Dissertations / Theses on the topic 'Espaces fibrés (Mathématiques)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 44 dissertations / theses for your research on the topic 'Espaces fibrés (Mathématiques).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Koziarz, Vincent. "Plongement des espaces q-Stein." Nancy 1, 1998. http://www.theses.fr/1998NAN10295.
Full textHan, Frédéric. "Codimension du schèma des multisauteuses d'un 4- ou 5-instanton." Lille 1, 1996. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1996/50376-1996-79.pdf.
Full textSebbar, Ahmed. "Espaces fibres A et théorème de Grauert." Bordeaux 1, 1985. http://www.theses.fr/1985BOR10611.
Full textSerman, Olivier. "Espaces de modules de fibrés orthogonaux sur une courbure algébrique." Nice, 2007. http://www.theses.fr/2007NICE4101.
Full textWe study in this thesis the moduli schemes of orthogonal bundles over an algebraic smooth curve. We first show that the forgetful morphism from the moduli space of orthogonal bundles to the moduli space of all vector bundles is a closed immersion : this relies on an explicit description of a set of generators for the invariants on the representation spaces of some quivers. We the give, for orthogonal bundles of rank 3 and 4, some more concrete results about the geometry of these varieties, with a special attention towards the theta map
Plechinger, Valentin. "Espaces de modules de fibrés en droites affines." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0367.
Full textThe study of fibre bundles is an important subject in complex geometry. This thesis considers the particular case of affine line bundles over complex spaces. Affine line bundles are a natural generalisation of line bundles. The first part of this thesis studies the classical moduli problem and the existence of fine moduli spaces. In analogy to the study of line bundles, an affine Picard functor is defined. It is shown that this moduli space will (unless trivial) not be Hausdorff which leads to the study of framed affine line bundles. An exact criterion for the existence of a moduli space for this problem is given. Since the existence of such moduli spaces is very rare, the modern approach of stacks is used in the second part. To give a simpler description of this stack, the theory of fibrewise split extensions is developed. This theory is very general and is of independent interest. For a complex projective variety X, this approach allows to identify the stack of affine line bundles with a quotient stack of linear fibre spaces over the Picard scheme Pic(X). As an application, the homotopy type of this stack is calculated
Maillot, Sylvain. "Quasi-isomètries, groupes de surfaces et orbifolds fibrés de Seifert." Toulouse 3, 2000. http://www.theses.fr/2000TOU30176.
Full textAlmeida, Jean d'. "Courbes de l'espace projectif : séries linéaires incomplètes et multisécantes." Lille 1, 1986. http://www.theses.fr/1986LIL10087.
Full textFahlaoui, Rachid. "Stabilité du fibré tangent des surfaces algébriques." Paris 11, 1989. http://www.theses.fr/1989PA112170.
Full textThis thesis is concerned with the stability of the tangent bundle of algebraic surfaces. We consider two notions of stability: stability in the sense of Mumford-Takemoto and T-stability (Bogomolov stability). For surfaces with positive canonical (resp. Anti-canonical) bundle, the existence of a Kähler-Einstein metric implies the semi-stability of the tangent bundle with respect to the canonical (resp. Anti-canonical) class. If K is positive, such a metric exists, which implies K-semi-stability. This leads us to study the case of surfaces with negative canonical bundle. We give an algebraic proof, valid in any characteristic, of the semi-stability of the tangent bundle with respect to the canonical class. We generalize this result to surfaces with numerically negative canonical bundle satisfying: if the rank of the Picard group is nine, the anti-canonical linear system contains a singular semi-stable curve. Then we turn to T-stability, distinguishing three cases: elliptic surfaces, surfaces with vanishing first Chern class and geometrically ruled surfaces. We characterize the ones for which the tangent bundle is T-semi-stable and, in the last two cases, the ones for which the tangent bundle is T-stable
Sarafopoulos, Georges. "Application de la théorie des déformations de Kodaira et Spencer à la mesure de Polyakov." Lyon 1, 1993. http://www.theses.fr/1993LYO10254.
Full textMourtada, Hussein. "Sur la géométrie des espaces des jets de quelques variétés algébriques singulières." Versailles-St Quentin en Yvelines, 2010. http://www.theses.fr/2010VERS0014.
Full textIn the first two chapters, we determine the irreducible components of the jet schemes of plane branches (respectively normal toric surfaces) and their dimensions. To these components and dimensions we associate a graph, whose data turns out to be equivalent to the equisingularity class of the branch (respectively to the dual graph of the minimal resolution of the toric surface). The algebra of arcs is naturally graded. This yields a Poincaré series that we compute in the case of surfaces having a rational double point in the third chapter. The last chapter is devoted to an algorithm of computation of the ridge of a singularity. This is a useful invariant for resolution of singularities
Abdou, Joanna. "Plongement de fibrés hermitiens à l'aide du noyau de la chaleur et espaces limites." Université Joseph Fourier (Grenoble), 2009. http://www.theses.fr/2009GRE10125.
Full textLn this thesis, we consider a vector bundle E over a compact manifold M (with an inner product and an adapted connection) and an operator: the "generalized Laplacian" which is the rough Laplacian with a potential. Then we refer to the frame bundle (a principal bundle) P associated to the vector bundle E. The equivariant functions on P with value in the fiber space correspond to the sections of E. We construct an embedding in a Hilbert space using these equivariant functions and the heat kemel. We also discuss the properties of this embedding, more precisely, the induced metric. We conclude that the embedding is asymptotically an isometry as the time t tends to O. We illustrate the study in a concrete way by studying the case of the Dirac operator. Ln the same context, we generalizesorne heat kemel estimates which lead us to demonstrate a precompacity theorem for a new spectral distance that we define. As aconsequence, we obtain a result of convergence to a limit space, with a certain number of "good properties" related to this convergence
Lavandier, Jean. "Role du tenseur de Nijenhuis dans l'intégralité de certaines g-structures." Toulouse 3, 1991. http://www.theses.fr/1991TOU30272.
Full textKabbaj, Salah-Eddine. "Spectres et théories de la dimension dans les anneaux de polynômes à coefficients dans un produit fibré." Lyon 1, 1988. http://www.theses.fr/1988LYO10068.
Full textAbel-Parry-Pierrot, Mireille. "Orbites des champs feuilletés pour un feuilletage riemannien." Montpellier 2, 1987. http://www.theses.fr/1987MON20142.
Full textDaniel, Jérémy. "Variations de structures de Hodge lacées et fibrés harmoniques." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC175.
Full textTwo Hodge-theoretic independent problems are discussed in this thesis. In the first chapter, we introduce an object that generalizes a Hodge structure: a loop Hodge structure. We prove that the datum of a variation of loop Hodge structures is equivalent to the datura of a harmonic bundle, so that one can study harmonic bundles using classical tools of Hodge theory, especially the existence of a period map. In the second chapter, we consider the problem of defining harmonic forms computing the characteristic cohomology of a manifold endowed with an exterior differential system. This is motivated by the example of the period domains, where the exterior differential system is induced by the horizontal distribution
Hadjar, Mohamed. "Sur les structures de contact invariantes en dimension trois." Mulhouse, 1992. http://www.theses.fr/1992MULH0226.
Full textChastand, Marc. "Classes de graphes compacts faiblement modulaires." Lyon 1, 1997. http://www.theses.fr/1997LYO10101.
Full textTur, Laurent. "Dualité étrange sur le plan projectif." Nice, 2003. http://www.theses.fr/2003NICE4089.
Full textGavioli, Francesca. "Systèmes linéaires sur le champ algébrique des fibrés quasi-paraboliques sur une courbe." Phd thesis, Université de Nantes, 2003. http://tel.archives-ouvertes.fr/tel-00002544.
Full textZaffran, Dan (1974. "Surfaces d'Inoue-Hirzebruch, feuilletages sur les surfaces de classe VII, et problèmes de Serre." Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11047.
Full textKhalis, Mohammed. "Spectre et dimension de Krull des anneaux de séries formelles à coefficients dans un anneau non noethérien." Lyon 1, 1991. http://www.theses.fr/1991LYO10107.
Full textSarrage, Mohamed Mahmoud. "Groupes de Witt des surfaces toriques." Nice, 2011. http://www.theses.fr/2011NICE4111.
Full textWe calculate in this thesis the Witt groups of a smooth projective toric surface over a field with characteristic different to 2. Such a surface is described combinatorially by a fan in the plan. The result is a direct sum of several copies of Witt group of the basic field, sush that the number of copies depends on the line bundle used in the definition of Witt groups. The proof technique is to filter the derived category of the surface by subcategories with support orbit-closures of dimension 1, which allows by unscrewing, to obtain long exact sequences including copies of Witt groups of the field
D'Amours, Martin. "Application des structures hermitiennes pour le calcul cohomologique d'une variété analytique via le théorème de Hodge." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24446/24446.pdf.
Full textPréaux, Jean-Philippe. "Problème de conjugaison dans le groupe d'une 3-variété orientée vérifiant l'hypothèse de géométrisation de Thurston." Aix-Marseille 1, 2001. http://www.theses.fr/2001AIX11062.
Full textBahtiti, Mohamed. "Fibrés vectoriels algébriques de petit rang sur la variété projective P^n." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066076/document.
Full text1 - Generalization of the special instanton bundles on P^2n+1 which is called the (b+1)-weighted instanton bundles on P^2n+1. The stability of these vector bundles was studied in the case b=0. We studied the deformation of weighted Steiner bundles on P^2n+1. 2 - Generalization of the Tango bundles on P^n which is called the weighted Tango bundles on P^n. The stability of these vector bundles has been studied. The deformation of these vector bundles has been studied. 3 - Construction of vector bundles of rank 3 on P^4. We have studied the condition to have vector bundles that do not isomorphic to a direct sum of three line bundles
Larcanché, Audrey. "Topologie locale des espaces de feuilletages des variétés fermées de dimension 3." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2004. http://tel.archives-ouvertes.fr/tel-00008258.
Full textZuber, Hugues. "Variétés caractéristiques et non formalité des fibres de Milnor." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00440281.
Full textNour, El Abidine Driss. "Groupe des classes de certains anneaux intégres et idéaux transformés." Lyon 1, 1992. http://www.theses.fr/1992LYO10058.
Full textPedon, Emmanuel. "Analyse harmonique des formes différentielles sur l'espace hyperbolique réel." Nancy 1, 1997. http://www.theses.fr/1997NAN10226.
Full textFang, Yanbo. "Study of positively metrized line bundles over a non-Archimedean field via holomorphic convexity." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7033.
Full textThis thesis is devoted to the study of semi-positively metrized line bundles in non-Archimedean analytic geometry, with the point of view of functional analysis over an ultra-metric field exploiting the geometry related to holomorphic convexity. The first chapter gathers some preliminaries about Banach algebras over ultra-metric fields and the geometry of their spectrum in the sense of V. Berkovich, which is the framework of our study. The second chapter present the basic construction, which encodes the related geometric information into some Banach algebra. We associate the normed algebra of sections of a metrized line bundle. We describe its spectrum, relating it with the dual unit disc bundle of this line bundle with respect to the envelope metric. We thus encode the metric positivity into the holomorphic convexity of the spectrum. The third chapter consists of two independent for the normed extension problem for restricted sections on a sub-variety. We obtain an upper bound for the asymptotic norm distorsion between the restricted section and the extended one, which is uniform with respect to the choice of restricted sections. We use a particular property of affinoid algebras to obtain this inequality. The fourth chapter treat the problem of regularity of the envelope metric. With a new look from the holomorphic analysis of several variables, we aime at showing that on ample line bundles, the envelop metric is continuous once the original metric is. We suggest a tentative approach based on a speculative analogue of Cartan-Thullen’s result in the non-Archimedean setting
Alessandrini, David. "Les singularités des polynômes à l'infini et les compactifications toriques." Phd thesis, Université d'Angers, 2002. http://tel.archives-ouvertes.fr/tel-00002671.
Full textLe chapitre 2 donne les principaux résultats de cette thèse dans le cas d'une compactification torique par poids de l'espace affine C^n. On démontre la trivialité affine d'un polynôme à l'aide de l'hypothèse de modération sur le gradient par poids de Malgrange-Paunescu : |grad_Wf(z)|_W est minoré. On démontre aussi grâce à la même hypothèse de modération sur le gradient la propriété locale suivante : le champ de vecteurs de Kuo-Paunescu après modification torique donne un champ de vecteurs controlé par rapport au diviseur à l'infini. Cette dernière condition nous donne la condition la plus importante : la condition non-caractéristique. On en déduit la trivialité locale en un point du diviseur.
Le chapitre 3 est basé sur les travaux de Hamm, Lê et Mebkhout. Il décrit la correspondance entre la condition non-caractéristique obtenue au chapitre 2 et la notion de cycles évanescents ainsi que celle de trivialité locale.
Le chapitre 4 présente la généralisation des théorèmes du chapitre 2 pour une compactification torique quelconque de l'espace affine C^n.
Yang, Nanjun. "Motifs généralisées et orientations symplectiques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM004/document.
Full textIn this thesis, we present a general framework to construct categories of motives and build part of the six operations formalism for these categories. In the case of MW-motivic cohomology, we prove the quaternionic projective bundle theorem and construct a Gysin triangle, which enable us to define Pontryagin classes on Chow-Witt rings for symplectic bundles. Applying these tools together, we compute the group of morphisms between smooth proper schemes in the category of (effective) MW-motives
Jacques, Simon. "Adhérences de certaines orbites dans la variété de drapeaux, résolution et normalité dans les types classiques A, B, D." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0299.
Full textLet G be a connected algebraic reductive group in types A, B, or D, and e be a nilpotent element of its Lie algebra with centralizer Z:=Z_G(e). We suppose the characteristic zero and that e corresponds to a nilpotent endomorphism of order two. We sketch a proof of the following result: all Z-orbit closures Y in the flag variety X of G are normal. It extends a work of Nicolas Perrin and Evgeny Smirnov which deals with an irreducible component Y of the Springer fiber X(e) in types A and D. We use the same main arguments, namely an induction based on (1): the existence of a suitable birational morphism onto Y, and (2): the surjectivity of section restrictions of an ample line bundle. For us (1) will be obtained thanks to good Weyl group elements, Schubert varieties, Bott-Samelson varieties and several fundamental results from Roger Wolcott Richardson and Tonny Albert Springer on symmetric spaces. On the other hand, (2) follows from a theorem proved by Xuhua He and Jesper Funch Thomsen which states Frobenius splittings of Y-like varieties. It thus implies (2) in positive characteristic and we just have to pass it through the zero : we then merely produce an example of the reduction modulo p method.Our work suggests several avenues of research and could be improved in several directions. It could have implications for the study of the irreducible components of the Steinberg variety and thus for the calculation of the characteristic polynomials. They have been introduced by Anthony Joseph in order to constitute irreducible representations of the Weyl group. Our work also raises the question of its generalization to the C type, the exceptional types and the positive characteristic
Weimann, Martin. "La trace en géométrie projective et torique." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00136109.
Full textl'aide du calcul résiduel dans les cadres projectifs et toriques.
Dans la première partie, on obtient une caractérisation algébrique des formes traces sur une hypersurface analytique à l'aide du calcul résiduel élémentaire d'une variable. En conséquence, une version plus forte du théorème d'Abel-inverse de Henkin et Passare est prouvée. On montre que ce théorème est conséquence de la rigidité d'un système différentiel particulier lié à une équation de type ”onde de choc” et on établit le lien avec le théorème de Wood sur l'algébricité d'une famille de germes d'hypersurfaces analytiques. Enfin, on obtient une nouvelle méthode pour calculer la dimension de l'espace des formes abéliennes de degré maximal sur une hypersurface projective.
Dans la seconde partie, on caractérise de manière combinatoire les familles de fibrés en droites permettant de définir une notion intrinsèque de concavité dans une variété torique complète lisse et on étudie les ensembles analytiques dégénérés correspondants. On étend ainsi la notion de trace au cas torique. Courants résidus, résidus toriques et résultants donnent une borne optimale sur le degrés des traces en les différents paramètres. Si la variété torique est projective, on obtient finalement une version torique des théorèmes de Wood et d'Abel-inverse, permettant une description plus précise du support du polynôme construit dans le cas hypersurface.
Jolany, Hassan. "Analytical log minimal model program via conical Kähler Ricci flow : Song-Tian program." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10109.
Full textExistence of canonical metric on a projective variety was a long standing conjecture and the major part of this conjecture is about varieties which do not have definite first Chern class(most of the manifolds do not have definite first Chern class). Thereis a program which is known as SongTian program for finding canonical metric on canonical model of a projective variety by using Minimal Model Program. The main aim of this thesis is better undrestanding of SongTian program on pair (X;D). In this thesis, we apply SongTian program for pair (X;D) via Log Minimal Model Program where D is a simple normal crossing divisor on X with conic singularities. We investigate conical Kähler Ricci flow on holomorphic fiber spaces (X;D) -→B whose generic fibers are log Calabi Yau pairs (Xs;Ds), c1(KB) < 0, and D is a simple normal crossing divisor on X (we consider the cases c1(KB) = 0, and c1(KB) > 0 also). We show that there is a unique conical Kähler Einstein metric on (X;D) which is twisted by logarithmic Weil Petersson metric and an additional term which we will find it explicitly. We consider the semipositivity of fiberwise singular Kahler Einstein metric via SongTian program. We consider a twisted Kähler Einstein metric along Mori fibre space. Moreover, we give an analogue version of SongTian program for Sasakian manifolds. We give an arithmetic version of SongTian program for arithmetic varieties. Also we give a short proof of Tian’s formula for Kähler potential of logarithmic WeilPetersson metric on moduli space of log CalabiYau varieties (if such moduli space exists!)
Souvay, Arnaud. "Une approche intrinsèque des foncteurs de Weil." Electronic Thesis or Diss., Université de Lorraine, 2012. http://www.theses.fr/2012LORR0257.
Full textWe construct a functor from the category of manifolds over a general topological base field or ring K, of arbitrary characteristic, to the category of manifolds over A, where A is a so-called Weil algebra, i.e. a K-algebra of the form A = K + N, where N is a nilpotent ideal. The corresponding functor, denoted by T^A, and called a Weil functor, can be interpreted as a functor of scalar extension from K to A. It is constructed by using Taylor polynomials, which we define in arbitrary characteristic. This result generalizes simultaneously results known for ordinary, real manifolds, and results for iterated tangent functors and for jet rings (A = K[X]/(X^{k+1})). We show that for any manifold M, T^A M is a polynomial bundle over M, and we investigate some algebraic aspects of the Weil functors, in particular those related to the action of the "Galois group" Aut_K(A). We study connections, which are an important tool for the analysis of fiber bundles, in two different contexts : connections on the Weil bundles T^A M, and connections on general bundles over M, following Ehresmann's approach. The curvature operators are induced by the action of the Galois group Aut_K(A) and they form an obstruction to the "integrability" of a K-smooth connection to an A-smooth one
Spinaci, Marco. "Déformations des applications harmoniques tordues." Phd thesis, Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00877310.
Full textLiu, Jie. "Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4038/document.
Full textThis thesis is devoted to the study of complex Fano varieties via the properties of subsheaves of the tangent bundle and the geometry of the fundamental divisor. The main results contained in this text are:(i) A generalization of Hartshorne's conjecture: a projective manifold is isomorphic to a projective space if and only if its tangent bundle contains an ample subsheaf.(ii) Stability of tangent bundles of Fano manifolds with Picard number one: by proving vanishing theorems on the irreducible Hermitian symmetric spaces of compact type M, we establish that the tangent bundles of almost all general complete intersections in M are stable. Moreover, the same method also gives an answer to the problem of stability of the restriction of the tangent bundle of a complete intersection on a general hypersurface.(iii) Effective non-vanishing for Fano varieties and its applications: we study the positivity of the second Chern class of Fano manifolds with Picard number one, this permits us to prove a non-vanishing result for n-dimensional Fano manifolds with index n-3. As an application, we study the anticanonical geometry of Fano varieties and calculate the Seshadri constants of anticanonical divisors of Fano manifolds with large index.(iv) Fundamental divisors of smooth Moishezon threefolds with Picard number one: we prove the existence of a smooth divisor in the fundamental linear system in some special cases
Wang, Zhenjian. "Groupes projectifs et arrangements de droites." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4034/document.
Full textThe objective of this thesis is to investigate various questions about projective groups and line arrangements in the projective plane. A projective group is a group which is isomorphic to the fundamental group of a smooth complex projective variety. To study projective groups, sophisticated techniques in algebraic topology and algebraic geometry have been developed in the passed decades, for instance, the theory of cohomology jump loci, together with Hodge theory, has been proven a powerful tool. Line arrangements in the projective plane are of special interest in the study of projective groups. Indeed, there are many open questions related to projective groups, and the theory of hyperplane arrangements, and in particular that of line arrangements, which is quite an active area of research, may provide insights for these problems. Furthermore, problems concerning the fundamental groups of the complements of hyperplane arrangements can be reduced to the case of line arrangements, due to the celebrated Zariski theorem of Lefschetz type. Very often, in the study of projective groups or quasi-projective groups, one usually considers line arrangements first to get some intuitive ideas. In this thesis, we also prove some theorems that are of independent interest and can be used elsewhere, for instance, we prove properties concerning morphisms from products of projective spaces in Chapter 4, we show that some morphisms have generic connected fibers in Chapter 5 and we give criteria for a projective surface to be of general type in Chapter 7
Souvay, Arnaud. "Une approche intrinsèque des foncteurs de Weil." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0257/document.
Full textWe construct a functor from the category of manifolds over a general topological base field or ring K, of arbitrary characteristic, to the category of manifolds over A, where A is a so-called Weil algebra, i.e. a K-algebra of the form A = K + N, where N is a nilpotent ideal. The corresponding functor, denoted by T^A, and called a Weil functor, can be interpreted as a functor of scalar extension from K to A. It is constructed by using Taylor polynomials, which we define in arbitrary characteristic. This result generalizes simultaneously results known for ordinary, real manifolds, and results for iterated tangent functors and for jet rings (A = K[X]/(X^{k+1})). We show that for any manifold M, T^A M is a polynomial bundle over M, and we investigate some algebraic aspects of the Weil functors, in particular those related to the action of the "Galois group" Aut_K(A). We study connections, which are an important tool for the analysis of fiber bundles, in two different contexts : connections on the Weil bundles T^A M, and connections on general bundles over M, following Ehresmann's approach. The curvature operators are induced by the action of the Galois group Aut_K(A) and they form an obstruction to the "integrability" of a K-smooth connection to an A-smooth one
Chen, Zongbin. "Pureté des fibres de Springer affines pour GL_4." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112266/document.
Full textThis thesis consists of two parts. In the first part, we prove the purity of affine Springer fibers for $\gl_{4}$ in the unramified case. More precisely, we have constructed a family of non standard affine pavings for the affine grassmannian, which induce an affine paving for the affine Springer fiber. In the second part, we introduce a notion of $\xi$-stability on the affine grassmannian $\xx$ for the group $G=\gl_{d}$, and we calculate the Poincaré polynomial of the quotient $\xx^{\xi}/T$ of the stable part $\xxs$ by the maximal torus $T$ by a process analogue to the Harder-Narasimhan reduction
Darondeau, Lionel. "Sur la conjecture de Green-Griffiths logarithmique." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112134/document.
Full textThe topic of this memoir is the geometry of holomorphic entire curves with values in the complement of generic hypersurfaces of the complex projective space. The well-known conjectures of Kobayashi and of Green-Griffiths assert that for such hypersurfaces, having large degree, the images of these curves shall fulfill algebraic constraints. By adapting the jet techniques developed notably by Bloch, Green-Griffiths, Demailly, Siu, Diverio-Merker-Rousseau, in the case of curves with values in projective hypersurfaces (so-called compact case), we obtain the algebraic degeneracy of entire curves f : ℂ→Pⁿ∖Xd (so called logarithmic case), for generic hypersurfaces Xd in Pⁿ of degree d ≥ (5n)² nⁿ. As in the compact case, our proof essentially relies on the algebraic elimination of all derivatives in differential equations that are satisfied by every nonconstant entire curve. The existence of such differential equations is obtained thanks to the holomorphic Morse inequalities and a simplified variant of a residue formula firstly developed by Bérczi from the Atiyah-Bott equivariant localization formula. The effective lower bound d ≥ (5n)² nⁿ is obtained by radically simplifying a huge iterated residue computation. Next, the deformation of these differential equations by derivation along slanted vector fields, the existence of which is here generalized and clarified, allows us to generate sufficiently many new differential equations in order to realize the final algebraic elimination mentioned above
Ascah-Coallier, Isabelle. "Cohomologie de fibrés en droite sur le fibré cotangent de variétés grassmanniennes généralisées." Thèse, 2013. http://hdl.handle.net/1866/9701.
Full textIn this thesis, we study the cohomology of line bundles on cotangent bundle of projective varieties. To be more precise, let $G$ be an semisimple algebraic group which is simply connected, $P$ a maximal subgroup and $\omega$ a dominant weight that generates the character group of $P$. Our goal is to understand the cohomology groups $H^i(T^*(G/P),\mathcal{L})$ where $\mathcal{L}$ is the sheaf of sections of a line bundle on $T^*(G/P)$. Under some conditions, we will show that there exists an isomorphism, up to grading, between $H^i(T^*(G/P),\mathcal{L})$ and $H^i(T^*(G/P),\mathcal{L}^{\vee})$. After we worked in a theoretical setting, we will focus on maximal parabolic subgroups related to nilpotent varieties. In this case, the Lie algebra of the unipotent radical of $P$ has a structure of prehomogeneous vector spaces. We will be able to determine which cases verify the hypothesis of the isomorphism by showing the existence of a $P$-covariant $f$ in $\comp[\nLie]$ and by studying its properties. We will be interested by the singularities of the affine variety $V(f)$. We will show that the normalisation of $V(f)$ has rational singularities.
Cebanu, Radu Andrei. "A generalisation of property "R"." Thèse, 2013. http://www.archipel.uqam.ca/5767/1/D2473.pdf.
Full text