Journal articles on the topic 'Graphite cathode'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Graphite cathode.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Yita, and Boyou Lin. "Enhancement of performance for graphite felt modified with carbon nanotubes activated by KOH as Cathode in electro-fenton systems." Journal of Applied Biomaterials & Functional Materials 19 (January 2021): 228080002110053. http://dx.doi.org/10.1177/22808000211005386.
Full textDrennan, Dina M., Raji E. Koshy, David B. Gent, and Charles E. Schaefer. "Electrochemical treatment for greywater reuse: effects of cell configuration on COD reduction and disinfection byproduct formation and removal." Water Supply 19, no. 3 (2018): 891–98. http://dx.doi.org/10.2166/ws.2018.138.
Full textRoy, Amitava, R. Menon, Vishnu Sharma, Ankur Patel, Archana Sharma, and D. P. Chakravarthy. "Features of 200 kV, 300 ns reflex triode vircator operation for different explosive emission cathodes." Laser and Particle Beams 31, no. 1 (2012): 45–54. http://dx.doi.org/10.1017/s026303461200095x.
Full textHares, Essam, Ahmed Hassan El-Shazly, Marwa Farouk El-Kady, Kholoud Madih, Hamdiya Orleans-Boham, and Abdallah Yousef Mohammed Ali. "Anodic Aqueous Electrophoretic Deposition of Graphene Oxide on Copper Using Different Cathode Materials." Materials Science Forum 1008 (August 2020): 21–27. http://dx.doi.org/10.4028/www.scientific.net/msf.1008.21.
Full textChuan, Jun Bing, Hong Wan, Jie Yang, and Fan Zhou. "Microstructure Characterization of Graphite Cathodes for Explosive Field-Emission." Applied Mechanics and Materials 248 (December 2012): 268–73. http://dx.doi.org/10.4028/www.scientific.net/amm.248.268.
Full textVázquez-Larios, A. L., O. Solorza-Feria, R. de G. González-Huerta, et al. "Effect of Two Anodic Materials and RuxMoySez as a Cathode Catalyst on the Performance of Two Singlw Chamber Microbial Fuel Cells." Journal of New Materials for Electrochemical Systems 16, no. 3 (2013): 163–70. http://dx.doi.org/10.14447/jnmes.v16i3.6.
Full textFitriana, Hana Nur, Jiye Lee, Sangmin Lee, et al. "Surface Modification of a Graphite Felt Cathode with Amide-Coupling Enhances the Electron Uptake of Rhodobacter sphaeroides." Applied Sciences 11, no. 16 (2021): 7585. http://dx.doi.org/10.3390/app11167585.
Full textIlnicka, Anna, Malgorzata Skorupska, Piotr Kamedulski, and Jerzy P. Lukaszewicz. "Electro-Exfoliation of Graphite to Graphene in an Aqueous Solution of Inorganic Salt and the Stabilization of Its Sponge Structure with Poly(Furfuryl Alcohol)." Nanomaterials 9, no. 7 (2019): 971. http://dx.doi.org/10.3390/nano9070971.
Full textHou, Yan, Fan Gong Kong, Shou Juan Wang, and Gui Hua Yang. "Novel Gas Diffusion Electrode System for Effective Production of Hydrogen Peroxide." Applied Mechanics and Materials 496-500 (January 2014): 159–62. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.159.
Full textAbeywardana, Maheeka Yapa, Nina Laszczynski, Matthias Kuenzel, Dominic Bresser, Stefano Passerini, and Brett Lucht. "Increased Cycling Performance of Li-Ion Batteries by Phosphoric Acid Modified LiNi0.5Mn1.5O4 Cathodes in the Presence of LiBOB." International Journal of Electrochemistry 2019 (July 4, 2019): 1–7. http://dx.doi.org/10.1155/2019/8636540.
Full textKandah, M., J. L. Meunier, and R. Gauvin. "Vacuum Arc Cathode Spot Characterization on Graphite Materials Using Field Emission Gun Scanning Electron Microscopy (FEGSEM)." Microscopy and Microanalysis 3, S2 (1997): 1225–26. http://dx.doi.org/10.1017/s1431927600013015.
Full textAbdulwahab, Yussur D., Alaa Mohammed, and Talib Abbas. "Improving the Performance of Constructed Wetland Microbial Fuel Cell (CW- MFC) for Wastewater Treatment and Electricity Generation." Baghdad Science Journal 18, no. 1 (2021): 0007. http://dx.doi.org/10.21123/bsj.2021.18.1.0007.
Full textTang, Dong, Hui Min Lv, Quan Hui Hou, Huan Chen, and Hong Jun Ni. "Effect of Graphite Dopant on the Performance of Tubular Cathode for Direct Ethanol Fuel Cell." Advanced Materials Research 311-313 (August 2011): 2358–61. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.2358.
Full textLobanov, Svyatoslav V., Ivan A. Fedorov, and Evgeniy P. Sheshin. "DEVELOPING MANUFACTURING TECHNOLOGY OF COMPOSITE CATHODES WITH METHOD OF PRESSING PYROLYTIC GRAPHITE WITH TRIPLE CARBONATE." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, no. 8 (2018): 81. http://dx.doi.org/10.6060/tcct.20165908.29y.
Full textKumar K., Kishor, L. Couëdel, and C. Arnas. "Nanoparticles in direct-current discharges: Growth and electrostatic coupling." Journal of Plasma Physics 80, no. 6 (2014): 849–54. http://dx.doi.org/10.1017/s0022377814000439.
Full textÖzcan, Şeyma, Aslıhan Güler, Tugrul Cetinkaya, Mehmet O. Guler, and Hatem Akbulut. "Freestanding graphene/MnO2 cathodes for Li-ion batteries." Beilstein Journal of Nanotechnology 8 (September 14, 2017): 1932–38. http://dx.doi.org/10.3762/bjnano.8.193.
Full textZhang, Yang, Dong Tang, Rui Xue Duan, and Hong Jun Ni. "Preparation and Performance Testing of Tubular Cathode Support for Direct Ethanol Fuel Cell." Advanced Materials Research 415-417 (December 2011): 2345–48. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.2345.
Full textShi, Junxian, Anhuai Lu, Haibin Chu, Hongyu Wu, and Hongrui Ding. "Natural Wolframite Used as Cathode Photocatalyst for Improving the Performance of Microbial Fuel Cells." Applied Sciences 8, no. 12 (2018): 2504. http://dx.doi.org/10.3390/app8122504.
Full textObraztsov, Alexander N., Victor I. Kleshch, and Elena A. Smolnikova. "A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source." Beilstein Journal of Nanotechnology 4 (August 28, 2013): 493–500. http://dx.doi.org/10.3762/bjnano.4.58.
Full textJo, Minsang, Seong-Hyo Park, and Hochun Lee. "Effects of a Sodium Phosphate Electrolyte Additive on Elevated Temperature Performance of Spinel Lithium Manganese Oxide Cathodes." Materials 14, no. 16 (2021): 4670. http://dx.doi.org/10.3390/ma14164670.
Full textTang, Dong, Hui Min Lv, and Chang Yuan Li. "Investigation on Electrical Performance of Tubular Cathode for Direct Ethanol Fuel Cell." Advanced Materials Research 557-559 (July 2012): 1210–13. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.1210.
Full textLi, Ming Yu, Kun Kun Wang, You Wu Su, Lin Song, Gang Cao, and Gang Ren. "Study on Photo-Electro-Chemical Catalytic Degradation of Reactive Brilliant Red X-3B." Advanced Materials Research 213 (February 2011): 580–85. http://dx.doi.org/10.4028/www.scientific.net/amr.213.580.
Full textSchwandt, Carsten, and Derek J. Fray. "The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control." Zeitschrift für Naturforschung A 62, no. 10-11 (2007): 655–70. http://dx.doi.org/10.1515/zna-2007-10-1115.
Full textWang, Yingru, and Xiaohua Lu. "Study on the Effect of Electrochemical Dechlorination Reduction of Hexachlorobenzene Using Different Cathodes." Journal of Analytical Methods in Chemistry 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/371510.
Full textFang, Fang, John Futter, Andreas Markwitz, and John Kennedy. "Synthesis of Zinc Oxide Nanorods and their Sensing Properties." Materials Science Forum 700 (September 2011): 150–53. http://dx.doi.org/10.4028/www.scientific.net/msf.700.150.
Full textHuang, Mao-Chia, Cheng-Hsien Yang, Chien-Chih Chiang, et al. "Influence of High Loading on the Performance of Natural Graphite-Based Al Secondary Batteries." Energies 11, no. 10 (2018): 2760. http://dx.doi.org/10.3390/en11102760.
Full textKupryashov, Andrey, and Ivan Shestakov. "Manufacturing fine graphite powder with AC electric synthesis." Science intensive technologies in mechanical engineering 2021, no. 6 (2021): 42–48. http://dx.doi.org/10.30987/2223-4608-2021-6-42-48.
Full textRodriguez, Mark A., Mark H. Van Benthem, David Ingersoll, Sven C. Vogel, and Helmut M. Reiche. "In situ analysis of LiFePO4 batteries: Signal extraction by multivariate analysis." Powder Diffraction 25, no. 2 (2010): 143–48. http://dx.doi.org/10.1154/1.3393786.
Full textSong, Lin, Xin Zhang, Xiao Long Zeng, and Ming Yu Li. "Role of the Cathode in a Novel Photo-Electro-Chemical Catalytic Reactor." Advanced Materials Research 455-456 (January 2012): 985–90. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.985.
Full textTanguay, Suzanne, and Richard Sacks. "Ion Bombardment Magnetron Furnace for Atomic Spectroscopy." Applied Spectroscopy 43, no. 6 (1989): 918–24. http://dx.doi.org/10.1366/0003702894203831.
Full textMa, Yan Chun, Yong Bin Yang, and Yue Ping Xiong. "Synthesis of Triaxial LiFePO4 Nanorod with Graphite through the Electrospinning Method." Advanced Materials Research 396-398 (November 2011): 1703–6. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.1703.
Full textRother, B., J. Siegel, and J. Vetter. "Cathodic arc evaporation of graphite with controlled cathode spot position." Thin Solid Films 188, no. 2 (1990): 293–300. http://dx.doi.org/10.1016/0040-6090(90)90291-k.
Full textBeilis, I. I. "Application of vacuum arc cathode spot model to graphite cathode." IEEE Transactions on Plasma Science 27, no. 4 (1999): 821–26. http://dx.doi.org/10.1109/27.782245.
Full textKandah, Munther, and Jean-Luc Meunier. "Vacuum arc cathode spot movement on various kinds of graphite cathodes." Plasma Sources Science and Technology 5, no. 3 (1996): 349–55. http://dx.doi.org/10.1088/0963-0252/5/3/001.
Full textIsakova, Yulia I., Galina E. Kholodnaya, and Alexander I. Pushkarev. "Influence of Cathode Diameter on the Operation of a Planar Diode with an Explosive Emission Cathode." Advances in High Energy Physics 2011 (2011): 1–14. http://dx.doi.org/10.1155/2011/649828.
Full textTucker, W. C. "Degradation of Graphite/Polymer Composites in Seawater." Journal of Energy Resources Technology 113, no. 4 (1991): 264–67. http://dx.doi.org/10.1115/1.2905910.
Full textZhou, Ming, Jie Tang, Qian Cheng, Gaojie Xu, Ping Cui, and Lu-Chang Qin. "Few-layer graphene obtained by electrochemical exfoliation of graphite cathode." Chemical Physics Letters 572 (May 2013): 61–65. http://dx.doi.org/10.1016/j.cplett.2013.04.013.
Full textZhang, Liyuan, Hui Huang, Hailin Yin, et al. "Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium–sulfur batteries." Journal of Materials Chemistry A 3, no. 32 (2015): 16513–19. http://dx.doi.org/10.1039/c5ta04609b.
Full textЖуравлев, С. Д., та В. И. Шестеркин. "Токоперехватывающие сетки из анизотропного пиролитического графита в электронных пушках с металлопористым катодом". Журнал технической физики 89, № 9 (2019): 1464. http://dx.doi.org/10.21883/jtf.2019.09.48075.45-19.
Full textWu, Yinghao, Wenjie Zhao, Wurong Wang, Yanyan Zhang, and Qunji Xue. "Novel structured anodic oxide films containing surface layers and porous sublayers showing excellent wear resistance performance." RSC Advances 6, no. 96 (2016): 94074–84. http://dx.doi.org/10.1039/c6ra18867b.
Full textLiu, Cheng, Kun Qian, Danni Lei, Baohua Li, Feiyu Kang, and Yan-Bing He. "Deterioration mechanism of LiNi0.8Co0.15Al0.05O2/graphite–SiOx power batteries under high temperature and discharge cycling conditions." Journal of Materials Chemistry A 6, no. 1 (2018): 65–72. http://dx.doi.org/10.1039/c7ta08703a.
Full textArtsanti, Pedy, Sudarlin Sudarlin, and Eka Fadzillah Kirana. "The Effect of Increasing Surface Area of Graphite Electrode on the Performance of Dual Chamber Microbial Fuel Cells." Proceeding International Conference on Science and Engineering 1 (October 31, 2017): 137–40. http://dx.doi.org/10.14421/icse.v1.284.
Full textLi, Tianyu, Xiao-Zi Yuan, Lei Zhang, Datong Song, Kaiyuan Shi, and Christina Bock. "Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries." Electrochemical Energy Reviews 3, no. 1 (2019): 43–80. http://dx.doi.org/10.1007/s41918-019-00053-3.
Full textSetyowati, Vuri Ayu, Diah Susanti, Lukman Noerochim, Eriek Wahyu Restu Widodo, and Mohammad Yusuf Sulaiman. "Carbon and Nitrogen Composition for Non-Precious Metal Catalyst to Physical Characterization and Electrochemical Properties." Key Engineering Materials 867 (October 2020): 17–24. http://dx.doi.org/10.4028/www.scientific.net/kem.867.17.
Full textPisciotta, John M., Zehra Zaybak, Douglas F. Call, Joo-Youn Nam, and Bruce E. Logan. "Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes." Applied and Environmental Microbiology 78, no. 15 (2012): 5212–19. http://dx.doi.org/10.1128/aem.00480-12.
Full textPagot, Gioele, Valerio Toso, Bernardo Barbiellini, Rafael Ferragut, and Vito Di Noto. "Positron Annihilation Spectroscopy as a Diagnostic Tool for the Study of LiCoO2 Cathode of Lithium-Ion Batteries." Condensed Matter 6, no. 3 (2021): 28. http://dx.doi.org/10.3390/condmat6030028.
Full textCai, Wen-Fang, De-Li Geng, and Yun-Hai Wang. "Assessment of cathode materials for Ni(ii) reduction in microbial electrolysis cells." RSC Advances 6, no. 38 (2016): 31732–38. http://dx.doi.org/10.1039/c6ra02082h.
Full textYafarov, Ravil K., Denis V. Nefedov, and Anton V. Storublev. "Vacuum-plasma processes at extreme field emission in diamond electron sources." Izvestiya of Saratov University. New series. Series: Physics 21, no. 1 (2021): 69–79. http://dx.doi.org/10.18500/1817-3020-2021-21-1-69-79.
Full textMu, Jie Chen, Xu Dong Zhang, and Li Peng Zhang. "Direct Electrochemical Reduction of Solid TiO2 in [BMIM]BF4-CaCl2 Ionic Liquid." Applied Mechanics and Materials 492 (January 2014): 248–52. http://dx.doi.org/10.4028/www.scientific.net/amm.492.248.
Full textBeltrop, K., S. Beuker, A. Heckmann, M. Winter, and T. Placke. "Alternative electrochemical energy storage: potassium-based dual-graphite batteries." Energy & Environmental Science 10, no. 10 (2017): 2090–94. http://dx.doi.org/10.1039/c7ee01535f.
Full text