Journal articles on the topic 'Fringing-fields'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fringing-fields.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sloggett, G. J., N. G. Barton, and S. J. Spencer. "Fringing fields in disc capacitors." Journal of Physics A: Mathematical and General 19, no. 14 (1986): 2725–36. http://dx.doi.org/10.1088/0305-4470/19/14/012.
Full textMartirosyan, Yu L. "Effect of fringing fields in storage rings." Technical Physics 48, no. 10 (2003): 1330–32. http://dx.doi.org/10.1134/1.1620130.
Full textSloggett, G. J., N. G. Barton, and S. J. Spencer. "Addendum to 'Fringing fields in disc capacitors'." Journal of Physics A: Mathematical and General 20, no. 12 (1987): 4061–62. http://dx.doi.org/10.1088/0305-4470/20/12/053.
Full textGennarakis, G. G., and T. J. M. Zouros. "Experimental energy resolution of a paracentric hemispherical deflector analyzer for different entry positions and bias simulated in SIMION." HNPS Proceedings 21 (March 8, 2019): 100. http://dx.doi.org/10.12681/hnps.2011.
Full textDean, Robert, Aditi Rane, Colin Stevens, Michael Baginski, Zane Hartzog, and David Elton. "Implementing Fringing Field Sensors in PCB Technology." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, DPC (2010): 000579–98. http://dx.doi.org/10.4071/2010dpc-ta22.
Full textSingh Dhingra, Tejveer. "Influence of Variable Plate Separation on Fringing Electric Fields in Parallel-Plate Capacitors." International Journal of Science and Research (IJSR) 11, no. 11 (2022): 387–89. http://dx.doi.org/10.21275/sr221026094109.
Full textKrakover, Naftaly, B. Robert Ilic, and Slava Krylov. "Micromechanical resonant cantilever sensors actuated by fringing electrostatic fields." Journal of Micromechanics and Microengineering 32, no. 5 (2022): 054001. http://dx.doi.org/10.1088/1361-6439/ac5a61.
Full textMayergoyz, I., and D. Bloomberg. "Analytical solution for side-fringing fields in perpendicular recording." IEEE Transactions on Magnetics 22, no. 3 (1986): 163–67. http://dx.doi.org/10.1109/tmag.1986.1064299.
Full textKrylov, Slava, Bojan R. Ilic, and Stella Lulinsky. "Bistability of curved microbeams actuated by fringing electrostatic fields." Nonlinear Dynamics 66, no. 3 (2011): 403–26. http://dx.doi.org/10.1007/s11071-011-0038-y.
Full textMarni, Stefano, Raouf Barboza, Ayomide S. Oluwajoba, Riccardo Zamboni, and Liana Lucchetti. "Polarization Coupling between Ferroelectric Liquids and Ferroelectric Solids: Effects of the Fringing Field Profile." Crystals 14, no. 5 (2024): 425. http://dx.doi.org/10.3390/cryst14050425.
Full textKumar, Arun, P. S. T. N. Srinivas, Shiv Bhushan, Sarvesh Dubey, Yatendra Kumar Singh, and Pramod Kumar Tiwari. "Threshold Voltage Modeling of Double Gate-All-Around Metal-Oxide-Semiconductor Field-Effect-Transistors (DGAA MOSFETs) Including the Fringing Field Effects." Journal of Nanoelectronics and Optoelectronics 14, no. 11 (2019): 1555–64. http://dx.doi.org/10.1166/jno.2019.2658.
Full textLulinsky, Stella, Ben Torteman, Bojan R. Ilic, and Slava Krylov. "Parametric Amplification of Acoustically Actuated Micro Beams Using Fringing Electrostatic Fields." Micromachines 15, no. 2 (2024): 257. http://dx.doi.org/10.3390/mi15020257.
Full textBae, J. U., T. Y. Lin, Y. Yoon, et al. "Characterization of Nanomagnet Fringing Fields in Hybrid Semiconductor/Ferromagnetic Devices." IEEE Transactions on Magnetics 44, no. 12 (2008): 4706–10. http://dx.doi.org/10.1109/tmag.2008.2002924.
Full textMartirosyan, Y. L. "Study of CANDLE tunes dependence on fringing fields of quadrupoles." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 521, no. 2-3 (2004): 556–64. http://dx.doi.org/10.1016/j.nima.2003.11.106.
Full textGomez, R. D., I. D. Mayergoyz, and E. R. Burke. "Direct imaging of track edge fringing fields on recorded media." Journal of Applied Physics 75, no. 10 (1994): 5756–58. http://dx.doi.org/10.1063/1.355605.
Full textWang, Zhichong, Qichang Zhang, Wei Wang, and Jianxin Han. "Dynamic Analysis of a Micro Beam-Based Tactile Sensor Actuated by Fringing Electrostatic Fields." Micromachines 10, no. 5 (2019): 324. http://dx.doi.org/10.3390/mi10050324.
Full textChiu, S. C., V. S. Chan, F. W. Perkins, and S. Puri. "Coupling of the fringing fields of an ion‐Bernstein wave antenna." Physics of Fluids B: Plasma Physics 3, no. 1 (1991): 159–66. http://dx.doi.org/10.1063/1.859933.
Full textMayergoyz, I. D., R. Madabhushi, E. R. Burke, and R. D. Gomez. "Analytical solution for the side-fringing fields of narrow beveled heads." Journal of Applied Physics 81, no. 8 (1997): 4850–52. http://dx.doi.org/10.1063/1.364855.
Full textWest, Adam D., Thomas J. Hayward, Kevin J. Weatherill, Thomas Schrefl, Dan A. Allwood, and Ifan G. Hughes. "A simple model for calculating magnetic nanowire domain wall fringing fields." Journal of Physics D: Applied Physics 45, no. 9 (2012): 095002. http://dx.doi.org/10.1088/0022-3727/45/9/095002.
Full textGao, Xiang, Yiqiang Zhao, and Haocheng Ma. "Fringing Electric Field Sensors for Anti-Attack at System-Level Protection." Sensors 18, no. 9 (2018): 3034. http://dx.doi.org/10.3390/s18093034.
Full textHällstig, Emil, Johan Stigwall, Torleif Martin, Lars Sjöqvist, and Mikael Lindgren. "Fringing fields in a liquid crystal spatial light modulator for beam steering." Journal of Modern Optics 51, no. 8 (2004): 1233–47. http://dx.doi.org/10.1080/09500340408230419.
Full textHällstig, Emil, Torleif Martin, Lars Sjöqvist, Mikael Lindgren, and Johan Stigwall. "Fringing fields in a liquid crystal spatial light modulator for beam steering." Journal of Modern Optics 51, no. 8 (2004): 1233–47. http://dx.doi.org/10.1080/09500340410001648465.
Full textRoshen, W. A. "High-Frequency Fringing Fields Loss in Thick Rectangular and Round Wire Windings." IEEE Transactions on Magnetics 44, no. 10 (2008): 2396–401. http://dx.doi.org/10.1109/tmag.2008.2002302.
Full textNewcombe, D. J., X. G. Jiang, W. B. Taylor, and F. P. Ottensmeyer. "A small sensitive magnetometer for measurement of fringing fields near magnetic sectors." Measurement Science and Technology 5, no. 11 (1994): 1355–58. http://dx.doi.org/10.1088/0957-0233/5/11/006.
Full textOuakad, Hassen M. "Electrostatic fringing-fields effects on the structural behavior of MEMS shallow arches." Microsystem Technologies 24, no. 3 (2016): 1391–99. http://dx.doi.org/10.1007/s00542-016-2985-1.
Full textHunter, Kevin L., and Bruce J. McIntosh. "An improved model of the fringing fields of a quadrupole mass filter." International Journal of Mass Spectrometry and Ion Processes 87, no. 2 (1989): 157–64. http://dx.doi.org/10.1016/0168-1176(89)80019-9.
Full textSchwarzbek, S. M., and S. T. Ruggiero. "The Effect of Fringing Fields on the Resistance of a Conducting Film." IEEE Transactions on Microwave Theory and Techniques 34, no. 9 (1986): 977–81. http://dx.doi.org/10.1109/tmtt.1986.1133479.
Full textKoeppe, P. V., M. E. Re, and M. H. Kryder. "Effect of pole tip alignment on magnetic fringing fields from recording heads." Journal of Applied Physics 63, no. 8 (1988): 4042–44. http://dx.doi.org/10.1063/1.340543.
Full textOuakad, Hassen M., Fehmi Najar, and Najib Kacem. "On the Structural Behavior of MEMS Shallow Arch under Combined Effects of In-Plane Parallel Fields and Out-of-Plane Fringing-Fields." Actuators 12, no. 10 (2023): 374. http://dx.doi.org/10.3390/act12100374.
Full textGhannam, Rami, Yuanjie Xia, Dezhi Shen, F. Anibal Fernandez, Hadi Heidari, and Vellasaimy A. L. Roy. "Reconfigurable Surfaces Using Fringing Electric Fields from Nanostructured Electrodes in Nematic Liquid Crystals." Advanced Theory and Simulations 4, no. 7 (2021): 2100058. http://dx.doi.org/10.1002/adts.202100058.
Full textBhatnagar, S. K. "New Model for Effect of Fringing Fields on Radius of Circular Microstrip Antenna." SKIT Research Journal 11, no. 3 (2021): 25. http://dx.doi.org/10.47904/ijskit.11.3.2021.25-28.
Full textLindquist, R. G., T. M. Leslie, J. H. Kulick, et al. "High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes." Optics Letters 19, no. 9 (1994): 670. http://dx.doi.org/10.1364/ol.19.000670.
Full textMonson, J. E. "Fringing fields from step transitions of longitudinal and perpendicular magnetization on finite tracks." IEEE Transactions on Magnetics 24, no. 6 (1988): 3108–10. http://dx.doi.org/10.1109/20.92350.
Full textLinzon, Yoav, Bojan Ilic, Stella Lulinsky, and Slava Krylov. "Efficient parametric excitation of silicon-on-insulator microcantilever beams by fringing electrostatic fields." Journal of Applied Physics 113, no. 16 (2013): 163508. http://dx.doi.org/10.1063/1.4802680.
Full textMeessen, K. J., B. L. J. Gysen, J. J. H. Paulides, and E. A. Lomonova. "General Formulation of Fringing Fields in 3-D Cylindrical Structures Using Fourier Analysis." IEEE Transactions on Magnetics 48, no. 8 (2012): 2307–23. http://dx.doi.org/10.1109/tmag.2012.2192939.
Full textZouros, T. J. M., Omer Sise, Melike Ulu, and Mevlut Dogan. "Using the fringing fields of a hemispherical spectrograph to improve its energy resolution." Measurement Science and Technology 17, no. 12 (2006): N81—N86. http://dx.doi.org/10.1088/0957-0233/17/12/n02.
Full textBerdnikov, A. S., L. N. Gall, A. S. Antonov, and K. V. Soloviev. "Synthesis of Fringing Magnetic Fields for Static Mass Analyzers of the Spectrographic Type." Journal of Analytical Chemistry 73, no. 14 (2018): 1301–16. http://dx.doi.org/10.1134/s1061934818140034.
Full textMcIntosh, Bruce J., and Kevin L. Hunter. "Influence of realistic fringing fields on the acceptance of a quadrupole mass filter." International Journal of Mass Spectrometry and Ion Processes 87, no. 2 (1989): 165–79. http://dx.doi.org/10.1016/0168-1176(89)80020-5.
Full textLeong, M. S. "The Effect of Fringing Fields on the Resistance of a Conducting Film (Comments)." IEEE Transactions on Microwave Theory and Techniques 35, no. 6 (1987): 601. http://dx.doi.org/10.1109/tmtt.1987.1133712.
Full textValluri, S. R., D. J. Jeffrey, and R. M. Corless. "Some applications of the Lambert W function to physics." Canadian Journal of Physics 78, no. 9 (2000): 823–31. http://dx.doi.org/10.1139/p00-065.
Full textIchida, Yu, and Takashi Okuda Sakamoto. "Radially symmetric stationary solutions for a MEMS type reaction–diffusion equation with fringing field." Nonlinearity 36, no. 1 (2022): 71–109. http://dx.doi.org/10.1088/1361-6544/ac9bc3.
Full textHenning, Alex, Nandhini Swaminathan, Yonathan Vaknin, et al. "Control of the Intrinsic Sensor Response to Volatile Organic Compounds with Fringing Electric Fields." ACS Sensors 3, no. 1 (2018): 128–34. http://dx.doi.org/10.1021/acssensors.7b00754.
Full textMohammad, Tausiff F., and Hassen M. Ouakad. "Static, eigenvalue problem and bifurcation analysis of MEMS arches actuated by electrostatic fringing-fields." Microsystem Technologies 22, no. 1 (2014): 193–206. http://dx.doi.org/10.1007/s00542-014-2372-8.
Full textBreitkreutz, Stephan, Irina Eichwald, Josef Kiermaier, et al. "Controlled domain wall pinning in nanowires with perpendicular magnetic anisotropy by localized fringing fields." Journal of Applied Physics 115, no. 17 (2014): 17D506. http://dx.doi.org/10.1063/1.4864737.
Full textErnst, Thomas, Romain Ritzenthaler, Olivier Faynot, and Sorin Cristoloveanu. "A Model of Fringing Fields in Short-Channel Planar and Triple-Gate SOI MOSFETs." IEEE Transactions on Electron Devices 54, no. 6 (2007): 1366–75. http://dx.doi.org/10.1109/ted.2007.895241.
Full textVuong. "A FINITE ELEMENT METHOD FOR MODELING OF ELECTROMAGNETIC PROBLEMS." Journal of Military Science and Technology, no. 66A (May 6, 2020): 25–31. http://dx.doi.org/10.54939/1859-1043.j.mst.66a.2020.25-31.
Full textHalevy, Omer, Erez B. Benjamin, Yoav Kessler, and Slava Krylov. "Resonant Sensing Element Realized as a Single Crystal Si Cantilever Actuated by Fringing Electrostatic Fields." IEEE Sensors Journal 21, no. 9 (2021): 10454–64. http://dx.doi.org/10.1109/jsen.2021.3059323.
Full textSAKURAI, Toru, and Morio ISHIHARA. "The Influences of Fringing Fields of an Electrostatic Sector Analyzer in Fifth Order Aberration Coefficients." Journal of the Mass Spectrometry Society of Japan 43, no. 1 (1995): 9–17. http://dx.doi.org/10.5702/massspec.43.9.
Full textKhan, Mohammad Rezwan, Mohammad Ariful Islam, Mohammad Masum Rana, Tohfa Haque, and Shahal Ibn Islam Joy. "A Circuit Model for Energy Harvesting from Fringing Electric Fields for Mobile Wearable Device Applications." Energies 14, no. 21 (2021): 7016. http://dx.doi.org/10.3390/en14217016.
Full textPershenkov, V. S., and V. V. Chuikin. "The effect of junction fringing fields on radiation-induced leakage current in oxide isolation structures." IEEE Transactions on Nuclear Science 39, no. 6 (1992): 2044–51. http://dx.doi.org/10.1109/23.211402.
Full text