Journal articles on the topic 'Ferrites spinel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ferrites spinel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Wen Jie, Qing Jie Jiao, Chong Guang Zang, and Xiang Dong Zhu. "Study on the Absorption Properties of Spinel Type Ferrite Composite Coatings in the Low Frequency." Advanced Materials Research 415-417 (December 2011): 30–34. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.30.
Full textGao, Fen, Dong Lin Zhao, and Zeng Min Shen. "Preparation and Microwave Absorbing Properties of Cu-Doped Ni-Zn Spinel Ferrites." Advanced Materials Research 105-106 (April 2010): 293–96. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.293.
Full textSláma, Jozef, Martin Šoka, Anna Grusková, Alvaro Gonzalez, and Vladimír Jančárik. "Hopkinson Effect Study in Spinel and Hexagonal Ferrites." Journal of Electrical Engineering 62, no. 4 (July 1, 2011): 239–43. http://dx.doi.org/10.2478/v10187-011-0038-7.
Full textGalvão, Wesley S., Davino M. A. Neto, Rafael M. Freire, and P. B. A. Fechine. "Super-Paramagnetic Nanoparticles with Spinel Structure: A Review of Synthesis and Biomedical Applications." Solid State Phenomena 241 (October 2015): 139–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.241.139.
Full textKodama, T., H. Kato, S. G. Chang, N. Hasegawa, M. Tsuji, and Y. Tamaura. "Decomposition of CO2 to carbon by H2-reduced Ni(II)- and Co(II)-bearing ferrites at 300 °C." Journal of Materials Research 9, no. 2 (February 1994): 462–67. http://dx.doi.org/10.1557/jmr.1994.0462.
Full textAstik, Nidhi M., and G. J. Baldha. "Investigation of Structural, Electrical and Magnetic Properties of Mixed Ferrite System." Advanced Materials Research 1047 (October 2014): 119–22. http://dx.doi.org/10.4028/www.scientific.net/amr.1047.119.
Full textIacovita, Cristian, Gabriela Fabiola Stiufiuc, Roxana Dudric, Nicoleta Vedeanu, Romulus Tetean, Rares Ionut Stiufiuc, and Constantin Mihai Lucaciu. "Saturation of Specific Absorption Rate for Soft and Hard Spinel Ferrite Nanoparticles Synthesized by Polyol Process." Magnetochemistry 6, no. 2 (May 29, 2020): 23. http://dx.doi.org/10.3390/magnetochemistry6020023.
Full textSeyyed Ebrahimi, S. A., and Z. Pishgahi Fard. "An Investigation on the Optimum Conditions for Preparation of Pure Mn-Mg-Zn Ferrite Powder." Key Engineering Materials 336-338 (April 2007): 699–702. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.699.
Full textUšáková, Mariana, Elemír Ušák, Martin Šoka, and Ján Lokaj. "The influence of selected ions on various characteristics of Nickel-Zinc ferrites." Journal of Electrical Engineering 69, no. 6 (December 1, 2018): 449–53. http://dx.doi.org/10.2478/jee-2018-0072.
Full textRen, Gui Hua, and Zhi Song Yu. "Synthesis of Monodisperse Fe3O4 and MnFe2O4 Nanospheres by Using a Solvothermal Reduction Method." Solid State Phenomena 181-182 (November 2011): 393–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.181-182.393.
Full textAdarakatti, Shashidhar N., Veeresh S. Pattar, Prashant K. Korishettar, Bhagyashri V. Grampurohit, Ravindra G. Kharabe, Akshay B. Kulkarni, Shridhar N. Mathad, Chidanandayya S. Hiremath, and Rangappa B. Pujar. "Synthesis, Structural and Electrical Studies of Li-Ni-Cu Nano Ferrites." Acta Chemica Iasi 26, no. 1 (July 1, 2018): 1–12. http://dx.doi.org/10.2478/achi-2018-0001.
Full textAjeesha, T. L., Ashwini Anantharaman, Jeena N. Baby, and Mary George. "Structural, Magnetic, Electrical and Photo-Fenton Properties of Copper Substituted Strontium M-Hexagonal Ferrite Nanomaterials via Chemical Coprecipitation Approach." Journal of Nanoscience and Nanotechnology 20, no. 3 (March 1, 2020): 1589–604. http://dx.doi.org/10.1166/jnn.2020.17132.
Full textDippong, Thomas, Erika Andrea Levei, Iosif Grigore Deac, Emilia Neag, and Oana Cadar. "Influence of Cu2+, Ni2+, and Zn2+ Ions Doping on the Structure, Morphology, and Magnetic Properties of Co-Ferrite Embedded in SiO2 Matrix Obtained by an Innovative Sol-Gel Route." Nanomaterials 10, no. 3 (March 22, 2020): 580. http://dx.doi.org/10.3390/nano10030580.
Full textAnjaneyulu, T., P. Narayana Murthy, S. M. Rafi, S. Bademiya, and G. Samuel John. "Effect on Magnetic Properties of Zinc Doped Nano Ferrites Synthesized by Precursor or Method." International Letters of Chemistry, Physics and Astronomy 19 (October 2013): 37–43. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.19.37.
Full textde la Torre, Ernesto, Ana Lozada, Maricarmen Adatty, and Sebastián Gámez. "Activated Carbon-Spinels Composites for Waste Water Treatment." Metals 8, no. 12 (December 16, 2018): 1070. http://dx.doi.org/10.3390/met8121070.
Full textMajid, Farzana, Amarah Nazir, Sadia Ata, Ismat Bibi, Hafiz Shahid Mehmood, Abdul Malik, Adnan Ali, and Munawar Iqbal. "Effect of Hydrothermal Reaction Time on Electrical, Structural and Magnetic Properties of Cobalt Ferrite." Zeitschrift für Physikalische Chemie 234, no. 2 (February 25, 2020): 323–53. http://dx.doi.org/10.1515/zpch-2019-1423.
Full textPetrova, Elena G., Yana A. Shavshukova, Dzmitry A. Kotsikau, Kazimir I. Yanushkevich, Konstantin V. Laznev, and Vladimir V. Pankov. "Thermolysis of sprayed suspensions for obtaining highly spinel ferrite nanoparticles." Journal of the Belarusian State University. Chemistry, no. 1 (February 21, 2019): 14–21. http://dx.doi.org/10.33581/2520-257x-2019-1-14-21.
Full textPENCHAL REDDY, M., M. VENKATA RAMANA, N. RAMA MANOHAR REDDY, K. V. SIVA KUMAR, R. RAMA KRISHNA REDDY, W. MADHURI, K. SIVA KUMAR REDDY, P. SREEDHARA REDDY, and V. R. K. MURTHY. "STRUCTURAL, ELECTRICAL AND MAGNETIC CHARACTERIZATION OF Ni–Cu–Zn SPINEL FERRITES." Modern Physics Letters B 25, no. 03 (January 30, 2011): 211–22. http://dx.doi.org/10.1142/s0217984911025626.
Full textGHOSH, A., M. SATALKAR, S. RATHOD, S. P. NAG, P. VYAS, N. KANE, N. GHODKE, R. PRASAD, and R. DWIVEDI. "SOFT MAGNETIC PROPERTIES OF Mg0.7-xNi0.3ZnxFe2O4 FERRITES SYNTHESIZED BY SOL-GEL AUTO-COMBUSTION TECHNIQUE WITHOUT POST-PREPARATION THERMAL TREATMENT." International Journal of Modern Physics: Conference Series 22 (January 2013): 28–34. http://dx.doi.org/10.1142/s2010194513009896.
Full textThangjam, Biju, and Ibetombi Soibam. "Comparative Study of Structural, Electrical, and Magnetic Behaviour of Ni-Cu-Zn Nanoferrites Sintered by Microwave and Conventional Techniques." Journal of Nanomaterials 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/5756197.
Full textGatelyte, Aurelija, Darius Jasaitis, Aldona Beganskiene, and Aivaras Kareiva. "Sol-Gel Derived Ferrites: Synthesis and Characterization." Advanced Materials Research 222 (April 2011): 235–38. http://dx.doi.org/10.4028/www.scientific.net/amr.222.235.
Full textWolska, Emillia. "Defect Structures in Spinel Ferrites." Defect and Diffusion Forum 134-135 (March 1996): 89–0. http://dx.doi.org/10.4028/www.scientific.net/ddf.134-135.89.
Full textDarshane, V. S., S. S. Lokegaonkar, and S. G. Oak. "Catalysis by Oxidic Spinel Ferrites." Le Journal de Physique IV 07, no. C1 (March 1997): C1–683—C1–684. http://dx.doi.org/10.1051/jp4:19971280.
Full textNarang, Sukhleen Bindra, and Kunal Pubby. "Nickel Spinel Ferrites: A review." Journal of Magnetism and Magnetic Materials 519 (February 2021): 167163. http://dx.doi.org/10.1016/j.jmmm.2020.167163.
Full textCHEN, C., M. GREENBLATT, and J. WASZCZAK. "Lithium insertion into spinel ferrites." Solid State Ionics 18-19 (January 1986): 838–46. http://dx.doi.org/10.1016/0167-2738(86)90273-0.
Full textAl-Hilli, Muthafer F. "A comparison study of the Structural and magnetic properties of pure Ni metal and NiZnMn ferrite." Iraqi Journal of Physics (IJP) 17, no. 43 (November 29, 2019): 18–25. http://dx.doi.org/10.30723/ijp.v17i43.418.
Full textHussain, A., S. Akbar Tahir, N. Ahmad, M. Hashim, A. Bashir Ziya, and S. Noreen. "A study on microstructure and magnetic properties of nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) spinel ferrites." Revista Mexicana de Física 67, no. 3 May-Jun (April 30, 2021): 527. http://dx.doi.org/10.31349/revmexfis.67.527.
Full textИсаев, И. М., В. Г. Костишин, В. В. Коровушкин, Д. В. Салогуб, Р. И. Шакирзянов, А. В. Тимофеев, and А. Ю. Миронович. "Магнитные и радиопоглощающие свойства поликристаллического феррита-шпинели Li-=SUB=-0.33-=/SUB=-Fe-=SUB=-2.29-=/SUB=-Zn-=SUB=-0.21-=/SUB=-Mn-=SUB=-0.17-=/SUB=-0-=SUB=-4-=/SUB=-." Журнал технической физики 91, no. 9 (2021): 1376. http://dx.doi.org/10.21883/jtf.2021.09.51217.74-21.
Full textMaklad, M. H., N. M. Shash, and H. K. Abdelsalam. "Synthesis, characterization and magnetic properties of nanocrystalline Ni1-xZnxFe2O4 spinels via coprecipitation precursor." International Journal of Modern Physics B 28, no. 25 (September 9, 2014): 1450165. http://dx.doi.org/10.1142/s0217979214501653.
Full textXing, Qing Kai, Zhi Jian Peng, Cheng Biao Wang, Zhi Qiang Fu, and Xiu Li Fu. "Doping Effect of W6+ Ions on Microstructural and Magnetic Properties of Mn-Zn Ferrites." Key Engineering Materials 512-515 (June 2012): 1408–11. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.1408.
Full textAI, LUNHONG, JING JIANG, and HEJUN GAO. "EFFECT OF SAMARIUM DOPING ON THE STRUCTURAL AND MAGNETIC PROPERTIES OF THE LITHIUM–NICKEL FERRITE." Modern Physics Letters B 22, no. 21 (August 20, 2008): 2027–33. http://dx.doi.org/10.1142/s0217984908016698.
Full textRanganath, Kalluri V. S., Mahendra Sahu, Melad Shaikh, Pramod Kumar Gavel, Kiran Kumar Atyam, Santimoy Khilari, and Pradip Das. "CoFe2O4-decorated carbon nanotubes for the dehydration of glucose and fructose." New Journal of Chemistry 40, no. 5 (2016): 4468–71. http://dx.doi.org/10.1039/c6nj00501b.
Full textWalters, I., R. Shende, and J. A. Puszynski. "Hydrogen Production from Thermochemical Water-Splitting Using Ferrites Prepared by Solution Combustion Synthesis." Advances in Science and Technology 91 (October 2014): 32–38. http://dx.doi.org/10.4028/www.scientific.net/ast.91.32.
Full textVaralaxmi, N., K. V. Sivakumar, and Hardev Singh Virk. "Studies on Internal Friction and Curie Temperature of NiMgCuZn Spinel Ferrites for Micro-Inductor Applications." Solid State Phenomena 241 (October 2015): 202–25. http://dx.doi.org/10.4028/www.scientific.net/ssp.241.202.
Full textSangaa, Deleg, Baatartsogt Khongorzul, Enkhnaran Uyanga, Narmandakh Jargalan, Namsrai Tsogbadrakh, and Hideyuki Hirazawa. "An Overview of Investigation for Ferrite Magnetic Nanomaterial." Solid State Phenomena 271 (January 2018): 51–63. http://dx.doi.org/10.4028/www.scientific.net/ssp.271.51.
Full textFlores, Ariadna, Karina Nesprias, Paula Vitale, Julia Tasca, Araceli Lavat, Nora Eyler, and Adriana Cañizo. "Heterogeneous Photocatalytic Discoloration/Degradation of Rhodamine B with H2O2 and Spinel Copper Ferrite Magnetic Nanoparticles." Australian Journal of Chemistry 67, no. 4 (2014): 609. http://dx.doi.org/10.1071/ch13435.
Full textHuang, Kai, Xiansong Liu, Shuangjiu Feng, Jiangying Yu, Xiaofei Niu, Farui Lv, and Xing Huang. "Structural and Magnetic Properties of Cr-Substituted NiCuZn Ferrite." High Temperature Materials and Processes 35, no. 5 (May 1, 2016): 531–34. http://dx.doi.org/10.1515/htmp-2014-0223.
Full textMasala, Ombretta, Darin Hoffman, Nalini Sundaram, Katharine Page, Thomas Proffen, Gavin Lawes, and Ram Seshadri. "Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa." Solid State Sciences 8, no. 9 (September 2006): 1015–22. http://dx.doi.org/10.1016/j.solidstatesciences.2006.04.014.
Full textOthéro de Brito, Vera Lúcia, Stéphanie Alá Cunha, Ana Paula Ribeiro Uchoas, Fabiana Faria de Araújo, Cristina Bormio Nunes, and Luis Antonio Genova. "Evaluation of the Sinterability of Copper-Substituted Ferrites by Means of Dilatometric Thermal Analysis." Materials Science Forum 805 (September 2014): 254–59. http://dx.doi.org/10.4028/www.scientific.net/msf.805.254.
Full textFU, X. L., Q. K. XING, Z. J. PENG, C. B. WANG, Z. Q. FU, L. H. QI, and H. Z. MIAO. "MICROSTRUCTURAL AND ELECTROMAGNETIC PROPERTIES OF Mn–Zn FERRITES WITH LOW MELTING-POINT NONMAGNETIC Sb3+ IONS." International Journal of Modern Physics B 27, no. 04 (December 20, 2012): 1350003. http://dx.doi.org/10.1142/s0217979213500033.
Full textKopayev, A. V., V. V. Mokljak, I. M. Gasyuk, I. P. Yaremiy, and V. V. Kozub. "Structure Ordering in Mg-Zn Ferrite Nanopowders Obtained by the Method of Sol-Gel Autocombustion." Solid State Phenomena 230 (June 2015): 114–19. http://dx.doi.org/10.4028/www.scientific.net/ssp.230.114.
Full textOwolabi, Taoreed O., Tawfik A. Saleh, Olubosede Olusayo, Miloud Souiyah, and Oluwatoba Emmanuel Oyeneyin. "Modeling the Specific Surface Area of Doped Spinel Ferrite Nanomaterials Using Hybrid Intelligent Computational Method." Journal of Nanomaterials 2021 (August 18, 2021): 1–13. http://dx.doi.org/10.1155/2021/9677423.
Full textRafienia, Mohammad, Ashkan Bigham, and SeyedAli Hassanzadeh-Tabrizi. "Solvothermal synthesis of magnetic spinel ferrites." Journal of Medical Signals & Sensors 8, no. 2 (2018): 108. http://dx.doi.org/10.4103/jmss.jmss_49_17.
Full textLukens, Wayne W., Nicola Magnani, Tolek Tyliszczak, Carolyn I. Pearce, and David K. Shuh. "Incorporation of Technetium into Spinel Ferrites." Environmental Science & Technology 50, no. 23 (November 22, 2016): 13160–68. http://dx.doi.org/10.1021/acs.est.6b04209.
Full textRafienia, Mohammad, Ashkan Bigham, and SeyedAli Hassanzadeh-Tabrizi. "Solvothermal synthesis of magnetic spinel ferrites." Journal of Medical Signals and Sensors 8, no. 2 (2018): 108. http://dx.doi.org/10.4103/2228-7477.232087.
Full textCruz-Franco, Berenice, Thomas Gaudisson, Souad Ammar, Ana Maria Bolarin-Miro, Felix Sanchez de Jesus, Frederic Mazaleyrat, Sophie Nowak, Gabriela Vazquez-Victorio, Raul Ortega-Zempoalteca, and Raul Valenzuela. "Magnetic Properties of Nanostructured Spinel Ferrites." IEEE Transactions on Magnetics 50, no. 4 (April 2014): 1–6. http://dx.doi.org/10.1109/tmag.2013.2283875.
Full textGraves, P. R., C. Johnston, and J. J. Campaniello. "Raman scattering in spinel structure ferrites." Materials Research Bulletin 23, no. 11 (November 1988): 1651–60. http://dx.doi.org/10.1016/0025-5408(88)90255-3.
Full textThorat, Lankeshwar M., Digambar Y. Nadargi, Mohaseen S. Tamboli, Abdullah M. Al-Enizi, Rahul C. Kambale, Shoyebmohamad F. Shaikh, Shard S. Suryavanshi, Mohd Ubaidullah, Ayman Nafady, and Mohammed A. Al-Abdrabalnabia. "Co2+ Substituted Spinel MgCuZn Ferrimagnetic Oxide: A Highly Versatile Electromagnetic Material via a Facile Molten Salt Route." Nanomaterials 10, no. 12 (November 25, 2020): 2333. http://dx.doi.org/10.3390/nano10122333.
Full textTsoncheva, Tanya, Radostina Ivanova, Nikolay Velinov, Daniela Kovacheva, Ivanka Spassova, Daniela Karashanova, and Nartzislav Petrov. "Design and Catalytic Behaviour of Hosted in Activated Carbon Foam CoxZn1−xFe2O4 Ferrites." Symmetry 13, no. 8 (August 20, 2021): 1532. http://dx.doi.org/10.3390/sym13081532.
Full textUlpe, Anna C., Katharina C. L. Bauerfeind, Luis I. Granone, Arsou Arimi, Lena Megatif, Ralf Dillert, Sven Warfsmann, et al. "Photoelectrochemistry of Ferrites: Theoretical Predictions vs. Experimental Results." Zeitschrift für Physikalische Chemie 234, no. 4 (April 28, 2020): 719–76. http://dx.doi.org/10.1515/zpch-2019-1449.
Full text