Academic literature on the topic 'Graph classes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph classes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Graph classes"

1

Kaladevi, V., R. Murugesan, and K. Pattabiraman. "First reformulated Zagreb indices of some classes of graphs." Carpathian Mathematical Publications 9, no. 2 (2018): 134–44. http://dx.doi.org/10.15330/cmp.9.2.134-144.

Full text
Abstract:
A topological index of a graph is a parameter related to the graph; it does not depend on labeling or pictorial representation of the graph. Graph operations plays a vital role to analyze the structure and properties of a large graph which is derived from the smaller graphs. The Zagreb indices are the important topological indices found to have the applications in Quantitative Structure Property Relationship(QSPR) and Quantitative Structure Activity Relationship(QSAR) studies as well. There are various study of different versions of Zagreb indices. One of the most important Zagreb indices is the reformulated Zagreb index which is used in QSPR study.
 In this paper, we obtain the first reformulated Zagreb indices of some derived graphs such as double graph, extended double graph, thorn graph, subdivision vertex corona graph, subdivision graph and triangle parallel graph. In addition, we compute the first reformulated Zagreb indices of two important transformation graphs such as the generalized transformation graph and generalized Mycielskian graph.
APA, Harvard, Vancouver, ISO, and other styles
2

Besirik, Ayse, and Elgin Kilic. "Domination integrity of some graph classes." RAIRO - Operations Research 53, no. 5 (2019): 1721–28. http://dx.doi.org/10.1051/ro/2018074.

Full text
Abstract:
The stability of a communication network has a great importance in network design. There are several vulnerability measures used to determine the resistance of network to the disruption in this sense. Domination theory provides a model to measure the vulnerability of a graph network. A new vulnerability measure of domination integrity was introduced by Sundareswaran in his Ph.D. thesis (Parameters of vulnerability in graphs (2010)) and defined as DI(G) = min{|S| + m(G − S):S ∈ V(G)} where m(G − S) denotes the order of a largest component of graph G − S and S is a dominating set of G. The domination integrity of an undirected connected graph is such a measure that works on the whole graph and also the remaining components of graph after any break down. Here we determine the domination integrity of wheel graph W1,n, Ladder graph Ln, Sm,n, Friendship graph Fn, Thorn graph of Pn and Cn which are commonly used graph models in network design.
APA, Harvard, Vancouver, ISO, and other styles
3

Jose, Bibin K. "Some New Classes of Open Distance-Pattern Uniform Graphs." International Journal of Combinatorics 2013 (July 24, 2013): 1–7. http://dx.doi.org/10.1155/2013/863439.

Full text
Abstract:
Given an arbitrary nonempty subset M of vertices in a graph G=(V,E), each vertex u in G is associated with the set fMo(u)={d(u,v):v∈M,u≠v} and called its open M-distance-pattern. The graph G is called open distance-pattern uniform (odpu-) graph if there exists a subset M of V(G) such that fMo(u)=fMo(v) for all u,v∈V(G), and M is called an open distance-pattern uniform (odpu-) set of G. The minimum cardinality of an odpu-set in G, if it exists, is called the odpu-number of G and is denoted by od(G). Given some property P, we establish characterization of odpu-graph with property P. In this paper, we characterize odpu-chordal graphs, and thereby characterize interval graphs, split graphs, strongly chordal graphs, maximal outerplanar graphs, and ptolemaic graphs that are odpu-graphs. We also characterize odpu-self-complementary graphs, odpu-distance-hereditary graphs, and odpu-cographs. We prove that the odpu-number of cographs is even and establish that any graph G can be embedded into a self-complementary odpu-graph H, such that G and G¯ are induced subgraphs of H. We also prove that the odpu-number of a maximal outerplanar graph is either 2 or 5.
APA, Harvard, Vancouver, ISO, and other styles
4

Pushpam, P. Roushini Leely, and D. Yokesh. "Differentials in certain classes of graphs." Tamkang Journal of Mathematics 41, no. 2 (2010): 129–38. http://dx.doi.org/10.5556/j.tkjm.41.2010.664.

Full text
Abstract:
Let $X subset V$ be a set of vertices in a graph $G = (V, E)$. The boundary $B(X)$ of $X$ is defined to be the set of vertices in $V-X$ dominated by vertices in $X$, that is, $B(X) = (V-X) cap N(X)$. The differential $ partial(X)$ of $X$ equals the value $ partial(X) = |B(X)| - |X|$. The differential of a graph $G$ is defined as $ partial(G) = max { partial(X) | X subset V }$. It is easy to see that for any graph $G$ having vertices of maximum degree $ Delta(G)$, $ partial(G) geq Delta (G) -1$. In this paper we characterize the classes of unicyclic graphs, split graphs, grid graphs, $k$-regular graphs, for $k leq 4$, and bipartite graphs for which $ partial(G) = Delta(G)-1$. We also determine the value of $ partial(T)$ for any complete binary tree $T$.
APA, Harvard, Vancouver, ISO, and other styles
5

A. Antony mary, A., A. Amutha, and M. S. Franklin Thamil Selvi. "A Study on Slope Number of Certain Classes of Bipartite Graphs." International Journal of Engineering & Technology 7, no. 4.10 (2018): 440. http://dx.doi.org/10.14419/ijet.v7i4.10.21036.

Full text
Abstract:
Graph drawing is the most important area of mathematics and computer science which combines methods from geometric graph theory and information visualization. Generally, graphs are represented to explore some intellectual ideas. Graph drawing is the familiar concept of graph theory. It has many quality measures and one among them is the slope number. Slope number problem is an optimization problem and is NP-hard to determine the slope number of any arbitrary graph. In the present paper, the investigation on slope number of bipartite graph is studied elaborately. Since the bipartite graphs creates one of the most intensively investigated classes of graphs, we consider few classes of graphs and discussed structural behavior of such graphs.
APA, Harvard, Vancouver, ISO, and other styles
6

Aref'ev, Roman D., John T. Baldwin та Marco Mazzucco. "Classification of δ-invariant amalgamation classes". Journal of Symbolic Logic 64, № 4 (1999): 1743–50. http://dx.doi.org/10.2307/2586809.

Full text
Abstract:
Hrushovski's generalization of the Fraisse construction has provided a rich source of examples in model theory, model theoretic algebra and random graph theory. The construction assigns to a dimension function δ and a class K of finite (finitely generated) models a countable ‘generic’ structure. We investigate here some of the simplest possible cases of this construction. The class K will be a class of finite graphs; the dimension, δ(A), of a finite graph A will be the cardinality of A minus the number of edges of A. Finally and significantly we restrict to classes which are δ-invariant. A class of finite graphs is δ-invariant if membership of a graph in the class is determined (as specified below) by the dimension and cardinality of the graph, and dimension and cardinality of all its subgraphs. Note that a generic graph constructed as in Hrushovski's example of a new strongly minimal set does not arise from a δ-invariant class.We show there are countably many δ-invariant (strong) amalgamation classes of finite graphs which are closed under subgraph and describe the countable generic models for these classes. This analysis provides ω-stable generic graphs with an array of saturation and model completeness properties which belies the similarity of their construction. In particular, we answer a question of Baizhanov (unpublished) and Baldwin [5] and show that this construction can yield an ω-stable generic which is not saturated. Further, we exhibit some ω-stable generic graphs that are not model complete.
APA, Harvard, Vancouver, ISO, and other styles
7

GEORGAKOPOULOS, AGELOS, and STEPHAN WAGNER. "Subcritical Graph Classes Containing All Planar Graphs." Combinatorics, Probability and Computing 27, no. 5 (2018): 763–73. http://dx.doi.org/10.1017/s0963548318000056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandrasekar, K. Raja, and S. Saravanakumar. "OPEN PACKING NUMBER FOR SOME CLASSES OF PERFECT GRAPHS." Ural Mathematical Journal 6, no. 2 (2020): 38. http://dx.doi.org/10.15826/umj.2020.2.004.

Full text
Abstract:
Let \(G\) be a graph with the vertex set \(V(G)\). A subset \(S\) of \(V(G)\) is an open packing set of \(G\) if every pair of vertices in \(S\) has no common neighbor in \(G.\) The maximum cardinality of an open packing set of \(G\) is the open packing number of \(G\) and it is denoted by \(\rho^o(G)\). In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, \(\{P_4, C_4\}\)-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.
APA, Harvard, Vancouver, ISO, and other styles
9

GOLUMBIC, MARTIN CHARLES, and UDI ROTICS. "ON THE CLIQUE-WIDTH OF SOME PERFECT GRAPH CLASSES." International Journal of Foundations of Computer Science 11, no. 03 (2000): 423–43. http://dx.doi.org/10.1142/s0129054100000260.

Full text
Abstract:
Graphs of clique–width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by k-expressions based on graph operations which use k vertex labels. In this paper we study the clique–width of perfect graph classes. On one hand, we show that every distance–hereditary graph, has clique–width at most 3, and a 3–expression defining it can be obtained in linear time. On the other hand, we show that the classes of unit interval and permutation graphs are not of bounded clique–width. More precisely, we show that for every [Formula: see text] there is a unit interval graph In and a permutation graph Hn having n2 vertices, each of whose clique–width is at least n. These results allow us to see the border within the hierarchy of perfect graphs between classes whose clique–width is bounded and classes whose clique–width is unbounded. Finally we show that every n×n square grid, [Formula: see text], n ≥ 3, has clique–width exactly n+1.
APA, Harvard, Vancouver, ISO, and other styles
10

Vignesh, R., J. Geetha, and K. Somasundaram. "Total Coloring Conjecture for Certain Classes of Graphs." Algorithms 11, no. 10 (2018): 161. http://dx.doi.org/10.3390/a11100161.

Full text
Abstract:
A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!