Dissertations / Theses on the topic 'Geometry of Banach spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Geometry of Banach spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Blagojevic, Danilo. "Spectral families and geometry of Banach spaces." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2389.
Full textDoust, Ian Raymond. "Well-bounded operators and the geometry of Banach spaces." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/13705.
Full textHardtke, Jan-David [Verfasser]. "Geometry of Banach spaces, absolute sums and Köthe-Bochner spaces / Jan-David Hardtke." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1075190851/34.
Full textArnt, Sylvain. "Large scale geometry and isometric affine actions on Banach spaces." Thesis, Orléans, 2014. http://www.theses.fr/2014ORLE2021/document.
Full textIn the first chapter, we define the notion of spaces with labelled partitions which generalizes the structure of spaces with measured walls : it provides a geometric setting to study isometric affine actions on Banach spaces of second countable locally compact groups. First, we characterise isometric affine actions on Banach spaces in terms of proper actions by automorphisms on spaces with labelled partitions. Then, we focus on natural structures of labelled partitions for actions of some group constructions : direct sum ; semi-direct product ; wreath product and free product. We establish stability results for property PLp by these constructions. Especially, we generalize a result of Cornulier, Stalder and Valette in the following way : the wreath product of a group having property PLp by a Haagerup group has property PLp. In the second chapter, we focus on the notion of quasi-median metric spaces - a generalization of both Gromov hyperbolic spaces and median spaces - and its properties. After the study of some examples, we show that a δ-median space is δ′-median for all δ′ ≥ δ. This result gives us a way to establish the stability of the quasi-median property by direct product and by free product of metric spaces - notion that we develop at the same time. The third chapter is devoted to the definition and the study of an explicit proper, left-invariant metric which generates the topology on locally compact, compactly generated groups. Having showed these properties, we prove that this metric is quasi-isometric to the word metric and that the volume growth of the balls is exponentially controlled
Hume, David S. "Embeddings of infinite groups into Banach spaces." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde.
Full textPetitjean, Colin. "Some aspects of the geometry of Lipschitz free spaces." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD006/document.
Full textSome aspects of the geometry of Lipschitz free spaces.First and foremost, we give the fundamental properties of Lipschitz free spaces. Then, we prove that the canonical image of a metric space M is weakly closed in the associated free space F(M). We prove a similar result for the set of molecules.In the second chapter, we study the circumstances in which F(M) is isometric to a dual space. In particular, we generalize a result due to Kalton on this topic. Subsequently, we focus on uniformly discrete metric spaces and on metric spaces originating from p-Banach spaces.In the next chapter, we focus on l1-like properties. Among other things, we prove that F(M) has the Schur property provided the space of little Lipschitz functions is 1-norming for F(M). Under additional assumptions, we manage to embed F(M) into an l1-sum of finite dimensional spaces.In the fourth chapter, we study the extremal structure of F(M). In particular, we show that any preserved extreme point in the unit ball of a free space is a denting point. Moreover, if F(M) admits a predual, we obtain a precise description of its extremal structure.The fifth chapter deals with vector-valued Lipschitz functions.We generalize some results obtained in the first three chapters.We finish with some considerations of norm attainment. For instance, we obtain a density result for vector-valued Lipschitz maps which attain their norm
Ball, K. M. "Isometric problems in lp̲ and sections of convex sets." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384782.
Full textKlisinska, Anna. "Clarkson type inequalities and geometric properties of banach spaces." Licentiate thesis, Luleå tekniska universitet, Pedagogik, språk och Ämnesdidaktik, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25946.
Full textGodkänd; 1999; 20070320 (ysko)
De, Rancourt Noé. "Théorie de Ramsey sans principe des tiroirs et applications à la preuve de dichotomies d'espaces de Banach." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC208/document.
Full textIn the 90's, Gowers proves a Ramsey-type theorem for block-sequences in Banach spaces, in order to show two Banach-space dichotomies. Unlike most infinite-dimensional Ramsey-type results, this theorem does not rely on a pigeonhole principle, and therefore it has to have a partially game-theoretical formulation. In a first part of this thesis, we develop an abstract formalism for Ramsey theory with and without pigeonhole principle, and we prove in it an abstract version of Gowers' theorem, from which both Mathias-Silver's theorem and Gowers' theorem can be deduced. We give both an exact version of this theorem in countable spaces, and an approximate version of it in separable metric spaces. We also prove the adversarial Ramsey principle, a result generalising both the abstract Gowers' theorem and Borel determinacy of countable games. We also study the limitations of these results and their possible generalisations under additional set-theoretical hypotheses. In a second part, we apply the latter results to the proof of two Banach-space dichotomies. These dichotomies are similar to Gowers' ones, but are Hilbert-avoiding, that is, they ensure that the subspace they give is not isomorphic to a Hilbert space. These dichotomies are a new step towards the solution of a question asked by Ferenczi and Rosendal, asking whether a separable Banach space non-isomorphic to a Hilbert space necessarily contains a large number of subspaces, up to isomorphism
Silva, André Luis Porto da. "Versões não-lineares do teorema clássico de Banach-Stone." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07092016-000557/.
Full textIn this work we present two theorems proved by Gorak in 2011. These results are generalizations of the Banach-Stone Theorem envolving a class of not-necessarily linear functions, called quasi-isometries.
Villamizar, Michael Alexander Rincon. "Geometria dos espaços de Banach Co (K,X)." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-29082016-181556/.
Full textFor a locally compact Hausdorff space K and a Banach spaces X, let C_0(K,X) be the Banach space of continuous functions which vanish at infinity endowed with the supremum norm. We prove some results about geometry of these spaces.
Zahn, Mauricio. "Geometria dos espaços de Banach C([0, α ], X) para ordinais enumeráveis &alpha." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27082015-102002/.
Full textThe isomorphic classification of separable Banach spaces C(K) is due Milutin in the case when K are uncountable and to Bessaga and Pelczynski in the case when K are countable. In this work we prove a vectorial extention of this classification and provide several consequences, for example considering the infinite metric compact space K and Y a Banach space: 1. Let 1 < p < ∞ and Γ a infinite set, we classify, up to an isomorphism, the Banach spaces C(K, Y ⊕ lp(Γ)), in the case where the dual of Y contains no copy of lq, where 1/p+ 1/q =1. 2. We classify the Banach spaces C(K, Y ⊕ l∞(Γ)), when the density character of Y is strictly less that 2|Γ|. 3. We classify the Banach spaces C(K ×(S⊕ βΓ)) and C(S ⊕ (K× βΓ)) where S is an arbitrary dispersed compact and βΓ is the Stone-Cech compactification of Γ. We obtain also some cancellation laws for Banach spaces in the form C(K1,X)⊕ C(K2,Y), where K1 and K2 are metric compact Hausdorff spaces and X, Y Banach spaces satisfying appropriate conditions. We established also a quasi-dichotomy theorem envolving the C(K,X) spaces, where X is of finite cotype. Finally, we present some upper bounds of distortions of positive isomorphisms of C([0,ωk]) on C([0,ω]) and also of C([0,ω]) on C([0,ωk]), k∈ N, k ≥ 2.
Bird, Alistair. "A study of James-Schreier spaces as Banach spaces and Banach algebras." Thesis, Lancaster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551626.
Full textIves, Dean James. "Differentiability in Banach spaces." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390609.
Full textLammers, Mark C. "Genus n Banach spaces /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841162.
Full textGonzález, Correa Alma Lucía. "Compacta in Banach spaces." Doctoral thesis, Universitat Politècnica de València, 2010. http://hdl.handle.net/10251/8312.
Full textGonzález Correa, AL. (2008). Compacta in Banach spaces [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8312
Palancia
Patterson, Wanda Ethel Diane McNair. "Problems in classical banach spaces." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/30288.
Full textRandrianarivony, Nirina Lovasoa. "Nonlinear classification of Banach spaces." Diss., Texas A&M University, 2005. http://hdl.handle.net/1969.1/2590.
Full textDew, N. "Asymptotic structure of Banach spaces." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270612.
Full textVershynin, Roman. "Representing structures in Banach spaces /." free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9988706.
Full textCowell, Simon Kalton Nigel J. "Asymptotic unconditionality in Banach spaces." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6149.
Full textWest, Graeme Philip. "Non-commutative Banach function spaces." Master's thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/17117.
Full textOchoa, James Philip. "Tensor Products of Banach Spaces." Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc278580/.
Full textGowers, William T. "Symmetric structures in Banach spaces." Thesis, University of Cambridge, 1990. https://www.repository.cam.ac.uk/handle/1810/252814.
Full textAl-Nayef, Anwar Ali Bayer, and mikewood@deakin edu au. "Semi-hyperbolic mappings in Banach spaces." Deakin University. School of Computing and Mathematics, 1997. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20051208.110247.
Full textBalasuriya, B. A. C. S. "Maximal monotone operators in Banach spaces." University of Western Australia. School of Mathematics and Statistics, 2004. http://theses.library.uwa.edu.au/adt-WU2005.0024.
Full textDoré, Michael J. "Universal Fréchet sets in Banach spaces." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/3688/.
Full textShvydkoy, Roman. "Operators and integrals in Banach spaces /." free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3036855.
Full textKilbane, James. "Finite metric subsets of Banach spaces." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288272.
Full textZsák, András. "Algebras of operators on Banach spaces." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621830.
Full textDore, Michael J. "Universal Frechet sets in Banach spaces." Thesis, University of Warwick, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526190.
Full textZheng, Bentuo. "Embeddings and factorizations of Banach spaces." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1551.
Full textde, Jager Pierre. "Composition operators on Banach function spaces." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/6619.
Full textZarco, García Ana María. "Weighted Banach spaces of harmonic functions." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/56461.
Full text[ES] La presente memoria, "Espacios de Banach ponderados de funciones armónicas ", trata diversos tópicos del análisis funcional, como son las funciones peso, los operadores de composición, la diferenciabilidad Fréchet y Gâteaux de la norma y las clases de isomorfismos. El trabajo está dividido en cuatro capítulos precedidos de uno inicial en el que introducimos la notación y las propiedades conocidas que usamos en las demostraciones del resto de capítulos. En el primer capítulo estudiamos espacios de Banach de funciones armónicas en conjuntos abiertos de R^d dotados de normas del supremo ponderadas. Definimos el peso asociado armónico, explicamos sus propiedades, lo comparamos con el peso asociado holomorfo introducido por Bierstedt, Bonet y Taskinen, y encontramos diferencias y condiciones para que sean exactamente iguales y condiciones para que sean equivalentes. El capítulo segundo está dedicado al análisis de los operadores de composición con símbolo holomorfo entre espacios de Banach ponderados de funciones pluriarmónicas. Caracterizamos la continuidad, la compacidad y la norma esencial de operadores de composición entre estos espacios en términos de los pesos, extendiendo los resultados de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes y otros para operadores de composición entre espacios de funciones holomorfas. Probamos que para todo valor del intervalo [0,1] existe un operador de composición sobre espacios ponderados de funciones armónicas tal que su norma esencial alcanza dicho valor. La mayoría de los contenidos de los capítulos 1 y 2 han sido publicados por E. Jordá y la autora en [48]. El capítulo tercero está relacionado con el estudio de la diferenciabilidad Gâteaux y Fréchet de la norma. El criterio de \v{S}mulyan establece que la norma de un espacio de Banach real X es Gâteaux diferenciable en x\in X si y sólo si existe x^* en la bola unidad del dual de X débil expuesto por x y la norma es Fréchet diferenciable en x si y sólo si x^*es débil fuertemente expuesto en la bola unidad del dual de X por x. Mostramos que en este criterio la bola del dual de X puede ser reemplazada por un conjunto conveniente más pequeño, y aplicamos este criterio extendido para caracterizar los puntos de diferenciabilidad Gâteaux y Fréchet de la norma de algunos espacios de funciones armónicas y continuas con valores vectoriales. A partir de estos resultados conseguimos una prueba sencilla del teorema sobre la diferenciabilidad Gâteaux de la norma de espacios de operadores lineales compactos enunciado por Heinrich y publicado sin la prueba. Además, éstos nos permiten obtener aplicaciones para espacios de Banach clásicos como H^\infty de funciones holomorfas acotadas en el disco y A(\overline{\D}) de funciones continuas en \overline{\D} que son holomorfas en \D. Los contenidos de este capítulo han sido incluidos por E. Jordá y la autora en [47]. Finalmente, en el capítulo cuarto mostramos que para cualquier abierto U contenido en R^d y cualquier peso v en U, el espacio hv0(U), de funciones armónicas tales que multiplicadas por el peso desaparecen en el infinito de U, es casi isométrico a un subespacio cerrado de c0, extendiendo un teorema debido a Bonet y Wolf para los espacios de funciones holomorfas Hv0(U) en abiertos U de C^d. Así mismo, inspirados por un trabajo de Boyd y Rueda también estudiamos la geometría de estos espacios ponderados examinando tópicos como la v-frontera y los puntos v-peak y damos las condiciones que proporcionan ejemplos donde hv0(U) no puede ser isométrico a c0. Para un conjunto abierto equilibrado U de R^d, algunas condiciones geométricas en U y sobre convexidad en el peso v aseguran que hv0(U) no es rotundo. Estos resultados han sido publicados por E. Jordá y la autora en [46].
[CAT] La present memòria, "Espais de Banach ponderats de funcions harmòniques", tracta diversos tòpics de l'anàlisi funcional, com són les funcions pes, els operadors de composició, la diferenciabilitat Fréchet i Gâteaux de la norma i les clases d'isomorfismes. El treball està dividit en quatre capítols precedits d'un d'inicial en què introduïm la notació i les propietats conegudes que fem servir en les demostracions de la resta de capítols. En el primer capítol estudiem espais de Banach de funcions harmòniques en conjunts oberts de R^d dotats de normes del suprem ponderades. Definim el pes associat harmònic, expliquem les seues propietats, el comparem amb el pes associat holomorf introduït per Bierstedt, Bonet i Taskinen, i trobem diferències i condicions perquè siguen exactament iguals i condicions perquè siguen equivalents. El capítol segon està dedicat a l'anàlisi dels operadors de composició amb símbol holomorf entre espais de Banach ponderats de funcions pluriharmòniques. Caracteritzem la continuïtat, la compacitat i la norma essencial d'operadors de composició entre aquests espais en termes dels pesos, estenent els resultats de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes i altres per a operadors de composició entre espais de funcions holomorfes. Provem que per a tot valor de l'interval [0,1] hi ha un operador de composició sobre espais ponderats de funcions harmòniques tal que la seua norma essencial arriba aquest valor. La majoria dels continguts dels capítols 1 i 2 han estat publicats per E. Jordá i l'autora en [48]. El capítol tercer està relacionat amb l'estudi de la diferenciabilitat Gâteaux y Fréchet de la norma. El criteri de \v{S}mulyan estableix que la norma d'un espai de Banach real X és Gâteaux diferenciable en x\inX si i només si existeix x^* a la bola unitat del dual de X feble exposat per x i la norma és Fréchet diferenciable en x si i només si x^* és feble fortament exposat a la bola unitat del dual de X per x. Mostrem que en aquest criteri la bola del dual de X pot ser substituïda per un conjunt convenient més petit, i apliquem aquest criteri estès per caracteritzar els punts de diferenciabilitat Gâteaux i Fréchet de la norma d'alguns espais de funcions harmòniques i contínues amb valors vectorials. A partir d'aquests resultats aconseguim una prova senzilla del teorema sobre la diferenciabilitat Gâteaux de la norma d'espais d'operadors lineals compactes enunciat per Heinrich i publicat sense la prova. A més, aquests ens permeten obtenir aplicacions per a espais de Banach clàssics com l'espai H^\infty de funcions holomorfes acotades en el disc i l'àlgebra A(\overline{\D}) de funcions contínues en \overline{\D} que són holomorfes en \D. Els continguts d'aquest capítol han estat inclosos per E. Jordá i l'autora en [47]. Finalment, en el capítol quart mostrem que per a qualsevol conjunt obert U de R^d i qualsevol pes v en U, l'espai hv0(U), de funcions harmòniques tals que multiplicades pel pes desapareixen en el infinit d'U, és gairebé isomètric a un subespai tancat de c0, estenent un teorema degut a Bonet y Wolf per als espais de funcions holomorfes Hv0(U) en oberts U de C^d. Així mateix, inspirats per un treball de Boyd i Rueda també estudiem la geometria d'aquests espais ponderats examinant tòpics com la v-frontera i els punts v-peak i donem les condicions que proporcionen exemples on hv0(U) no pot ser isomètric a c0. Per a un conjunt obert equilibrat U de R^d, algunes condicions geomètriques en U i sobre convexitat en el pes v asseguren que hv0(U) no és rotund. Aquests resultats han estat publicats per E. Jordá i l'autora en [46].
Zarco García, AM. (2015). Weighted Banach spaces of harmonic functions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56461
TESIS
Boedihardjo, March Tian. "Topics in Banach space theory." HKBU Institutional Repository, 2011. http://repository.hkbu.edu.hk/etd_ra/1286.
Full textObeid, Ossama A. "Property (H*) and Differentiability in Banach Spaces." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc277852/.
Full textDahler, Cheryl L. (Cheryl Lewis). "Duals and Reflexivity of Certain Banach Spaces." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc500848/.
Full textVuong, Thi Minh Thu University of Ballarat. "Complemented and uncomplemented subspaces of Banach spaces." University of Ballarat, 2006. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/12748.
Full textMaster of Mathematical Sciences
Vuong, Thi Minh Thu. "Complemented and uncomplemented subspaces of Banach spaces." University of Ballarat, 2006. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/15540.
Full textMaster of Mathematical Sciences
Sarantopoulos, I. C. "Polynomials and multilinear mappings in Banach spaces." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376057.
Full textDymond, Michael Robert. "Differentiability and negligible sets in Banach spaces." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5158/.
Full textKalaichelvan, Rajendra. "Function spaces and a problem of banach." Doctoral thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/4895.
Full textFunction spaces have been a useful tool in probing the convergence of sequences of functions. The theory seems to have been triggered off by the works of Ascoli [36], Arzelà [37] and Hadamard [38]. In this thesis, we consider the space of continuous functions from a topological space X into the reals R, which we denote C(X).
Barclay, Steven John. "Banach spaces of analytic vector-valued functions." Thesis, University of Leeds, 2007. http://etheses.whiterose.ac.uk/167/.
Full text
Kirk, Andrew F. (Andrew Fitzgerald). "Banach Spaces and Weak and Weak* Topologies." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc500475/.
Full textDerrick, John. "Some problems in Banach space theory." Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:36289504-6d9f-42e4-af95-ef3abb8a8fa2.
Full textErkursun, Nazife. "Convergence Of Lotz-raebiger Nets On Banach Spaces." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12612108/index.pdf.
Full textWark, H. M. "Banach spaces with few operators and multiplier results." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:467c7ec7-d9f1-41cd-9fa9-0f97894ac6a5.
Full textp, 1r), 1 < p ≤ r ≤ p1 < ꝏ, where 1/p + 1/p1 = 1, are shown to be primary. The spaces of bounded diagonal operators and compact diagonal operators on a seminormalized Schauder basis β, the multiplier algebras Ld(X, β) and Kd(X, β), are introduced and studied. New examples of these multiplier algebras are presented and a theorem of Sersouri is extended. A necessary and sufficient condition is given for co to embed in Kd(X, β). A sufficient condition is given on a semi-normalized Schauder basis β of a reflexive hereditarily indecomposable Banach space Y to ensure that Kd(Y, β) has the RNP. It is shown that the algebra Ld(X, β) is semisimple and that on the algebra Kd(X, β) derivations are automatically continuous. By representing diagonal operators as stochastic processes a general method of constructing multiplier algebras is given. A non trivial multiplier invariance for the normalized Haar basis of L1[0,1] is proved.
Groves, James Stuart. "A study of stochastic processes in Banach spaces." Thesis, Lancaster University, 2000. http://eprints.lancs.ac.uk/125004/.
Full textBedjaoui, Nabil, Joaquim Correia, Sackmone Sirisack, and Bouasy Doungsavanh. "Traffic Modelling and Some Inequalities in Banach Spaces." Master's thesis, Edited by Thepsavanh Kitignavong, Faculty of Natural Sciences, National University of Laos, 2017. http://hdl.handle.net/10174/26575.
Full textMalý, Lukáš. "Newtonian Spaces Based on Quasi-Banach Function Lattices." Licentiate thesis, Linköpings universitet, Matematik och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79166.
Full text