Academic literature on the topic 'Electrical loads of the enterprise'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical loads of the enterprise.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrical loads of the enterprise"

1

Kalinchyk, Vasyl, Vitalii Pobigaylo, Vitalii Kalinchyk, Olena Borychenko, and Aleksandr Meita. "Application of neural networks for predicting electric load." Bulletin of NTU "KhPI". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice, no. 2 (12) (December 26, 2024): 50–55. https://doi.org/10.20998/2079-3944.2024.2.10.

Full text
Abstract:
The paper shows that the operational management of the power consumption regime is reduced to solving the problem of operational forecasting of the enterprise's load. The paper analyzes the works devoted to the forecasting of electric loads of power systems and industrial enterprises. It is shown that in order to achieve the required forecast accuracy, it is advisable to use adaptive forecasting procedures and, in particular, to use artificial neural networks. The use of artificial neural networks for forecasting the load of industrial enterprises is due to their properties, such as the ability to learn, reliability with incomplete input information, and the rapid response of the learned network to input influences. The conditions for determining the configuration of a neural network are considered. The structure of a neural network for predicting the electrical load of an industrial enterprise is presented. The process of training an artificial neural network with fitting the model to data from a retrospective sample is presented. The considered models of daily load forecasting were investigated on retrospective data on the modes of electricity consumption of a chemical enterprise with normalization of input data. The graphs of the actual total load and the forecast obtained by the artificial neural network models are presented. The research has shown that the use of an artificial neural network allows for a qualitative forecast of the enterprise's load under normal operating conditions of the equipment.
APA, Harvard, Vancouver, ISO, and other styles
2

Voloshko, Anatolii V., Yaroslav S. Bederak, and Oleksandr A. Kozlovskyi. "AN IMPROVED PRE-FORECASTING ANALYSIS OF ELECTRICAL LOADS OF PUMPING STATION." Resource-Efficient Technologies, no. 4 (February 21, 2020): 20–29. http://dx.doi.org/10.18799/24056537/2019/4/265.

Full text
Abstract:
Relevance of research. In order to reduce energy losses, an accurate and timely forecast of the amount of consumed electricity is necessary. Accurate forecasting of electrical loads of industrial enterprises and their divisions (productions, workshops, departments etc.) allows planning of normal operating conditions, concluding contracts for the electricity supply with the electricity supply company under more favorable conditions, and improving the electricity quality, which ultimately affects the final cost of the products produced by an enterprise. So far, more than 150 forecasting methods of electrical loads have been developed. Usually, the most convenient one is selected based on the forecaster experience by creating and analyzing several forecasting models in order to identify the best. Therefore, in order to simplify the forecasting procedure, it is necessary to develop the methodology for forecasting analysis. This methodology should enable canceling forecasting algorithms that will create lower quality forecasts. The main objective is to develop the methodology for making a forecasting analysis of power consumption on the example of a pumping station of an enterprise with a continuous cycle of work to increase the efficiency of energy consumption and implementation of energy-saving measures. Objects of research: the process of forecasting electrical loads of a pumping station of the enterprise with a continuous cycle of work. Methods of research: fundamental principles of the theory of electrical engineering, statistical methods for power consumption forecasting, the method for detecting the trend of radio signals, and fractal analysis of time series. Research results. The methodology for forecasting analysis of power consumption, which makes it possible to apply the most appropriate methods to forecast the operational power consumption, is developed. For the first time, the radio signal trend detection method is applied to identify the trend of electrical loads. The variation ranges of the fractal parameters of time series of electrical loads are established depending on the variation coefficient of the time series for different periods of time. The Brown method of exponential smoothing that is used to forecast the electrical loads, in the case of identifying the smoothing constant α is in the beyond set ( ), is further improved. The regularity of changes in the fractal parameters of time series of power consumption of a pumping station with an increase in the time series duration and their field of application are explained.
APA, Harvard, Vancouver, ISO, and other styles
3

Voloshko, A. V., Ya S. Bederak, and O. A. Kozlovskyi. "AN IMPROVED PRE-FORECASTING ANALYSIS OF ELECTRICAL LOADS OF PUMPING STATION." Resource-Efficient Technologies, no. 4 (February 21, 2020): 20–29. http://dx.doi.org/10.18799/24056529/2019/4/265.

Full text
Abstract:
Relevance of research. In order to reduce energy losses, an accurate and timely forecast of the amount of consumed electricity is necessary. Accurate forecasting of electrical loads of industrial enterprises and their divisions (productions, workshops, departments etc.) allows planning of normal operating conditions, concluding contracts for the electricity supply with the electricity supply company under more favorable conditions, and improving the electricity quality, which ultimately affects the final cost of the products produced by an enterprise. So far, more than 150 forecasting methods of electrical loads have been developed. Usually, the most convenient one is selected based on the forecaster experience by creating and analyzing several forecasting models in order to identify the best. Therefore, in order to simplify the forecasting procedure, it is necessary to develop the methodology for forecasting analysis. This methodology should enable canceling forecasting algorithms that will create lower quality forecasts. The main objective is to develop the methodology for making a forecasting analysis of power consumption on the example of a pumping station of an enterprise with a continuous cycle of work to increase the efficiency of energy consumption and implementation of energy-saving measures. Objects of research: the process of forecasting electrical loads of a pumping station of the enterprise with a continuous cycle of work. Methods of research: fundamental principles of the theory of electrical engineering, statistical methods for power consumption forecasting, the method for detecting the trend of radio signals, and fractal analysis of time series. Research results. The methodology for forecasting analysis of power consumption, which makes it possible to apply the most appropriate methods to forecast the operational power consumption, is developed. For the first time, the radio signal trend detection method is applied to identify the trend of electrical loads. The variation ranges of the fractal parameters of time series of electrical loads are established depending on the variation coefficient of the time series for different periods of time. The Brown method of exponential smoothing that is used to forecast the electrical loads, in the case of identifying the smoothing constant α is in the beyond set ( ), is further improved. The regularity of changes in the fractal parameters of time series of power consumption of a pumping station with an increase in the time series duration and their field of application are explained.
APA, Harvard, Vancouver, ISO, and other styles
4

Rukhlov, Artem, Nataliia Rukhlova, and Mykhailo Voronin. "Components of the Daily Power Consumption Profile of a Coal Mine." Central Ukrainian Scientific Bulletin. Technical Sciences 2, no. 11(42) (2025): 177–83. https://doi.org/10.32515/2664-262x.2025.11(42).2.177-183.

Full text
Abstract:
The article is dedicated to analysis of the power consumption modes of coal mines and determination of their indicators in the context of implementing various methods of energy supply. The authors of the article analyze the advantages and disadvantages of centralized and decentralized (combined) methods of enterprise energy supply, and given the current trends in the Ukrainian energy system, this analysis allows us to state that the second option is increasingly more expedient. However, the economic and technological conditions of any method of energy supply encourage enterprises to implement certain measures to regulate the power consumption modes which consist in shifting the operating hours of powerful regulatory consumers throughout the day without causing damage to the technological process. The authors emphasize that such measures can significantly change the estimated (actual) maximum electrical load of a coal mine, which, depending on its new level, may have both negative and positive consequences for the enterprise's power supply system. Under such conditions, determining a new value of the maximum electrical load using known methods will not allow obtaining a correct result due to the failure to consider the modern trends for regulating the power consumption modes. Therefore, the article proposes to determine the maximum electrical loads of coal mines based on modeled group power consumption profiles, taking into account the new operating modes of technological plants which meet the requirements of the enterprise's power supply system (centralized or decentralized). To this end, the authors have classified the mine's electrical receivers according to the indicators of their individual electrical loading diagrams into three groups - with uniform, stage and random power consumption. This made it possible to determine the constant and random components of the group daily power consumption profile for a coal mine.
APA, Harvard, Vancouver, ISO, and other styles
5

Kotenev, Viktor I., Alexander V. Kotenev, and Alexander D. Stulov. "Automatic control system of the reactive power factor of the power supply system of the industrial enterprise." Vestnik of Samara State Technical University. Technical Sciences Series 29, no. 4 (2021): 86–98. http://dx.doi.org/10.14498/tech.2021.4.7.

Full text
Abstract:
Considered is the control of the reactive power factor of the power supply system of an industrial enterprise, which includes: electrical receivers with asynchronous load; workshop transformer substations with and without regulated capacitor units, as well as the main step-down substation with synchronous motors powered from it. It is proposed to consider electrical receivers with capacitor units and a transformer substation as an object of reactive power factor control, on the basis of which the corresponding automatic control system (ACS) is built. An ACS with an algorithm formed as a function of active and reactive power of electrical receivers is considered. The ACS was developed by the reactive power factor of the power supply system of the entire enterprise with shop combined loads. A method is given for calculating the capacity of capacitor units of shop substations. The use of this control system will allow meeting the regulatory requirements for ensuring the limiting values of the reactive power coefficients and thereby reducing losses during the transportation of electricity and increasing the throughput of the electrical network.
APA, Harvard, Vancouver, ISO, and other styles
6

Rokicki, Łukasz, Mirosław Parol, Piotr Pałka, and Marcin Kopyt. "Reducing the Peak Power Demand and Setting the Proper Operating Regimes of Electrical Energy Devices in an Industrial Factory Using a Multi-Agent System—The Solutions of the DIEGO Project." Energies 18, no. 10 (2025): 2416. https://doi.org/10.3390/en18102416.

Full text
Abstract:
Reducing the peak power demand at the level of a considered factory and setting the proper operating regimes of electrical devices located in a factory are the problems raised in this paper. These are essential challenges in industrial facilities, especially when existing highly variable loads for power demand, highly variable renewable sources for power generation, and electrical energy storage systems are considered. Appropriate studies relating to this question were performed within the DIEGO international research project (Digital Energy Path for Planning and Operation of Sustainable Grid, Products, and Society). First, the paper presents the technical characteristics of the electric power grid in the considered factory and analyses the results of the measurements performed in the scope of the load and generation of electrical energy in the factory. Next, the paper presents considered preventive measures for limiting peak electric loads at the industrial enterprise level and describes the results of the effectiveness evaluation of the defined preventive measures. The issue of setting the proper operating regimes for electrical devices installed in the factory is also presented. Multi-agent systems have been implemented for this purpose. The paper presents and discusses the results of the implementation.
APA, Harvard, Vancouver, ISO, and other styles
7

Ustinov, Denis Anatolievich, and Konstantin Alekseevich Khomiakov. "Determination of Dynamic Characteristics for Predicting Electrical Load Curves of Mining Enterprises." Electricity 3, no. 2 (2022): 162–81. http://dx.doi.org/10.3390/electricity3020010.

Full text
Abstract:
The calculation of electrical loads is the first and most significant stage in the design of the power supply system. It is essential to make the right choice when choosing the power electrical equipment: transformers, power lines, and switching devices. Underestimation or overestimation of the calculated values can lead to large losses and an increase in capital costs. Therefore, the reliability of the results plays a key role. The use of energy-saving technologies and energy-efficient electrical equipment leads to a change in the nature and level of power consumption, which must be taken into account when determining the electrical loads. The existing methods leave out dynamic characteristics of electrical load curves, so the calculated values are overestimated by up to 40%. This study shows a load calculation method with the normalized correlation functions and its parameters at the level of the individual and group electricity consumers. As a result, the difference between the calculated and experimental values does not exceed 5%.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhukovsky, Yury, and Pavel Suslikov. "Assessment of the potential effect of applying demand management technology at mining enterprises." Sustainable Development of Mountain Territories 16, no. 3 (2024): 895–908. https://doi.org/10.21177/1998-4502-2024-16-3-895-908.

Full text
Abstract:
Introduction. Currently, the lack of classification of electricity consumers to manage load profiles leads to the impossibility of implementing measures to improve economic and energy efficiency using demand management methods. The study aims to develop a classification of consumers according to their load profiles. Materials and methods. The developed classification of electrical loads is described in terms of the proposed characteristics by graph analytical method. The proposed classification is used in the construction of the simulation model of the electrical complex for the purpose of demand management modelling. Results. The classification of electrical loads obtained in the paper is given in a form ready for conducting experiments in simulation modelling environments. Such environments can be Matlab or AnyLogic. Discussion. In the article, certain restrictions and assumptions that need to be introduced into the model to simplify the calculations were also given. The authors assume that in the future this may become an obstacle in the validation of results. Conclusion. In this article, groups of loads were reviewed and described for use in the demand management process. Further, a modelling approach was selected and justified. The simulation model was based on several aspects described in the paper: the developed classification of loads, the equipment grouped by mining sites, and the electrical part of the model, punctuated by a hybrid electrical system with three independent EE sources. For the model, the assumptions and the main objectives of creation were described in the context of assessing the possibility and potential effect of applying demand management technology in mining enterprises.
APA, Harvard, Vancouver, ISO, and other styles
9

Chebotarova, Yevheniia, and Andrii Perekrest. "Modernization of electrical complex for producing thermal energy for an industrial enterprise." Technology audit and production reserves 5, no. 1(61) (2021): 25–32. http://dx.doi.org/10.15587/2706-5448.2021.240263.

Full text
Abstract:
The object of research is the electrical complex for the preparation of thermal energy at the enterprise. The electrotechnical complex is a heat supply unit that provides thermal energy to the building of the enterprise for the needs of heating, ventilation and hot water supply. One of the identified shortcomings of this facility is the overconsumption of energy resources for heating, caused by the lack of the ability to control consumption. Modernization of heat points and equipping them with automation means will provide quantitative and qualitative control of the heat carrier depending on the outside air temperature. In the course of the study, the method of statistical data analysis was used to analyze the heat load of buildings for heating, ventilation and hot water supply, and the distribution of heat loads by the temperature of the indoor air. Also, an improved discounted method for evaluating the effectiveness of investment projects was used when calculating economic indicators and a method for calculating heat consumption for heating according to aggregated indicators when determining energy consumption for heating. On the basis of the analysis of the heat load and a certain structure of its distribution according to the temperature of the internal air, it was found that more energy resources are consumed for heating. The largest consumer is defined as a building with an internal temperature Tin=16 °C. Calculations of the commercial attractiveness of the proposed technical solutions for buildings with an internal temperature Tin=18 °C have confirmed the feasibility of their implementation in terms of their payback, which does not exceed the period of 3.5 heated seasons. Thanks to the modernization of heat points and the introduction of automated monitoring and regulation systems, optimal heat energy consumption will be ensured depending on the ambient temperature. Unlike other similar studies, the feasibility of introducing automated systems is determined by an improved discounted method, which allows not only to take into account the change in the value of money in the future, but also the required minimum percentage of thermal energy savings to break even projects.
APA, Harvard, Vancouver, ISO, and other styles
10

Yevheniia, Chebotarova, and Perekrest Andrii. "Modernization of electrical complex for producing thermal energy for an industrial enterprise." Technology Audit and Production Reserves 5, no. 1(61) (2021): 25–32. https://doi.org/10.15587/2706-5448.2021.240263.

Full text
Abstract:
<em>The object of research is the electrical complex for the preparation of thermal energy at the enterprise. The electrotechnical complex is a heat supply unit that provides thermal energy to the building of the enterprise for the needs of heating, ventilation and hot water supply. One of the identified shortcomings of this facility is the overconsumption of energy resources for heating, caused by the lack of the ability to control consumption. Modernization of heat points and equipping them with automation means will provide quantitative and qualitative control of the heat carrier depending on the outside air temperature.</em> <em>In the course of the study, the method of statistical data analysis was used to analyze the heat load of buildings for heating, ventilation and hot water supply, and the distribution of heat loads by the temperature of the indoor air. Also, an improved discounted method for evaluating the effectiveness of investment projects was used when calculating economic indicators and a method for calculating heat consumption for heating according to aggregated indicators when determining energy consumption for heating.</em> <em>On the basis of the analysis of the heat load and a certain structure of its distribution according to the temperature of the internal air, it was found that more energy resources are consumed for heating. The largest consumer is defined as a building with an internal temperature T<sub>in</sub>=16&nbsp;&deg;C. Calculations of the commercial attractiveness of the proposed technical solutions for buildings with an internal temperature T<sub>in</sub>=18&nbsp;&deg;C have confirmed the feasibility of their implementation in terms of their payback, which does not exceed the period of 3.5 heated seasons.</em> <em>Thanks to the modernization of heat points and the introduction of automated monitoring and regulation systems, optimal heat energy consumption will be ensured depending on the ambient temperature. Unlike other similar studies, the feasibility of introducing automated systems is determined by an improved discounted method, which allows not only to take into account the change in the value of money in the future, but also the required minimum percentage of thermal energy savings to break even projects.</em>
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electrical loads of the enterprise"

1

Ухін, Андрій Русланович, та Andrii Ukhin. "Забезпечення надійності системи електропостачання птахофабрики". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2021. http://elartu.tntu.edu.ua/handle/lib/36661.

Full text
Abstract:
Проблема надійності електричних станцій, електричних підстанцій, повітряних та кабельних ліній електропередач, електричних мереж та систем – одна із першочергових проблем електроенергетики. В окремих електроенергетичних системах кількість аварій протягом одного року може сягати кількох десятків, а річне недовідпущення електричної енергії внаслідок таких аварій – кількох мільярдів кіловат-годин. Можливі наслідки від ненадійності стають такими суттєвими, що потрібно постійно вдосконалювати методи прогнозування розвитку, проектування, будівництва, монтажу та експлуатації енергетичних систем. Це дозволяють повніше враховувати надійність та найбільш економно витрачати виділені на надійність кошти. При проектуванні системи електропостачання даного підприємства потрібно забезпечити надійне електропостачання, що буде здійснювати [1]: - вентиляцію приміщень; - освітлення приміщень; - автоматичний збір та відвід відходів життєдіяльності; - автоматичну подачу води та їжі; - пожежну безпеку. Уже неодноразово на території України відбувалися трагічні випадки масової загибелі пташок за рахунок недотримання вимог до надійності системи електропостачання. Це були несправності роботи вентиляції, що призвели до масового удушення пташок; пожежі на птахофабриках різних областей України<br>Розглянуто питання показників надійності елемента системи електропостачання та описано три фази з різними закономірностями зміни інтенсивності відмов. Проведено розподіл приймачів за пунктами живлення. Здійснено вибір внутрішньої схеми електропостачання. Розраховано повну розрахункову потужність цеху з урахуванням освітлення. Проведено вибір апаратів захисту і січень ліній. Запропоновано до встановлення однотрансформаторну підстанцію. Побудовано епюру відхилення напруги. Проведено розрахунок струмів короткого замикання у мережі до 1000 В. Побудована карта селективності дії апаратів захисту. Здійснено перевірку цехової мережі з умови спрацювання від однофазного короткого замикання.<br>The issues of reliability indicators of the power supply system element are considered and three phases with different regularities of change of failure intensity are described. The distribution of receivers by power points is carried out. The choice of the internal scheme of power supply is made. The full estimated capacity of the shop is calculated taking into account the lighting. The choice of protection devices and January lines is made. A single-transformer substation is proposed for installation. A plot of voltage deviation is constructed. The calculation of short-circuit currents in the network up to 1000 V. The map of selectivity of action of protection devices is constructed. The shop network was inspected for single-phase short-circuit operation.<br>ВСТУП...5 1. АНАЛІТИЧНИЙ РОЗДІЛ...8 1.1 Дані про підприємство...9 1.2 Показники надійності елемента системи електропостачання. Інтенсивність відмов...13 1.3 Висновки до розділу...16 2. РОЗРАХУНКОВО-ДОСЛІДНИЦЬКИЙ РОЗДІЛ...17 2.1 Визначення розрахункового навантаження ремонтно-механічного цеху... 17 2.1.1 Розподіл приймачів за пунктами живлення...17 2.1.2 Визначення розрахункового навантаження цеху...17 2.2 Вибір захисних апаратів і січень ліній...27 2.3 Висновки до розділу...38 3. ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ ...39 3.1 Побудова епюри відхилення напруги...39 3.2 Розрахунок струмів короткого замикання в мережі до 1000 В...48 3.3 Побудова карти селективності дії апаратів захисту...52 3.4 Перевірка цехової мережі з умови спрацювання від однофазного КЗ... 53 3.5 Висновки до розділу...58 4. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ...59 4.1 Ураження електричним струмом...59 4.2 Рухомі машини і механізми; рухомі частини виробничого обладнання... 62 4.3 Надзвичайні ситуації. Основні причини та ліквідація наслідків...64 ЗАГАЛЬНІ ВИСНОВКИ...66 ПЕРЕЛІК ПОСИЛАНЬ...68
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Yunong. "Load-aware traffic control in software-defined enterprise Wireless Local Area Networks." Thesis, University of Essex, 2018. http://repository.essex.ac.uk/22379/.

Full text
Abstract:
With the growing popularity of Bring Your Own Device (BYOD), modern enterprise Wireless Local Area Networks (WLANs) deployments always consist of multiple Access Points (APs) to meet the fast-increasing demand for wireless access. In order to avoid network congestion which leads to issues such as suboptimal Quality of Service (QoS) and degraded user Quality of Experience (QoE), intelligent network traffic control is needed. Software Defined Networking (SDN) is an emerging architecture and intensively discussed as one of the most promising technologies to simplify network management and service development. In the SDN architecture, network management is directly programmable because it is decoupled from forwarding layer. Leveraging SDN to the existing enterprise WLANs framework, network services can be flexibly implemented to support intelligent network traffic control. This thesis studies the architecture of software-defined enterprise WLANs and how to improve network traffic control from a client-side and an AP-side perspective. By extending an existing software-defined enterprise WLANs framework, two adaptive algorithms are proposed to provide client-based mobility management and load balancing. Custom protocol messages and AP load metric are introduced to enable the proposed adaptive algorithms. Moreover, a software-defined enterprise WLAN system is designed and implemented on a testbed. A load-aware automatic channel switching algorithm and a QoS-aware bandwidth control algorithm are proposed to achieve AP-based network traffic control. Experimental results from the testbed show that the designed system and algorithms significantly improve the performance of traffic control in enterprise WLANs in terms of network throughput, packet loss rate, transmission delay and jitter.
APA, Harvard, Vancouver, ISO, and other styles
3

Гаврилюк, В. С. "Розробка системи електропостачання та освітлення заводу металовиробів". Master's thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/71338.

Full text
Abstract:
Приведена загальна характеристика підстанції, виконані розрахунки: середні та розрахункові навантаження цехів та заводу методами коефіцієнта використання та попиту, а також були вирішені задачі по визначенню оптимальної потужності трансформаторів КТП; оптимального перерізу зовнішньої живлячої лінії 10 кВ та кабельних ліній внутрішньозаводської мережі 0,38 кВ; оптимальної потужності компенсуючих пристроїв 0,38 кВ по мінімуму приведених затрат в СЕП. Вибрані кабелі і комутаційні апарати стійкі до дії струмів КЗ. Для трансформаторів КТП передбачений захист від ненормальних режимів роботи. При розрахунку цехових мереж була вибрана оптимальна система електропостачання, яка забезпечує допустимі втрати напруги в лініях. В економічній частині дипломного проекту були розраховані основні техніко-економічної показники системи електропостачання підприємства, які дозволяють зробити висновок про економічну доцільність системи.
APA, Harvard, Vancouver, ISO, and other styles
4

Бацюра, Євгеній Вікторович, та Yevhenii Batsiura. "Забезпечення надійності системи електропостачання механічного заводу". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2021. http://elartu.tntu.edu.ua/handle/lib/36550.

Full text
Abstract:
Проблема забезпечення надійності енергетичних об’єктів являється однією із найважливіших проблем енергетики на даний час. В енергетичних системах протягом року число аварій сягає значного значення, а обсяг електричної енергії, яку недоотримав електроспоживач в їх результаті може сягати декілька мільйонів одиниць. В енергетичних системах оцінка надійності устаткування та установок, знаходження шляхів підвищення надійності стають першочерговими задачами. [19] З залученням нової енергетичної техніки проблема надійності стає однією з самих важливих. Відомо, що при введенні нових енергетичних об'єктів, виявляються та усуваються причини ненадійної роботи устаткування та установок. Можна виділити два основних шляхи, згідно яких можна забезпечити надійність систем електропостачання [1]: створення електроенергетичних систем із високим рівнем надійності з використанням різних видів резервування та забезпечення надійності елементів вдосконаленням конструкцій та матеріалів окремих елементів. А саме краще – поєднати ці два напрямки. Тому, задача забезпечення надійності системи електропостачання механічного заводу є актуальною.<br>Розглянуто класифікацію відмов у системах електропостачання. Прийнято напругу лінії живлення. Розраховано повну розрахункову потужність підприємства. Здійснено розподіл джерел живлення територією підприємства. Прийнято до виконання змішану схему внутрішньозаводського електропостачання. Проведена компенсація реактивної потужності. Здійснено вибір перерізу кабелів мереж. Виконана перевірка за умовою нагрівання і за допустимою втратою напруги. Здійснено розрахунок струмів короткого замикання. Проведено вибір трансформаторів головної понижаючої підстанції. Запропоновано схему зовнішнього електропостачання. Здійснено вибір комутуючої та захисної апаратури. Проведено розрахунок штампувального цеху.<br>The classification of failures in power supply systems is considered. The supply line voltage is accepted. The full estimated capacity of the enterprise is calculated. The distribution of power sources on the territory of the enterprise has been carried out. A mixed scheme of in-plant power supply has been adopted. Reactive power compensation was performed. The cross-section of the network cables has been selected. The test for heating conditions and allowable voltage loss is performed. The calculation of short-circuit currents is performed. The choice of transformers of the main step-down substation is made. The scheme of external power supply is offered. The choice of switching and protective equipment is made. The calculation of the stamping shop was carried out.<br>ВСТУП...6 1. АНАЛІТИЧНИЙ РОЗДІЛ...8 1.1 Загальні відомості про об'єкт електропостачання...8 1.1.1 Роль підприємства у господарській діяльності...8 1.1.2 Технологічний процес...8 1.1.3 Особливості електропостачання підприємства...10 1.1.4 Вихідні дані...11 1.2 Класифікація відмов в системах електропостачання...14 2. РОЗРАХУНКОВО-ДОСЛІДНИЦЬКИЙ РОЗДІЛ...18 2.1 Попередня оцінка електричних навантажень виробничих приміщень...18 2.2 Розрахунок електричних навантажень підприємства...22 2.3 Картограма електричних навантажень...26 2.4 Розподіл джерел живлення територією підприємства...30 2.5 Розробка ліній електропостачання вище 1000 по території підприємства...42 2.6 Розробка ліній електропостачання до 1000 В територією підприємства...51 2.7 Розрахунок струмів короткого замикання в мережі вище 1000 В...57 3. ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ ...61 3.1 Розробка схеми зовнішнього електропостачання...61 3.2 Вибір силового устаткування...62 3.2.1 Вибір вимикачів та роз'єднувачів...62 3.2.2 Вибір вимірювальних трансформаторів струму...66 3.2.3 Вибір вимірювальних трансформаторів напруги...69 3.2.4 Вибір обмежувачів перенапруги та заземлювачів...71 3.2.5 Вибір трансформаторів власних потреб...71 3.2.6 Вибір плавких запобіжників...71 3.3 Розробка схеми закритого розподільчого пристрою...72 4. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ…74 4.1 Забезпечення електробезпеки. Дія електричного струму на організм людини...74 4.2 Захист від випромінювань...77 ЗАГАЛЬНІ ВИСНОВКИ...78 ПЕРЕЛІК ПОСИЛАНЬ...79 ДОДАТКИ...1 Додаток А. Розподіл електроприймачів цеху за пунктами живлення...2 Додаток Б. Розрахунок електричних навантажень виробничого приміщення 3 Додаток В. Вибір захисних апаратів та провідників...10
APA, Harvard, Vancouver, ISO, and other styles
5

Шинькар, Ростислав Ігорович, та Rostyslav Shynkar. "Забезпечення надійності системи електропостачання інструментального заводу". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2021. http://elartu.tntu.edu.ua/handle/lib/36659.

Full text
Abstract:
Потужність, перспективи розвитку, призначення електроустановки та інші чинники впливають на визначення ступені надійності електропостачання. Здатність системи електропостачання та її елементів виконувати поставлені завдання щодо забезпечення електричною енергією підприємств, побутових споживачів, які не призводять до зриву плану виробництва, знеструмлення цілих житлових кварталів міст та сіл, а також не призводять до аварій у технологічних та електричних частинах промислових підприємств – це все характеризує надійність електропостачання. Також вона може бути охарактеризована збитками, завданими під час перерви електроживлення, тривалістю ремонту, часом безвідмовної роботи та іншими факторами. [13] Електроустановки споживачів електричної енергії мають свої специфічні особливості. До даних установок пред'являються певні вимоги: якість електроенергії, надійність живлення, захист і резервування окремих елементів. При проектуванні та експлуатації систем електропостачання промислових підприємств потрібно правильно визначати електричні навантаження, здійснювати вибір напруг живлення, вибирати потужність та число трансформаторних підстанцій, системи компенсації реактивної потужності, види захисту силових трансформаторів, способи регулювання напруг. Це повинно вирішуватися із врахуванням зростання потужностей окремих електроприймачів, вдосконалення технологічних процесів виробництва, особливостями кожного підприємства, установки, цеху, підвищення ефективності та якості їх роботи. Передача, розподіл і споживання електричної енергії на промислових підприємствах повинні здійснюватися з високою надійністю та економічністю. [1]<br>Розглянуто причини відмов основних елементів у системах електропостачання. Для живлення окремих електроприймачів та РП вибрана радіальна схема. Розрахована повна розрахункова потужність цеху та підприємства. Прийнято напругу лінії живлення. Розраховано центр електричних навантажень та побудована картограма навантажень. Прийнято для встановлення кількість та потужність силових трансформаторів. Здійснено розташування ЦТП територією підприємства. Запропоновано схему зовнішнього електропостачання. Проведено вибір трансформаторів ГПП. Здійснено вибір січення кабелів мереж вище 1 кВ. Виконана перевірка за допустимим навантаженням з умов нагріву в нормальному режимі та з урахуванням допустимого навантаження у післяаварійному режимі. Здійснено розрахунок струмів КЗ в мережі вище 1000 В. Здійснено перевірку та вибір обладнання у мережі вище 1000 В. Запропоновано систему автоматизованого комерційного обліку електроенергії. Здійснено вибір захисних апаратів та січень ліній, що живлять РП та електроприймачів ремонтно-механічного цеху. Побудовано епюру відхилення напруги. Здійснено розрахунок струмів КЗ у мережі до 1000 В. Побудована карта селективності дії апаратів захисту.<br>The reasons for failures of the main elements in power supply systems are considered. A radial circuit is selected for powering individual electrical receivers and RP. The total estimated capacity of the shop and the enterprise is calculated. The supply line voltage is accepted. The center of electric loads is calculated and the cartogram of loads is constructed. It is accepted to establish quantity and power of power transformers. The location of the CTP on the territory of the enterprise has been carried out. The scheme of external power supply is offered. The choice of GPP transformers is made. The choice of cross-section of cables of networks above 1 kV is made. The check on admissible loading from conditions of heating in a normal mode and taking into account admissible loading in a post-emergency mode is executed. The calculation of short-circuit currents in the network above 1000 V has been carried out. The equipment in the network above 1000 V has been checked and selected. A system of automated commercial electricity metering has been proposed. The selection of protective devices and January lines of power lines and electric receivers of the repair and mechanical shop was made. A plot of voltage deviation is constructed. The calculation of short-circuit currents in the network up to 1000 V. The map of selectivity of action of protection devices is constructed.<br>ВСТУП...6 1. АНАЛІТИЧНИЙ РОЗДІЛ...9 1.1 Інформація про підприємство...10 1.2 Відмови в системах електропостачання...14 1.3 Причини відмов основних елементів систем електропостачання...15 1.4 Висновки до розділу...16 2. РОЗРАХУНКОВО-ДОСЛІДНИЦЬКИЙ РОЗДІЛ...17 2.1 Визначення розрахункового навантаження ремонтно-механічного цеху... 17 2.1.1 Розподіл приймачів за пунктами живлення...17 2.1.2 Визначення розрахункового навантаження цеху...17 2.2 Електропостачання на території підприємства...25 2.2.1 Визначення розрахункового навантаження підприємства...25 2.2.2 Картограма та визначення центру електричних навантажень. 31 2.2.3 Вибір числа та потужності цехових трансформаторів...33 2.2.4 Складання схеми зовнішнього електропостачання...35 2.2.5 Схема внутрішньозаводської мережі вище 1000 В...37 2.2.6 Розрахунок струмів короткого замикання в мережі вище 1000 В... 39 2.3 Висновки до розділу...43 3. ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ ...45 3.1 Вибір і перевірка обладнання у мережі вище 1000 В...45 3.1.1 Вибір вимикачів та роз'єднувачів...45 3.1.2 Вибір вимірювальних трансформаторів струму...47 3.1.3 Вибір вимірювальних трансформаторів напруги...50 3.1.4 Облік електричної енергії...52 3.2 Електропостачання ремонтно-механічних майстерень...53 3.2.1 Вибір захисних апаратів та січень ліній, що живлять розподільні пункти та електроприймачі... 54 3.2.2 Побудова епюри відхилення напруги...62 3.2.3 Розрахунок струмів короткого замикання у мережі до 1000 В 67 3.2.4 Побудова карти селективності дії апаратів захисту...70 3.3 Висновки до розділу...71 4. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ...72 4.1 Напруга дотику. Класифікація електроустановок та приміщень з електробезпеки. Аналіз умов ураження людини електричним струмом...73 4.2 Поглинена енергія випромінювання...76 ЗАГАЛЬНІ ВИСНОВКИ...77 ПЕРЕЛІК ПОСИЛАНЬ...79
APA, Harvard, Vancouver, ISO, and other styles
6

Louie, Kwok-Wai. "Aggregation of voltage and frequency dependent electrical loads." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0020/NQ46375.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ibrahim, Sherine Taher Mahmoud. "Simulation of air-conditioning loads in electrical power systems." Thesis, University of Bath, 1997. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gutierrez, Manuel S. M. Massachusetts Institute of Technology. "An energy buffer for constant power loads." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111914.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 111-113).<br>Constant power loads (CPLs) are a class of loads steadily increasing in use. They are present whenever a load is regulated to maintain constant output power, such as with LED drivers in high quality lighting that is impervious to input fluctuations. Because CPLs exhibit a negative incremental input impedance, they pose stability concerns in DC and AC systems. This thesis presents a power converter for a constant power LED bulb that presents a favorable input impedance to the grid. The use of an energy buffer allows the converter to draw variable power in order to resemble a resistive load, while the output consumes constant power. A switched-mode power supply consisting of a cascaded boost and buck converter accomplishes this by storing energy in the boost stage output capacitor. Experimental results demonstrate that the converter exhibits a resistive input impedance at frequencies over 0.5 Hz while maintaining constant power to the LED load.<br>by Manuel Gutierrez.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
9

Olsson, John C. (John Carl) 1979. "High-voltage wideband switching amplifier for capacitive loads." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/60757.

Full text
Abstract:
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.<br>Also issued in leaves.<br>Includes bibliographical references (p. 110-111).<br>Why is it that arbitrarily driving imaginary loads has always required lots of power? In this thesis, a highly efficient switching amplifier class is developed that is capable of delivering energy to, as well as taking energy from, a capacitive load in a finely controllable, dissipationless manner. Several control schemes were investigated, and a simple version of the amplifier was then built and tested using both synchronous and asynchronous controllers. The amplifier proved to be capable of driving high voltage, high frequency signals across a capacitive transducer with extremely low total power consumption and very low distortion.<br>by John C. Olsson.<br>M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
10

Leong, Ben Wing Lup. "Dynamics of RC trees with distributed constant-power loads." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42765.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.<br>Includes bibliographical references (leaf 145).<br>by Ben Wing Lup Leong.<br>M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electrical loads of the enterprise"

1

National Renewable Energy Laboratory (U.S.) and IEEE Green Technologies Conference, eds. Extracting operating modes from building electrical load data: Preprint. National Renewable Energy Laboratory, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Appelbaum, Joseph. Restrictive loads powered by separate or by common electrical sources. National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piette, Mary Ann. Learning from experiences with thermal storage:managing electrical loads in buildings. Centre for the Analysis and Dissemination of Demonstrated Energy Technologies, CADDET Analysis Support Unit, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Canada. Health and Welfare Canada., ed. Profile analysis of electrical energy loads for hospitals: Research study report. Health and Welfare Canada, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alanen, Raili. Analysis of electrical energy consumption and neural network estimation and forecasting of loads in a paper mill. Technical Research Centre of Finland, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noor, Halim Mohd. Determinants of technological effort and the importance of multinational enterprise: The case of the electronics and electrical industry in Malaysia. Cardiff University. Cardiff Business School, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dengqing, Zhang, ed. Dian li qi ye guan li bian ge zhi dao: Dian wang qi ye = Change management of electrical enterprise : power grid corporations. Zhongguo dian li chu ban she, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eroshenko, Gennadiy, Nadezhda Kondrat'eva, and Sergey Bakirov. Fundamentals of technical operation of electrical and electromechanical equipment. INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1058537.

Full text
Abstract:
The textbook summarizes the main provisions of the operation of electrical equipment in agriculture. At the same time, along with the generally accepted provisions for the operation of electrical equipment, the electrical equipment used by agricultural enterprises, as well as the theoretical foundations of the operation of electrical equipment, the technology of major repairs of electrical equipment and the design of the energy service of an agricultural enterprise are considered in more detail. &#x0D; Examples are given and the solution of problems on the topics outlined in the textbook is proposed.&#x0D; Meets the requirements of the federal state educational standards of higher education of the latest generation.&#x0D; For students of higher education organizations studying in the field of training 35.03.06 "Agroengineering", as well as anyone interested in the problems of operation of electrical equipment in agriculture.
APA, Harvard, Vancouver, ISO, and other styles
9

Recovery, New Jersey Legislature Joint Legislative Committee on Economic. Committee meeting of Joint Legislative Committee on Economic Recovery: Testimony on the role of New Jersey's electric and gas public utilities in jobs creation, jobs retention, business expansion, and the attraction of new business to the state. Office of Legislative Services, Public Information Office, Hearing Unit, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sibikin, Yuriy. Power supply. INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1863101.

Full text
Abstract:
The textbook discusses methods for calculating electrical loads, issues of the quality of electrical energy and reactive power compensation, power supply schemes of objects; describes the methodology for determining losses in elements of power supply systems, provides material related to the operation and calculation of electrical networks associated with the process of electric current flow in the wires of external and internal power supply of objects.&#x0D; It is intended for students of training areas and specialties "Electric power engineering and electrical engineering", "Power stations, networks and systems", "Power supply", "Automatic control of electric power systems", "Relay protection and automation of electric power systems" and other electric power training areas and specialties of universities and institutions of secondary vocational education.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Electrical loads of the enterprise"

1

Altgilbers, Larry L., Igor Grishnaev, Ivor R. Smith, et al. "Electrical Loads." In Magnetocumulative Generators. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1232-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Patrick, Dale R., Stephen W. Fardo, and Brian W. Fardo. "Fundamentals of Electrical Loads." In Electrical Power Systems Technology, 4th ed. River Publishers, 2022. http://dx.doi.org/10.1201/9781003207429-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Melkebeek, Jan A. "Induction Machines with Pulsating Loads." In Electrical Machines and Drives. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72730-1_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tania, H. M., Jagadish Kumar Patra, Vinson John, D. Elangovan, and G. Arunkumar. "Four Level Boost Converter for Linear Loads." In Lecture Notes in Electrical Engineering. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1540-3_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barooah, Prabir. "Virtual Energy Storage from Air Conditioning Loads." In Lecture Notes in Electrical Engineering. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9119-5_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ali Taher, Murad Ahmed, and Ali Abdo Mohammed Al-Kubati. "Conceptual Design System for Monitoring Electrical Loads." In Informatics Engineering and Information Science. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25483-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simpson, William R., and Coimbatore Chandersekaran. "High Assurance Enterprise Scaling Issues." In Lecture Notes in Electrical Engineering. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6818-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Xiuting, Laisheng Xiang, and Xiyu Liu. "Enterprise Development with P Systems." In Lecture Notes in Electrical Engineering. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7618-0_148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Xiuting, Laisheng Xiang, and Xiyu Liu. "Enterprise Evolution with Molecular Computation." In Lecture Notes in Electrical Engineering. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7618-0_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seelig, Marcel, Jan Schaffner, and Gero Decker. "Performance Engineering for Enterprise Applications." In Lecture Notes in Electrical Engineering. Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74935-8_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrical loads of the enterprise"

1

Vacheva, Gergana, Plamen Stanchev, and Nikolay Hinov. "Optimal Load Schedule in Medium Sized Enterprises." In 2024 16th Electrical Engineering Faculty Conference (BulEF). IEEE, 2024. https://doi.org/10.1109/bulef63204.2024.10794925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Komyakov, Aleksandr, and Andreeva Marina. "Electric Load Forecasting of Railway Enterprises Using the ARIMA Model." In 2025 International Russian Smart Industry Conference (SmartIndustryCon). IEEE, 2025. https://doi.org/10.1109/smartindustrycon65166.2025.10986229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Binbin, Yuwei Huang, and Daogang Peng. "Considering the Carbon Trading Mechanism for Collaborative Optimization of Source and Load Operations in High Energy Consuming Enterprises." In 2024 6th International Conference on Electrical Engineering and Control Technologies (CEECT). IEEE, 2024. https://doi.org/10.1109/ceect63656.2024.10898958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wadoud, Amir A., Alaa A. Saleh, Mohamed Y. M. Mohsen, Atef El-Taher, and Mohamed A. E. Abdel-Rahman. "Impact of Energy Saving Loads on Nuclear Facility Electrical Network." In 2025 15th International Conference on Electrical Engineering (ICEENG). IEEE, 2025. https://doi.org/10.1109/iceeng64546.2025.11031289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khusainova, Ekaterina A., Emina R. Timergazizova, and Nina A. Serkina. "Financial Engineering as an Enterprise Management Tool." In 2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2025. https://doi.org/10.1109/reepe63962.2025.10971019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ozhegov, A. N., L. V. Derendjaeva, and A. A. Zakalata. "Network Reduction in Calculation of Oscillatory Characteristics of Branching Point Resistor of Electric Loads at Industrial Enterprise." In 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2018. http://dx.doi.org/10.1109/icieam.2018.8728655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gou, Hengxiang. "Research on enterprise comprehensive load modeling based on large motor group." In 8th International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2023), edited by Pavel Loskot and Shubin Yan. SPIE, 2023. http://dx.doi.org/10.1117/12.2680032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manusov, Vadim Z., Dmitry V. Orlov, Pavel V. Matrenin, Vitaly S. Karmanov, Alexander O. Khusnutdinov, and Dmitry V. Antonenkov. "Investigation of Load Schedules of Electrical Machines of a Mining Enterprise Using Wavelet Analysis." In 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM). IEEE, 2022. http://dx.doi.org/10.1109/edm55285.2022.9855045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Yuzhuo, JinFeng Wang, HaiFeng Zheng, et al. "Demand response baseline load optimization based on process monitoring: the case of an enterprise in Xi'an." In Eighth International Conference on Energy Materials and Electrical Engineering (ICEMEE 2022), edited by Thanikaivelan Palanisamy and Lim Boon Han. SPIE, 2023. http://dx.doi.org/10.1117/12.2672991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kosarev, B. A., D. V. Lazarev, and A. V. Bubnov. "Electrical System of an Enterprise with a Wind Generator, Energy Storage System, Gas Generator and Variable Load." In 2023 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2023. http://dx.doi.org/10.1109/dynamics60586.2023.10349370.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electrical loads of the enterprise"

1

Y.D. Shane. Standby Generators for North Portal Electrical Loads (SCPB:N/A). Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/893913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hammerstrom, Donald J., Ross T. Guttromson, Ning Lu, et al. Detection of Periodic Beacon Loads in Electrical Distribution Substation Data. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/883218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gentile-Polese, L., S. Frank, M. Sheppy, et al. Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1126300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Greenblatt, Jeffery B., Stacy Pratt, Henry Willem, et al. Field data collection of miscellaneous electrical loads in Northern California: Initial results. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1172006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barley, C. D., C. Haley, R. Anderson, and L. Pratsch. Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes. Office of Scientific and Technical Information (OSTI), 2008. http://dx.doi.org/10.2172/944458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hail, John C., Daryl R. Brown, Jeffrey J. McCullough, and Ronald M. Underhill. Final Report Recommended Actions to Reduce Electrical Peak Loads at the Marine Corps Air Station at Camp Pendleton, California. Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/949181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stott, Alexander, Caitlin Callaghan, Douglas Punt, and Tyler Elliott. Cold impacts on vehicle electrical systems : developing a baseline for cold testing military vehicles. Engineer Research and Development Center (U.S.), 2023. http://dx.doi.org/10.21079/11681/47594.

Full text
Abstract:
Low temperatures can significantly affect vehicle operation. While many of the effects, like increased fluid viscosity and decreased battery capacity, are well documented, the impacts on the electrical system as a whole are not. The objective of this study was to investigate the impacts of tempera-ture on the electrical systems of select military vehicles and to develop a baseline for future testing. A High Mobility Multipurpose Wheeled Vehicle (HMMWV), a Heavy Expanded Mobility Tactical Truck (HEMTT), and a four-person diesel Polaris MRZR D4 were subjected to 15°C, 0°C, and −15°C temperatures while the loads on the battery and alternator were monitored. The HMMWV and MRZR were able to start on the first try for all tests. They both showed a slight increase in vehicle load current draw from the alternator as temperatures decreased. Future testing with more iterations and at lower temperatures will help identify clearer trends and improve testing procedures. As the Army becomes more reliant on electronic systems, it is becoming increasingly important that we understand how various climates will impact them.
APA, Harvard, Vancouver, ISO, and other styles
8

Potter, Jamie, Hailie Suk, Daniel Guadagni, Tori Sweet, Everett Adams, III, and Zach Tomberg. Assessing a mobile microgrid to support electric vehicle charging stations on Army installations. Engineer Research and Development Center (U.S.), 2025. https://doi.org/10.21079/11681/49727.

Full text
Abstract:
Supplying reliable, off-grid power is critical for transitioning the Army’s fleet to zero carbon emitting vehicles. At the same time, vehicle charging and mission support equipment may require increased electrical loads than currently experienced at Army installations. Other decarbonization initiatives require clean sources of energy. Using microgrids powered with renewable electricity generation systems is a viable, independent solution for powering electric vehicles. Yet, there is a need to fill information gaps in the performance of these systems for realizing sustainable and resilient energy. The goal of this project was to increase the Army’s energy resilience by reducing reliance on the utility grid by using a compact and mobile microgrid that functions as an EV charging station. In this study, a trailered, mobile microgrid that integrates solar panels, a diesel generator, and batteries is evaluated based on performance under varying conditions. The energy generation capabilities are documented and evaluated for capabilities for powering electric vehicles. The outcomes of this research are the advancement of energy resiliency and the addition of performance in temperate and cold regions to the knowledge base. It is also anticipated this research may be leveraged to facilitate power independence and further support decarbonization efforts.
APA, Harvard, Vancouver, ISO, and other styles
9

Bergstrom, Anna, Joshua Koch, Shad O'Neel, and Emily Baker. Seasonality of solute flux and water source chemistry in a coastal glacierized watershed undergoing rapid change : Wolverine Glacier watershed, Alaska. Engineer Research and Development Center (U.S.), 2025. https://doi.org/10.21079/11681/49642.

Full text
Abstract:
As glaciers rapidly lose mass, the tight coupling between glaciers and downstream ecosystems results in widespread impacts on global hydrologic and biogeochemical cycling. Knowledge of seasonally changing hydrologic processes and solute sources and signatures is limited. We conducted a broad water sampling campaign to understand the present-day partitioning of water sources and associated solutes in Alaska’s Wolverine Glacier watershed. We established a relationship between electrical conductivity and streamflow at the watershed outlet dividing the melt season into four hydroclimatic periods. Across hydroclimatic periods, we observed a shift in nonglacial source waters from snowmelt-dominated overland and shallow subsurface flow paths to deeper groundwater flow paths. We also observed the shift from a low- to high-efficiency subglacial drainage network and the associated flushing of water stored subglacially with higher solute loads. We used calcium from watershed outlet samples to estimate solute fluxes for each hydroclimatic period across two melt seasons. Between 40% and 55% of Ca²⁺ export occurred during the late season rainy period. Partitioning of the melt season coupled with a characterization of the chemical makeup and magnitude of solute export provides new insight into a rapidly changing watershed and creates a framework to quantify and predict changes to solute fluxes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!