Journal articles on the topic 'GHz propagation measurement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'GHz propagation measurement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bhutani, Akanksha, Sören Marahrens, Marius Kretschmann, et al. "Applications of radar measurement technology using 24 GHz, 61 GHz, 80 GHz and 122 GHz FMCW radar sensors." tm - Technisches Messen 89, no. 2 (2021): 107–21. http://dx.doi.org/10.1515/teme-2021-0034.
Full textČoko, Duje, Dinko Begušić, and Zoran Blažević. "UWB Radio Propagation Measurements in a Desktop Environment." Journal of Communications Software and Systems 6, no. 2 (2010): 74. http://dx.doi.org/10.24138/jcomss.v6i2.192.
Full textMacedo, Alex, Thiago Costa, Edemir de Matos, et al. "Channel Analysis for 3.5 GHz Frequency in Airport." Journal of Communication and Information Systems 38, no. 1 (2023): 115–20. http://dx.doi.org/10.14209/jcis.2023.13.
Full textValtr, Pavel, Jan Zeleny, Pavel Pechac, and Martin Grabner. "Clutter Loss Modelling for Low Elevation Link Scenarios." International Journal of Antennas and Propagation 2016 (2016): 1–4. http://dx.doi.org/10.1155/2016/1478471.
Full textRubio, Lorenzo, Vicent M. Rodrigo Peñarrocha, Marta Cabedo-Fabres, et al. "Millimeter-Wave Channel Measurements and Path Loss Characterization in a Typical Indoor Office Environment." Electronics 12, no. 4 (2023): 844. http://dx.doi.org/10.3390/electronics12040844.
Full textHossain, Ferdous, Tan Geok, Tharek Rahman, Mhd Hindia, Kaharudin Dimyati, and Azlan Abdaziz. "Indoor Millimeter-Wave Propagation Prediction by Measurement and Ray Tracing Simulation at 38 GHz." Symmetry 10, no. 10 (2018): 464. http://dx.doi.org/10.3390/sym10100464.
Full textKim, Minseok, Anirban Ghosh, Riku Takahashi, and Kosuke Shibata. "Indoor Channel Measurement at 300 GHz and Comparison of Signal Propagation With 60 GHz." IEEE Access 11 (2023): 124040–54. http://dx.doi.org/10.1109/access.2023.3330653.
Full textKanazawa, Ami, and Hiroyo Ogawa. "Propagation measurement of 70-GHz band in a moving train." Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 89, no. 8 (2006): 21–29. http://dx.doi.org/10.1002/ecjc.20183.
Full textNor Raihan Zulkefly, Omar Abd. Aziz, Ibraheem Shayea, and Ahmed Al-Saman. "Path Loss Models for 5G Communications System in Corridors Environment." Journal of Advanced Research in Applied Sciences and Engineering Technology 46, no. 1 (2024): 86–96. http://dx.doi.org/10.37934/araset.46.1.8696.
Full textAhmed, Bazil Taha. "Propagation Loss Measurement of Wireless Body Area Network at 2.4 GHz and 3.35 GHz Bands." Wireless Personal Communications 112, no. 2 (2020): 685–716. http://dx.doi.org/10.1007/s11277-020-07068-w.
Full textGulfam, Sardar, Syed Nawaz, Konstantinos Baltzis, Abrar Ahmed, and Noor Khan. "Characterization of Fading Statistics of mmWave (28 GHz and 38 GHz) Outdoor and Indoor Radio Propagation Channels." Technologies 7, no. 1 (2019): 9. http://dx.doi.org/10.3390/technologies7010009.
Full textDanacı, Erkan, Aliye Kartal Doğan, Engin Can Çiçek, et al. "UNCERTAINTY EVALUATION USING LAW OF PROPAGATION AND MONTE CARLO SIMULATION METHODS WITH THE AUTORFPOWER MEASUREMENT SOFTWARE." Konya Journal of Engineering Sciences 12, no. 3 (2024): 596–607. http://dx.doi.org/10.36306/konjes.1364464.
Full textGarcia Ariza, Alexis Paolo, Uwe Trautwein, Robert Müller, et al. "60 GHz short-range communications: channel measurements, analysis, and modeling." International Journal of Microwave and Wireless Technologies 3, no. 2 (2011): 201–11. http://dx.doi.org/10.1017/s1759078711000092.
Full textPimienta-del-Valle, Domingo, Luis Mendo, José Manuel Riera, and Pedro Garcia-del-Pino. "Indoor LOS Propagation Measurements and Modeling at 26, 32, and 39 GHz Millimeter-Wave Frequency Bands." Electronics 9, no. 11 (2020): 1867. http://dx.doi.org/10.3390/electronics9111867.
Full textWysocki, Tadeusz A., and Hans-Jurgen Zepernick. "Characterization of the indoor radio propagation channel at 2.4 GHz." Journal of Telecommunications and Information Technology, no. 3-4 (December 30, 2000): 84–90. http://dx.doi.org/10.26636/jtit.2000.3-4.23.
Full textAl-Saman, Ahmed, Michael Cheffena, Olakunle Elijah, Yousef A. Al-Gumaei, Sharul Kamal Abdul Rahim, and Tawfik Al-Hadhrami. "Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments." Electronics 10, no. 14 (2021): 1653. http://dx.doi.org/10.3390/electronics10141653.
Full textAl-Samman, Ahmed M., Marwan Hadri Azmi, Y. A. Al-Gumaei, et al. "Millimeter Wave Propagation Measurements and Characteristics for 5G System." Applied Sciences 10, no. 1 (2020): 335. http://dx.doi.org/10.3390/app10010335.
Full textBatalha, Iury S., Andréia V. R. Lopes, Jasmine P. L. Araújo, et al. "Large-Scale Channel Modeling and Measurements for 10 GHz in Indoor Environments." International Journal of Antennas and Propagation 2019 (January 23, 2019): 1–10. http://dx.doi.org/10.1155/2019/9454271.
Full textIto, Satoshi, and Takahiro Hayashi. "Measurement and Evaluation of 28 GHz Propagation Characteristics in Specific Environments." IEEE Access 10 (2022): 26242–56. http://dx.doi.org/10.1109/access.2022.3157063.
Full textTaha-Ahmed, Bazil, Jose Luis Masa-Campos, and David Fernandez Campillo. "PROPAGATION LOSS MEASUREMENT DUE TO MISCELLANEOUS PHENOMENON AT 5.6 GHZ BAND." Progress In Electromagnetics Research C 32 (2012): 207–20. http://dx.doi.org/10.2528/pierc12072304.
Full textQian, Jingyuan, Yating Wu, Asad Saleem, and Guoxin Zheng. "Path Loss Model for 3.5 GHz and 5.6 GHz Bands in Cascaded Tunnel Environments." Sensors 22, no. 12 (2022): 4524. http://dx.doi.org/10.3390/s22124524.
Full textAdjei-Frimpong, Bernard, and László Csurgai-Horváth. "Using Radio Wave Satellite Propagation Measurements for Rain Intensity Estimation." Infocommunications journal, no. 3 (2018): 2–8. http://dx.doi.org/10.36244/icj.2018.3.1.
Full textMohd, Nazeri Kamaruddin, Kim Geok Tan, Abdul Aziz Omar, Abd Rahman Tharek, Hossain Ferdous, and Abdul Aziz Azlan. "Adaptive 3D ray tracing approach for indoor radio signal prediction at 3.5 GHz." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 2 (2022): 1617–25. https://doi.org/10.11591/ijece.v12i2.pp1617-1625.
Full textRubio, Lorenzo, Rafael P. Torres, Vicent M. Rodrigo Peñarrocha, et al. "Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz." Electronics 8, no. 11 (2019): 1261. http://dx.doi.org/10.3390/electronics8111261.
Full textAl-Samman, Ahmed Mohammed, Tharek Abd. Rahman, Tawfik Al-Hadhrami, et al. "Comparative Study of Indoor Propagation Model Below and Above 6 GHz for 5G Wireless Networks." Electronics 8, no. 1 (2019): 44. http://dx.doi.org/10.3390/electronics8010044.
Full textКузьмин, Л. В., та Е. В. Ефремова. "Эксперимент по определению времени прохождения сверхширокополосных хаотических радиоимпульсов через многолучевой канал". Письма в журнал технической физики 46, № 16 (2020): 23. http://dx.doi.org/10.21883/pjtf.2020.16.49849.18352.
Full textAl-Bawri, Samir Salem, Md Shabiul Islam, Hin Yong Wong, et al. "Metamaterial Cell-Based Superstrate towards Bandwidth and Gain Enhancement of Quad-Band CPW-Fed Antenna for Wireless Applications." Sensors 20, no. 2 (2020): 457. http://dx.doi.org/10.3390/s20020457.
Full textNakajima, Taku, Kazuji Suzuki, Takafumi Kojima, Yoshinori Uzawa, Masayuki Ishino, and Issei Watanabe. "Propagation in Superconducting Niobium Rectangular Waveguide in the 100 GHz band." Journal of Physics: Conference Series 2545, no. 1 (2023): 012021. http://dx.doi.org/10.1088/1742-6596/2545/1/012021.
Full textAoki, Kaisei, and Kazuhiro Honda. "Measurement and Analysis of the Rician K-Factor for Low-Altitude UAV Air-to-Ground Communications at 2.5 GHz." Drones 9, no. 2 (2025): 86. https://doi.org/10.3390/drones9020086.
Full textMd Idris, Ikha Fadzila, Tan Kim Geok, Noor Ziela Abd Rahman, and Mohd Haffizzi Md Idris. "Analysis of 5.8 GHz Network for Line of Sight (LOS) and Non-Line of Sight (NLOS) in Suburban Environment." International Journal on Advanced Science, Engineering and Information Technology 13, no. 6 (2023): 2145–55. http://dx.doi.org/10.18517/ijaseit.v13i6.19048.
Full textMd Idris, Ikha Fadzila, Tan Kim Geok, Noor Ziela Abd Rahman, and Mohd Haffizzi Md Idris. "Analysis of 5.8 GHz Network for Line of Sight (LOS) and Non-Line of Sight (NLOS) in Suburban Environment." International Journal on Advanced Science, Engineering and Information Technology 13, no. 6 (2023): 2145–55. http://dx.doi.org/10.18517/ijaseit.13.6.19048.
Full textAl-Jumaily, Abdulmajeed H. J., A. Sali, J. S. Mandeep, and Alyani Ismail. "Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band." International Journal of Antennas and Propagation 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/270949.
Full textSoo, Qi Ping, Soo Yong Lim, Nurhidayah Rusli, et al. "Propagation Measurement of a Pedestrian Tunnel at 24 GHz for 5G Communications." IEEE Access 9 (2021): 149934–42. http://dx.doi.org/10.1109/access.2021.3125710.
Full textYin, Xuefeng, Yilin Ji, and Hua Yan. "Measurement-Based Characterization of 15 GHz Propagation Channels in a Laboratory Environment." IEEE Access 5 (2017): 1428–38. http://dx.doi.org/10.1109/access.2017.2657739.
Full textLim, Soo Yong, Zhengqing Yun, and Magdy F. Iskander. "Propagation Measurement and Modeling for Indoor Stairwells at 2.4 and 5.8 GHz." IEEE Transactions on Antennas and Propagation 62, no. 9 (2014): 4754–61. http://dx.doi.org/10.1109/tap.2014.2336258.
Full textHu, Chufeng, and Nanjing Li. "Calculation of Differential Propagation Constant Determined by Plant Morphology Using Polarimetric Measurement." International Journal of Antennas and Propagation 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/718242.
Full textLee, Seong-Hun, and Byung-Lok Cho. "Measurement and Analysis of Local Average Power According to Averaging Length Changes of 3, 6, 10, and 17 GHz in an Indoor Corridor Environment." International Journal of Antennas and Propagation 2023 (January 20, 2023): 1–7. http://dx.doi.org/10.1155/2023/1485543.
Full textZhong, Zhimeng, Jianyao Zhao, and Chao Li. "Outdoor-to-Indoor Channel Measurement and Coverage Analysis for 5G Typical Spectrums." International Journal of Antennas and Propagation 2019 (September 16, 2019): 1–10. http://dx.doi.org/10.1155/2019/3981678.
Full textWang, Yuzhen, Ting Zhou, Tianheng Xu, and Honglin Hu. "A Sliced Parabolic Equation Method to Characterize Maritime Radio Propagation." Sensors 23, no. 10 (2023): 4721. http://dx.doi.org/10.3390/s23104721.
Full textRupčić, Slavko, Vanja Mandrić, Đurđica Kovačić, and Maja Varga. "Measurements of Electromagnetic Radiation Propagation through Biomaterial Samples Based on Harvest Residues." Sustainability 16, no. 2 (2024): 499. http://dx.doi.org/10.3390/su16020499.
Full textAlwarafy, Abdulmalik, Ahmed Iyanda Sulyman, Abdulhameed Alsanie, Saleh A. Alshebeili, and Hatim M. Behairy. "Path-Loss Channel Models for Receiver Spatial Diversity Systems at 2.4 GHz." International Journal of Antennas and Propagation 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6790504.
Full textGerasimov, Jacob, Nezah Balal, Egor Liokumovitch, et al. "Scaled Modeling and Measurement for Studying Radio Wave Propagation in Tunnels." Electronics 10, no. 1 (2020): 53. http://dx.doi.org/10.3390/electronics10010053.
Full textBarros, Murilo C., Kaue T. N. Duarte, and Leonardo L. B. Roger. "Attenuation Measurement of Ceramic Blocks Wall Using X-Band Waves." Ceramics in Modern Technologies 3, no. 1 (2021): 16–21. http://dx.doi.org/10.29272/cmt.2021.0002.
Full textHossain, Ferdous, Tan Geok, Tharek Rahman, et al. "An Efficient 3-D Ray Tracing Method: Prediction of Indoor Radio Propagation at 28 GHz in 5G Network." Electronics 8, no. 3 (2019): 286. http://dx.doi.org/10.3390/electronics8030286.
Full textMajed, Mohammed Bahjat, Tharek Abd Rahman, Omar Abdul Aziz, Mohammad Nour Hindia, and Effariza Hanafi. "Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks." International Journal of Antennas and Propagation 2018 (September 20, 2018): 1–14. http://dx.doi.org/10.1155/2018/9142367.
Full textWang, Chengjian, Wenli Ji, Guoxin Zheng, and Asad Saleem. "Analysis of Propagation Characteristics for Various Subway Tunnel Scenarios at 28 GHz." International Journal of Antennas and Propagation 2021 (September 27, 2021): 1–16. http://dx.doi.org/10.1155/2021/7666624.
Full textZheng, Zhe, Jianhua Zhang, Xiaoyong Wu, Danpu Liu, and Lei Tian. "Zero-Forcing Precoding in the Measured Massive MIMO Downlink: How Many Antennas Are Needed?" International Journal of Antennas and Propagation 2019 (April 11, 2019): 1–10. http://dx.doi.org/10.1155/2019/3518691.
Full textZhang, Ruonan, Yuliang Zhou, Xiaofeng Lu, Chang Cao, and Qi Guo. "Antenna Deembedding for mmWave Propagation Modeling and Field Measurement Validation at 73 GHz." IEEE Transactions on Microwave Theory and Techniques 65, no. 10 (2017): 3648–59. http://dx.doi.org/10.1109/tmtt.2017.2743702.
Full textChandra, Aniruddha, Aniq Ur Rahman, Ushasi Ghosh, et al. "60-GHz Millimeter-Wave Propagation Inside Bus: Measurement, Modeling, Simulation, and Performance Analysis." IEEE Access 7 (2019): 97815–26. http://dx.doi.org/10.1109/access.2019.2924729.
Full textGhaddar, M., L. Talbi, and G. Y. Delisle. "Coherence bandwidth measurement in indoor broadband propagation channel at unlicensed 60 GHz band." Electronics Letters 48, no. 13 (2012): 795. http://dx.doi.org/10.1049/el.2012.0397.
Full text