaft journal microbearings with different eccentricities are simulated by direct simulation Monte Carlo (DSMC) code incorporated with a Volume-CAD software. The diffuse reflection model and Cercignani-Lampis-Lord (CLL) model are applied to model the molecule-surface interaction by considering the accommodation coefficients of shaft wall and housing wall separately. The distribution of mean free path in the flow field indicates that the continuum model may break down and it is necessary to carry our molecular modeling. Calculation results show that at high eccentricity and high accommodation coefficient on the housing wall (ACO) the flow may develop a recirculation region. However, the accommodation coefficient on shaft wall (ACI) does not have any effect on the occurrence of recirculation and the size of recirculation zone. There is antisymmetry of the pressure about a vertical axis, which produces a pressure force on the shaft wall. The influence of ACI to isobars is larger than that of ACO. The shear stress profile on shaft wall is big at low ACI. At the region of short clearance between the shaft wall and housing wall, it is also influenced by the surface condition of housing wall and may even change its direction at low ACO. The pressure profile is reduced in amplitude as the ACI increases, but it is enhanced a little with the increase of ACO. The ACO has great impact on the viscous force in the case of big eccentricity. With the increase of ACI, the viscous force decreases. The pressure force is high at large eccentricity. The influence of ACO to pressure force is insignificant, but the pressure force fall is enormous when ACI increases, especially for large eccentricity. The total force decreases markedly at high eccentricity when ACI increases. The ACO almost has no impact on the total force. The torque increases with ACO, but decreases with ACI. The eccentricity also has great impact on the torque, and the microbeaing may have large torque at high eccentricity. The method developed in this paper would be very useful for designing and evaluating journal microbearing.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Sheng, Kangbin Lei, Xilian Luo, Kiwamu Kase, Elia Merzari, and Hisashi Ninokata. "Cylindrical Couette Flow of a Rarefied Gas From Macro- to Micro-Scales." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78359.

Full text
Abstract:
The cylindrical Couette flow of a rarefied gas from macro- to micro-scales, in the case where the inner cylinder is rotating whereas the outer cylinder is at rest, is extensively investigated by direct simulation Monte Carlo (DSMC) code incorporated with a Volume-CAD software. The generalized soft sphere (GSS) model is applied to an intermolecular collision calculation. The diffuse reflection model and Cercignani-Lampis-Lord (CLL) model are used to model the molecule-surface interaction by considering the accommodation coefficients on inner cylinder (ACI hereafter) and outer cylinder (ACO hereafter) separately. The contents in this paper include following three aspects: I the flow field characteristics and force and torque on inner cylinder for eccentric Couette flow between different scales with same non-dimensional parameters (accommodation coefficients, eccentricity-clearance ratio, Knudsen number and Reynolds number) are compared; the flow field characteristics for different scales are same; with the increase of the scale, the total force on the inner cylinder increases slightly, while the torque is proportional to the scale; II the velocity profiles in concentric Couette flow under different non-dimensional parameters are studied; the result shows that the phenomenon of inverted velocity profile in the concentric Couette flow is only induced by a smooth outer cylinder; the non-dimensional tangential velocity, as well as its gradient is high at low Reynolds number; the Knudsen number has great impact on the tangential velocity profile, and the velocity profile may not be inverted in the case of low Knudsen number; III the flow field characteristics in eccentric Couette flow under different non-dimensional parameters are obtained; the recirculation zone may not appear when Knudsen number is high; the position of its center may be different depending on Reynolds number; with the increase of Reynolds number, the compressibility effect becomes important; stratified distribution of the density becomes obvious at low Knudsen number.
APA, Harvard, Vancouver, ISO, and other styles
7

Rodrigo, A. J. S., J. P. B. Mota, and E. Saatdjian. "Chaotic Mixing in Time-Periodic 3-D Flows." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31365.

Full text
Abstract:
Mixing in a special class of three-dimensional, non-inertial time-periodic flows is studied quantitatively. In the type of flow considered here, the cross-sectional velocity components are independent of the axial flow which is assumed to be fully developed. Using the eccentric helical annular mixer as a prototype, the time-periodic flow field is induced by adding a sinusoidal component to the rotation speed of the inner cylinder. For a given 3-D mixer geometry, the degree of mixing achieved is a function of two parameters that measure the strength of the cross-sectional stirring protocol relative to the mean residence time of the fluid in the mixer: the average number of turns of the outer cylinder, and the average number of modulation periods. We find that for a given mixer geometry and mean residence time, there is an optimum modulation frequency for which the standard deviation of the temperature field at the exit is a minimum.
APA, Harvard, Vancouver, ISO, and other styles
8

Podryabinkin, Evgeny, Ramadan Ahmed, Vladimir Tarasevich, and Roland May. "Evaluation of Pressure Change While Steady-State Tripping." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23672.

Full text
Abstract:
Excessive tripping speed in an uncased borehole increases the risk of having formation damage or influx of formation fluid (kick). However, if the tripping is performed at lower speeds, the operation requires more rig time. Hence, increased trip speed cuts expensive rig time. These opposing goals require thorough planning and optimization of the tripping operation to avoid operational problems and reduce financial expenditures. To maximize the tripping speed, accurate prediction of the pressure change occurring due to the axial pipe movement (surge or swab pressure) is necessary. The pressure change is influenced by the hole and string diameters, eccentricity, fluid properties and trip speed. The tripping speed is one of the operational parameters, which are regularly adjusted at the rig site. Analytical solutions exist only for special scenarios. The semi-analytical models for calculation of the steady-state pressure change cannot provide accurate predictions. They are mostly based on disputable assumptions which make the model to underestimate the pressure change. Most of the existing models are based on the parallel-plate approximation of the annular geometry. In another approach, the parameter, which reflects the amount of fluid which is dragged the direction of the string, assumed to be constant or calculated independent of the fluid viscosity. In this paper, accurate solutions were obtained from direct numerical simulation of flow in a cylindrical annulus with axial movement of the inner cylinder. The numerical algorithm is based on finite volume method and incorporates laminar flows of Newtonian, Power Law, Bingham Plastic and Herschel-Bulkley fluids. The method predicts the pressure change occurring in concentric and eccentric annuli with and without rotation of the inner cylinder. The goals of this work are to: i) study the influence of the eccentricity, fluid properties and tripping speed on the pressure change; and ii) evaluate the accuracy of the simplified approaches by comparing experimental data and numerical solutions, and determine their validity ranges. This paper presents a new method for finding trip-caused pressure change in the wellbore through systematic analysis of the numerical solutions. Parametric study was performed to examine the effects of different influential parameters on the pressure change. In addition, the results obtained from the numerical method are compared with the simplified solutions and the discrepancies are analyzed to show the improved accuracy of the new method.
APA, Harvard, Vancouver, ISO, and other styles
9

Qasim, Syed Adnan, Mumtaz Ali Khan, and M. Afzaal Malik. "Shear Heating of High-Viscosity Grade Lubricant in Piston Skirts: EHL at Idling Speeds in Initial Engine Start Up." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58549.

Full text
Abstract:
A few initial cold engine start up cycles at low idling speeds do not prevent wear due to the absence of a fully established elastohydrodynamic lubrication (EHL) film between the piston skirts and the cylinder liner. It happens when the thermal loading due to combustion may be ineffective initially, and shear heating becomes significant as a result of the sliding motion of the piston. This study models the 2-D piston skirts EHL at the idling speeds in the initial engine start up by using a high-viscosity grade engine oil and incorporating the shear heating effects. The 2-D heat transfer equation is used with no source term effects to study the temperature changes and their effects on the viscosity of a Newtonian lubricant at the different idling speeds in the initial start up of an internal combustion engine. The 2-D Reynolds equation is solved numerically to generate the hydrodynamic pressures as the function of 720 degrees crank rotation cycle. Under the flooded lubrication conditions the inverse solution technique is employed to generate the hydrodynamic pressures in the EHL regime. The numerical analysis at the two different idling initial engine start up speeds is presented based on the 2-D heat equation having adiabatic conduction and convective heat transfer with no source term effects. Viscous dissipation coupled with the piston motion, the pressure fields generation, the temperature effects on the viscosity of the lubricant and the subsequent oil film thickness profiles in the contact region are examined. The influence of the low-temperature shear heating on the hydrodynamic and EHL film thickness at the time of initial engine start up are investigated. This study suggests that by using a high-viscosity grade oil in the idling speed engine start up the film temperature rises non-uniformly due to shear heating in the hydrodynamic and EHL regimes. The low temperature rise affects the pressure and temperature dependent oil viscosity, and the secondary transverse eccentric displacements of the piston. Resultantly, the piston skirts lubrication is affected despite the initial engine start up at the idling speeds.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!