Academic literature on the topic 'Flexible Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flexible Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flexible Sensors"
Chen, Junru. "Flexible Pressure Sensors and Their Applications." Highlights in Science, Engineering and Technology 44 (April 13, 2023): 54–60. http://dx.doi.org/10.54097/hset.v44i.7193.
Full textSyamimi, Nor, and Shuhaida Yahud. "General design criteria for neonatal temperature monitoring sensor using "smart material" conducting polymer development: A review." Applied Research and Smart Technology (ARSTech) 2, no. 1 (June 23, 2021): 18–26. http://dx.doi.org/10.23917/arstech.v2i1.185.
Full textLiu, Haotian, Beining Zhang, and Ziang Zheng. "Flexible pressure sensor for the detection of human body signals." Applied and Computational Engineering 7, no. 1 (July 21, 2023): 507–15. http://dx.doi.org/10.54254/2755-2721/7/20230428.
Full textCao, Yuxuan. "Resent Researches and Applications on Piezoresistive Flexible Pressure Sensor." E3S Web of Conferences 553 (2024): 05006. http://dx.doi.org/10.1051/e3sconf/202455305006.
Full textPalanisamy, Srinivasan, Muthuramalingam Thangaraj, Khaja Moiduddin, Hisham Alkhalefah, Panagiotis Karmiris-Obratański, and Cheng Siong Chin. "Design, Fabrication, and Optimization of a Printed Ag Nanoparticle-Based Flexible Capacitive Sensor for Automotive IVI Bezel Display Applications." Sensors 23, no. 9 (April 23, 2023): 4211. http://dx.doi.org/10.3390/s23094211.
Full textPistriţu, Florian, Marin Gheorghe, Marian Ion, Oana Brincoveanu, Cosmin Romanitan, Mirela Petruta Suchea, Paul Schiopu, and Octavian Narcis Ionescu. "On the Development of a New Flexible Pressure Sensor." Micromachines 15, no. 7 (June 29, 2024): 847. http://dx.doi.org/10.3390/mi15070847.
Full textFeng, Ziyi, Ziyang Liu, Tianying Shao, and Yifei Zhang. "Application of nanomaterials in flexible sensors." Applied and Computational Engineering 23, no. 1 (November 7, 2023): 162–69. http://dx.doi.org/10.54254/2755-2721/23/20230647.
Full textSong, Chenyu. "Flexible Capacitive Pressure Sensors and Approaches to Enhance Sensitivity." Highlights in Science, Engineering and Technology 44 (April 13, 2023): 41–48. http://dx.doi.org/10.54097/hset.v44i.7191.
Full textLi, Pengfei, Zhijie Li, Hongyue Chen, Yunji Zhu, Dada Yang, and Yang Hou. "Graphene-Based Flexible Strain Sensor Based on PDMS for Strain Detection of Steel Wire Core Conveyor Belt Joints." Sensors 23, no. 17 (August 28, 2023): 7473. http://dx.doi.org/10.3390/s23177473.
Full textZhang, Ziyan. "Principle and Application of Flexible Pressure Sensors." SHS Web of Conferences 157 (2023): 01026. http://dx.doi.org/10.1051/shsconf/202315701026.
Full textDissertations / Theses on the topic "Flexible Sensors"
Favaro, Matteo. "Nanostructured flexible radiation sensors." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/310045.
Full textFavaro, Matteo. "Nanostructured flexible radiation sensors." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/310045.
Full textClayton, Marianne E. "Modeling Piezoresistive Effects in Flexible Sensors." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7396.
Full textSIMOES, TIAGO BALTAR. "MONITORING FLEXIBLE RISERS WITH OPTICAL FIBER SENSORS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18538@1.
Full textO interesse no monitoramento da integridade estrutural de risers flexíveis tem crescido significativamente nos últimos anos. Para dutos que já estão atingindo sua vida de projeto, sistemas de monitoramento podem fornecer alertas antecipados de possíveis falhas e também auxiliar o operador na programação de paradas para manutenção. Diferentes técnicas estão sendo testadas pelos operadores de dutos flexíveis tais como inspeção visual automatizada, monitoramento de vibrações e emissão acústica, além de técnicas baseadas em métodos eletromagnéticos. Algumas destas técnicas já estão sendo implementadas em unidades de exploração e produção marítimas no Brasil e em outros países. A presente contribuição aborda o monitoramento contínuo e em tempo real utilizando sensores a fibra óptica (Redes de Bragg) para detectar a ruptura dos arames nas armaduras de tração de risers flexíveis. Duas linhas são seguidas, monitoramento direto e monitoramento indireto. O monitoramento indireto consiste na instrumentação da capa polimérica do riser, de forma não intrusiva, e avalia possíveis alterações na mesma, causadas pelo rompimento dos arames. Para isso foi desenvolvido um transdutor, denominado Colar 3D, capaz de detectar variações no diâmetro externo, elongação e torção no duto. A técnica de monitoramento direto é denominada MODA (Monitoramento Óptico Direto nos Arames). Nesta técnica os arames são instrumentados individualmente com os sensores ópticos, que monitoram as tensões/deformações dos mesmos, assim, rompimentos de arames e comportamentos inesperados podem ser facilmente detectados. Resultados de ensaios em escala real mostraram que a probabilidade de detecção do monitoramento indireto aumenta significativamente quando o sistema é empregado em conjunto com outros tipos de monitoramento indireto. Os resultados de laboratório para o monitoramento direto apontaram alta sensibilidade e confiabilidade do sistema, que já foi instalado em três plataformas operadas pela Petrobra na Bacia de Campos.
The interest in structural health monitoring of flexible risers has grown significantly in recent years. For ducts that are already reaching their design life, monitoring systems can provide early warnings of potential failures and also assist the operator in scheduling downtime. Different techniques are being tested by operators of flexible pipes such as automated visual inspection, vibration monitoring and acoustic emission, in addition to techniques based on electromagnetic methods. Some of these techniques are already being implemented in units of maritime exploration and production in Brazil and other countries. This contribution discusses the continuous monitoring and real-time using optical fiber sensors (FBGs) to detect the breaking of wires in the tensile armor of flexible risers. Two lines are followed, direct monitoring and indirect monitoring. The proposed indirect monitoring technique consists in the nonintrusive instrumentation of the riser’s polymeric outer sheath, which will provide strain signals that change due to the breaking of wires in the armor layer. For that, a transducer capable of detecting variations in the outer diameter, as well as stretching and twisting in the duct was developed. In the direct monitoring technique, all the wires in the external armor layer are individually instrumented with optical sensors that continuously monitor their strains, so that any disruptions of wires and unexpected behavior can be easily detected. Results of full scale laboratory tests showed that the probability of detection of indirect monitoring increases significantly when the system is used in conjunction with other types of indirect monitoring. The laboratory results for the direct monitoring showed high sensitivity and reliability of the system, which has already been installed in three oil rigs operated by Petrobras in the Campos Basin.
Alvarado, Pérez Miriam. "Development of Flexible Gas Sensors Based on Additive Fabrication Processes." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669439.
Full textLos sensores de gas se utilizan para monitorear ambientes interiores y exteriores. Algunas aplicaciones comunes son para medir: el nivel de contaminantes en las calles, los gases liberados por los escapes industriales y de automóviles, los gases en la minería, el contenido de alcohol en la sangre a través del aliento exhalado, etc. A medida que crece el campo de aplicación de los sensores de gas, se hace necesario adaptar los sensores de gas a nuestros dispositivos y pertenencias diarias. Se requieren materiales mecánicamente flexibles y resistentes para fabricar los sensores de gas flexibles. Además de las pruebas de detección de gas, la resistencia a la flexión de los sensores debe probarse para llamar “flexible” a un sensor. El objetivo principal de esta tesis es fabricar sensores de gas flexibles a través de procesos aditivos utilizando óxidos metálicos como materiales sensibles. Los sensores de gas flexibles se fabricaron utilizando un sustrato polimérico flexible (Kapton). Los diferentes procesos empleados fueron compatibles con la temperatura de la temperatura de funcionamiento del sustrato. Entre las técnicas empleadas están la plantilla, la serigrafía, la inyección de tinta, AA-CVD. Además, se realizaron procesos superficiales para mejorar la adhesión de los óxidos metálicos al sustrato polimérico. La flexibilidad de los sensores se probó realizando una prueba de flexión cíclica.
Gas sensors are used to monitor indoor and outdoor environments. Some common applications are to measure: the level of pollutants in the streets, the gases liberated by industrial and car exhausts, gases in mining, blood alcohol content through the exhaled breath, etc. As the field of application for gas sensors is growing, it becomes necessary to adapt the gas sensors to our daily devices and belongings. This requires mechanically flexible and resistant materials to fabricate the flexible gas sensors. In addition to gas sensing tests, the resistance to bending of the sensors should be tested to call a sensor flexible. The main objective of this thesis is to fabricate flexible gas sensors through additive processes using metal oxides as sensitive materials. The flexible gas sensors were fabricated using a flexible polymeric substrate (Kapton). The different processes employed were compatible with the temperature of the operating temperature of the substrate. Among the techniques employed are stencil, screen-printing, inkjet-printing, AA-CVD. Also, surface processes were performed to improve the adhesion of the metal oxides to the polymeric substrate. The flexibility of the sensors was tested by performing a cyclical bending test.
Acuautla, Meneses Monica Isela. "Development of ozone and ammonia gas sensors on flexible substrate." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4337/document.
Full textNowadays the emerging of new applications in the micro and nanotechnology field required to reduce fabrication costand to improve electronic devices with properties such as flexibility, portability, lightweight, and low cost. Traditional methods involve expensive and long production steps, and chemical vapor deposition. The purpose of this work is to present the conception and characterization of flexible ammonia and ozone sensors fabricated by photolithography and laser ablation processes. The flexible platform is composed of Kapton substrate with interdigitated Ti/Pt electrodes for gas detection and a micro-heater device. The circuit patterns were realized by photolithography and laser ablation. Photolithography is a well-known and reliable patterning process used on rigid substrate. The application of laser ablation process not only reduces fabrication time, but also represents an excellent viable alternative instead of chemical processes. ZnO thin films deposited by drop coating have been used as sensitive materials due to their excellent properties in the gas detection. The gas sensing condition and the performances of the devices are investigated for ozone and ammonia at different gas concentrations and different thin film thicknesses. In order to test a deposit methodology used in large scale industrial production, an ultrasonic spray deposition was done. The sensor provides a wide range of detection from 5 ppb to 500 ppb for ozone and from 5 ppm to 100 ppm for ammonia. Their best sensibilities were obtained at 200°C for ozone and 300 °C for ammoniac with good repeatability, stability and fast response/recovery time
FAPANNI, TIZIANO. "Sensors Design for E-Skin by Printed and Flexible Electronics." Doctoral thesis, Università degli studi di Brescia, 2023. https://hdl.handle.net/11379/568964.
Full textIn the modern era where the overall living conditions improve, the population increases and ages, the need for a new paradigm of smart healthcare is arising where the need to monitor and track the changes in the physiological status of patients or sports professionals represents the main objective of the scientific community. In this frame, e-skin devices, defined as flexible devices that embed arrays of sensors, are cutting-edge technology that is promising to monitor different physiological parameters from the human body in a non-invasive way thanks to their reduced size and bulkiness. Thanks to these characteristics, e-skins are promising in a plethora of applications and fields other than the clinical one such as the industrial environment and prosthesis. Their wide applicability is enabled by the vast amount of sensors that allow precise and distributed data collection. In this frame, sensors become central to transduce from the body the signals of interest such as temperatures, pressures, deformations, biopotentials and biochemical markers (e.g. ions, metabolites, heavy metals, amino acids, hormones, drugs...). This last class of markers is lately attracting huge interest from the scientific community since they allow the quick detection of a plethora of physiological conditions. Currently, biosensors are researched to detect those signals as they are valid, cheaper and easier to use than standard in-lab analysis methods (e.g ELISA protocols, chromatography, ...). Moreover, among the possible transduction principles currently employed for biosensors, the electrochemical one presents, according to the literature, many advantages such as low cost, high sensitivity and simple instrumentation. In this thesis, different approaches for the development and improvement of printed electrochemical sensors for e-skin application will be investigated. Exploiting the opportunities offered by novel printing technologies, such as Aerosol Jet Printing, the main focus was to improve the metrological characteristics as well as to evaluate, monitor and mitigate the uncertainty sources that could affect the devices. Before going into the experimental detail, the first part of the thesis will be dedicated to provide a description of the transducing principle behind the electorchemical measurements investigated. Further, literature will be deepened in order to the general concepts about e-skins and biosensors, including opportunities and limitations. Then, a prototype of a multi-sensing e-skin patch for unobtrusive and personalized fatigue assessment, that uses both an 8-channel electromyographic (EMG) sensor and an electrochemical sensor, will be presented. The achieved results are promising, but underline the need to increase the sensitivity of the printed electrochemical sensors. Starting from these cues, the next two projects that will be presented are focused on the scientific evidence to try to improve the sensitivity and the limit of detection of printed electrochemical sensors using both micro- and nano- structures. The final part of the thesis will focus on all those elements that can introduce uncertainty on the overall measured signals in order to better understand the quality and the reliability of the proposed aerosol jet printed electrochemical sensors. In this, a wide set of uncertainty components and influence variables can be identified. Among the latter, the temperature is one of the most relevant components of noise (and thus uncertainty) on those kinds of sensors, that have to be compensated using novel, fully-printed sensors.
Anderberg, Axel. "Cryoballoon Catheters with sensors for treatment of AF." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301158.
Full textFörmaksflimmer är ett hjärtfel som gör att hjärtslagen blir ovanligt snabba och/eller oregelbundna. Trots att det inte bevisats vara direkt dödligt än, ökar det kraftigt risken för att utveckla ytterligare medicinska besvär, bland annat fem gånger större risk att drabbas av stroke. Utbredningen av förmaksflimmer har under de senaste decennierna ökat avsevärt över hela världen och under 2014 uppskattades det att ungefär 2 % av den europeiska befolkning var drabbade. Den här siffran förväntas dock fortsätta öka under de kommande åren och decennierna. Därför, för att i största mån lindra smärta samt förhindra dödsfall, är det mycket viktigt att det finns ett effektivt sätt att behandla tillståndet. I nuläget innefattas behandling av medicin, elektrokonvertering eller vävnadsablation. Det här examensarbetet fokuserar på ablation, närmare bestämt kryoballongsablation, vilket är ett minimalinvasivt ingrepp som innebär att en kryoballongskateter förs in genom en blodådra (ofta via ett snitt i ljumsken) in i hjärtat. Väl inne i förmakskammarna kan ballongen blåsas upp, läggas emot den felaktiga vävnaden och sedan fyllas med flytande kväveoxid som förångas och fryser vävnaden vilket isolerar strömmarna som ger upphov till den felaktiga hjärtrytmen. Målet med det här examensarbetet är att fästa flexibla kretskort på utsidan av dessa kryoballonger, vilka då ska kunna känna av fysisk kontakt med vävnaden och informera operatören om detta innan frysningen sker. Därmed bör sannolikheten för lyckad ablation öka. Tre prototyper tillverkades med polyuretanballonger, flexibla kretskort och ett biokompatibelt, flexibelt cyanoakrylatlim. Kretskorten arrangerades i olika mönster för respektive prototyper för att undersöka vilken konfiguration som skulle passa ändamålet bäst. Det visade sig att smala kretskort placerade längs med ballongen axiellt och jämnt utspridda längs med omkretsen gav bäst resultat. Däremot höll inte limmet så bra som förväntat vilket troligtvis handlar om användarfel vid limningen men en vidare utredning kan vara att önska för att säkerställa att limmet är kompatibelt med övriga material.
Tan, Z. Y., M. Shikida, M. Hirota, and K. Sato. "Characteristics of On-Wall In Tube Thermal Flexible Mass-Flow Sensors." IEEE, 2006. http://hdl.handle.net/2237/9539.
Full textCox, David E. "Active control of flexible structures using fiber optic modal domain sensors." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42074.
Full textBooks on the topic "Flexible Sensors"
Nag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. Printed Flexible Sensors. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6.
Full textGupta, Ram K. Flexible and Wearable Sensors. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003299455.
Full textLabyt, Etienne, Tilmann Sander, and Ronald Wakai, eds. Flexible High Performance Magnetic Field Sensors. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05363-4.
Full textSkipidarov, Sergey, and Mikhail Nikitin, eds. Thin Film and Flexible Thermoelectric Generators, Devices and Sensors. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45862-1.
Full textLaurin, D. G. An optical system for shape sensing of flexible space structures. [S.l.]: [s.n.], 1993.
Find full textMelashvili, Yuri. Controlled structures with electromechanical and fiber-optical sensors. Hauppauge, NY, USA: Nova Science Publishers, 2008.
Find full textDietz, Peter Robert Wilhelm. Determination of the efficacy of using accelerometers as sensors for third generation satellites. [Downsview, Ont.]: Dept. of Aerospace Science and Engineering, University of Toronto, 1986.
Find full textDietz, Peter Robert Wilhelm. Determination of the efficacy of using accelerometers as sensors for third generation satellites. [Downsview, Ont.]: Institute for Aerospace Studies, 1986.
Find full textNewman, Scott M. Active damping control of a flexible space structure using piezoelectric sensors and actuators. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textCrocker, G. W. Digital real-time control of Daisy's reaction wheels, ribs and hub. Downsview, Ont: Dept. of Aerospace Science and Engineering, 1989.
Find full textBook chapters on the topic "Flexible Sensors"
Labille, Jérôme, Natalia Pelinovskaya, Céline Botta, Jean-Yves Bottero, Armand Masion, Dilip S. Joag, Richard G. Forbes, et al. "Flexible Sensors." In Encyclopedia of Nanotechnology, 865. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100252.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Introduction." In Printed Flexible Sensors, 1–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_1.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Literature Review." In Printed Flexible Sensors, 17–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_2.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Interdigitated Sensing and Electrochemical Impedance Spectroscopy." In Printed Flexible Sensors, 83–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_3.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Carbon Nanotubes-Polydimethylsiloxane Sensor." In Printed Flexible Sensors, 91–114. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_4.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Aluminium-Polyethylene Terephthalate Sensor." In Printed Flexible Sensors, 115–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_5.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Graphite-Polyimide Sensor." In Printed Flexible Sensors, 129–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_6.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Graphite-Polydimethylsiloxane Sensor." In Printed Flexible Sensors, 169–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_7.
Full textNag, Anindya, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. "Conclusion, Challenges and Future Work." In Printed Flexible Sensors, 193–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13765-6_8.
Full textSomeya, Takao. "Sheet-Type Sensors and Actuators." In Flexible Electronics, 183–214. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-74363-9_7.
Full textConference papers on the topic "Flexible Sensors"
Yeon Hwa Kwak, Sungkyu Seo, and Kunnyun Kim. "A flexible strain-gauge sensor for flexible input devices." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370608.
Full textPozdin, Vladimir A., Murat A. Yokus, Peter Sotory, Natalie Wisniewski, Alper Bozkurt, and Michael A. Daniele. "Low-cost flexible inorganic optical devices for flexible sensors." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234359.
Full textMissinne, Jeroen, Erwin Bosman, Bram Van Hoe, Geert Van Steenberge, Peter Van Daele, and Jan Vanfleteren. "Embedded flexible optical shear sensor." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690919.
Full textAbshirini, Mohammad, Mohammad Charara, Mrinal C. Saha, M. Cengiz Altan, and Yingtao Liu. "Optimization of 3D Printed Elastomeric Nanocomposites for Flexible Strain Sensing Applications." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11467.
Full textLee, Je Kyun, Steven Green, Sangyup Song, Paul Phamduy, and Byungki Kim. "Flexible Graphene Sensors for Explosive Trace Detection." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64135.
Full textXu, Fei. "Flexible Fiber Sensors for Health-Monitoring." In Optical Sensors. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/sensors.2019.sth1c.2.
Full textYang, Fan, Kuang-Ching Wang, and Yong Huang. "Experimental Study of Data Transmission Performance for Rotating Wireless Sensors Using Automatic Repeat Request." In ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7252.
Full textZou, Xiaotian, Weilong Cong, Nan Wu, Z. J. Pei, and Xingwei Wang. "Novel Fiber Optic Sensors and Their Application on Cutting Temperature Measurement in Rotary Ultrasonic Machining of Titanium." In ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7142.
Full textZhang, Min, Zhihai Liu, Yu Zhang, Yaxun Zhang, Xinghua Yang, Jianzhong Zhang, Jun Yang, and Libo Yuan. "Spider Dragline Silk-Based Flexible Temperature Sensor." In Optical Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sensors.2022.sm3e.5.
Full textReddy, A. S. G., Binu B. Narakathu, M. Z. Atashbar, M. Rebros, E. Hrehorova, and M. Joyce. "Printed electrochemical based biosensors on flexible substrates." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690281.
Full textReports on the topic "Flexible Sensors"
Tsukruk, Vladimir V. Microscopic Sensors Bases on Flexible Hybrid Nanomembranes. Fort Belvoir, VA: Defense Technical Information Center, August 2009. http://dx.doi.org/10.21236/ada567157.
Full textKoo, Helen, Hyejin Park, Dong-Joo Kim, and Hosang Ahn. Nanostructured Flexible Gas Sensors for Breath Monitoring System. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/itaa_proceedings-180814-888.
Full textButler, Donald P., and Zeynep Celik-Butler. Short Term Innovative Research on Sensors on Flexible Substrates. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada395360.
Full textSchwartz, David Eric. Passively-Powered Adaptively-Located Flexible Hybrid Sensors Final Report. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1492725.
Full textClaus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.
Full textLadner, I. Commerical off-the-shelf flexible contact stress sensor system. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/2331525.
Full textStoleru, Radu, Pascal Vicaire, Tian He, and John A. Stankovic. StarDust: A Flexible Architecture for Passive Localization in Wireless Sensor Networks. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada465193.
Full textAndersen, Michael, David Culler, Hyung-Sin Kim, Raluca Popa, Gabe Fierro, Sam Kumar, Moustafa AbdelBaky, et al. Hamilton: Flexible, Open Source $10 Wireless Sensor System for Energy Efficient Building Operation. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1798959.
Full textVann, C. S. ,. LLNL. New six degree of freedom position sensor greatly improves flexible manufacturing -- but will manufacturers adapt? Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/672336.
Full textMurton, Mark, Francis A. Bouchier, Dale T. vanDongen, Thomas Kimball Mack, Robert P. Cutler, and Michael P. Ross. Analysis to determine the maximum dimensions of flexible apertures in sensored security netting products. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1096513.
Full text