Academic literature on the topic 'Grover’s algorithm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Grover’s algorithm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Grover’s algorithm"

1

Nyman, Peter. "On relations between classical and quantum theories of information and probability." Doctoral thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-13830.

Full text
Abstract:
In this thesis we study quantum-like representation and simulation of quantum algorithms by using classical computers.The quantum--like representation algorithm (QLRA) was  introduced by A. Khrennikov (1997) to solve the ``inverse Born's rule problem'', i.e. to construct a representation of probabilistic data-- measured in any context of science-- and represent this data by a complex or more general probability amplitude which matches a generalization of Born's rule.The outcome from QLRA matches the formula of total probability with an additional trigonometric, hyperbolic or hyper-trigonometric interference term and this is in fact a generalization of the familiar formula of interference of probabilities. We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical data is collected from measurements of two dichotomous and trichotomous observables respectively. We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum--like representation. We also study simulations of quantum computers on classical computers.Although it can not be denied that great progress have been made in quantum technologies, it is clear that there is still a huge gap between the creation of experimental quantum computers and realization of a quantum computer that can be used in applications. Therefore the simulation of quantum computations on classical computers became an important part in the attempt to cover this gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation.  The second part of this thesis is devoted to adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulations on classical computers. Concretely we represent Simon's algorithm, Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm and quantum error-correcting codes in the Mathematica symbolic language. We see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include future algorithms in this framework.
APA, Harvard, Vancouver, ISO, and other styles
2

Nyman, Peter. "Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer." Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-2329.

Full text
Abstract:
<p>Utvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer.</p><br><p>Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Wladis, Simon. "Simulating Grover's Algorithm." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297556.

Full text
Abstract:
The purpose of this paper is to implement and simulate Grover's algorithm on one and several qubits on a classical computer. The theory behind the algorithm and its components are described in detail. This paper provides a proof of concept for one of the most remarkable results in the theory of quantum computation. I have constructed a library in Python to simulate the gates used in the algorithm that can be used up to an arbitrary number of qubits. The results of the simulations are supposed to demonstrate the characteristics of the algorithm and advantages compared to classical search.
APA, Harvard, Vancouver, ISO, and other styles
4

Strömberg, Philip, and Karlsson Vera Blomkvist. "4-qubit Grover's algorithm implemented for the ibmqx5 architecture." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229797.

Full text
Abstract:
Quantum computing is a quickly growing field of research thanks to recent hardware advances. The quantum mechanical properties of quantum computers allow them to solve certain families of problems faster than classical computers. A quantum algorithm solving such a problem is Grover's algorithm, which finds an element in an unordered set faster than any classical search algorithm. In this paper an implementation of a 4-qubit Grover's algorithm for the IBM Q computer ibmqx5 is presented. Executing the implementation on an ibmqx5 simulator yield results in line with the theoretically optimal results. The accuracy of the ibmqx5 simulation results compared to the ibmqx5 execution results suggests that current hardware is not yet suitable,due to required complexity of the circuits for a 4-qubit Grover implementation.<br>Kvantteknik är ett snabbt växande forskningsområde tack vare att nödvändig hårdvara förbättrats i rask takt. De kvantmekaniska egenskaperna hos kvantdatorer tillåter vissa familjer av problem att lösas snabbare på dessa än på klassiska datorer. En algoritm för kvantdatorer som löser ett sådant problem är Grover's algoritm, vilken hittar ett element i en oordnad mängd snabbare än vad någon sökalgoritm för klassiska datorer gör. I denna rapport presenteras en implementation av en 4-qubit Grover's algoritm för IBM Q-datorn ibmqx5. Vid exekvering av implementationen på en ibmqx5-simulator erhålls resultat som är i linje med teoretiskt optimala resultat. En jämförelse av korrektheten hos resultaten från ibmqx5-simulatorn och resultaten från ibmqx5-datorn tyder på att nuvarande hårdvara inte är lämplig för kretsar av komplexiteten nödvändig för en 4-qubit Grover implementation.
APA, Harvard, Vancouver, ISO, and other styles
5

Sjöborg, Martin, and Hanna Linn. "Simulating a Quantum Computer : Grover's Search Algorithm with Error Correction." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231739.

Full text
Abstract:
Classical simulations of quantum computers give us an insight into various things such as what quantum algorithms can achieve, whether it is possible to verify that they function as postulated, the difficulties that have to be overcome before quantum computers can be realized, as well as how we can handle these difficulties. We build a Python library to simulate a quantum computer that can perform all quantum algorithms by defining an universal gate set, from which all quantum gates – and thereby all circuits – can be constructed. We implement two algorithms that both highlight two important aspects of quantum computing: Grover’s quantum search algorithm, which demonstrates the efficiency of quantum algorithms and their superiority over their classical counterparts by searching an unsorted list quadratically faster; and an error correcting code, the Shor code, which highlights the cost of correcting the possible errors in a quantum computer.We test the rigidity of Grover’s algorithm by introducing errors without correction, and find that the algorithm shows resilience to smaller 1-qubit Pauli errors, but looses its efficiency under larger errors and thus the need for Pauli error correction arise.<br>Klassiska simuleringar av kvantdatorer ger oss en inblick i vad kvantalgoritmer kan åstadkomma, hur vi kan verifiera att algoritmerna fungerar, vilka problem vi måste lösa innan kvantdator- erna blir en verklighet, samt hur vi kanske kan hantera problemen. Vi bygger ett bibliotek i Python för att simulera en kvantdator som kan utföra alla kvantalgoritmer genom att definiera en grinduniversalmängd, ur vilken alla kvantgrindar – och därmed alla kretsar – kan konstrueras. Vi implementar två algoritmer som båda belyser två viktiga aspekter hos kvantberäkning: Grover’s kvantsökning, som demonstrerar effektiviteten hos kvantalgoritmer över deras klassiska analoger, samt en felhanteringsalgoritm, Shorkoden, som kan jämka Paulifel och är betydelsefull för att förstå vikten hos felkorrigering.Vi prövar motståndskraften hos Grovers algoritm genom att utsätta den för slumpmässiga ro- tationer hos en qubit, och finner att algoritmen är resistent mot mindre Paulifel, men snabbt slutar producera meningsfulla resultat vid större Paulifel.
APA, Harvard, Vancouver, ISO, and other styles
6

Alves, Rafael Santos de Oliveira 1982. "Algebra geometrica e o algoritmo de Grover." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306805.

Full text
Abstract:
Orientador: Carlile Campos Lavor<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-08-11T07:27:34Z (GMT). No. of bitstreams: 1 Alves_RafaelSantosdeOliveira_M.pdf: 2108746 bytes, checksum: 26f9217f1127ef34f9a7ae1692c995b8 (MD5) Previous issue date: 2008<br>Resumo: O Algoritmo de Grover é um algoritmo quântico de busca em um conjunto desordenado. Com o uso de propriedades da mecânica quântica, ele apresenta um ganho quadrático em relação a um algoritmo clássico. Neste trabalho, apresentamos uma outra visão deste algoritmo, através da Álgebra Geométrica, motivados pela interpretação geométrica dos operadores, e verificamos que é possível escrevê-lo com uma nova linguagem, e ainda apresentar uma expressão mais simples para o operador de Grover (G) além de expressões gerais para estados resultantes de aplicações sucessivas deste operador<br>Abstract: Grover¿s algorithm is a quantum algorithm for searching in unstructured databases. Due to the properties of quantum mechanics, it provides a quadratic speedup over their classical counterparts. Using the Geometric Algebra, we present a new way to understand and simplify the operators of Grover¿s algorithm<br>Mestrado<br>Computação Quantica<br>Mestre em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
7

Robles, Granda Pablo Dario. "A NEW IMAGE CLASSIFICATION ALGORITHM BASED ON ADDITIVE GROVES." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/563.

Full text
Abstract:
Image analysis and classification have become a very active research topic in recent decades. The practical applications where classification of images is of importance range from technology to geographical, civil, military, and biological sciences. This article proposes an efficient image classification algorithm based on a recently developed regression method. Groves of regression trees are used with image feature sampling to learn patterns from images that are later used to define a probabilistic framework for classification purposes. This new method can generalize well with small number of training subwindows. By comparing several publicly available datasets, this paper shows how the new method outperforms several state of the art techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Katabira, Joseph. "Groverův algoritmus v kvantovém počítání a jeho aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445458.

Full text
Abstract:
Kvantová výpočetní technika je rychle rostoucí obor informatiky, který přenáší principy kvantových jevu do našeho každodenního života. Díky své kvantové podstatě získávají kvantové počítače převahu nad klasickými počítači. V této práci jsme se zaměřili na vysvětlení základů kvantového počítání a jeho implementaci na kvantovém počítači. Zejména se zaměřujeme na popis fungování, konstrukci a implementaci Groverova algoritmu jako jednoho ze základních kvantových algoritmů. Demonstrovali jsme sílu tohoto kvantového algoritmu při prohledávání databáze a porovnávali ho s klasickými nekvantovými algoritmy pomocí implementace prostřednictvím simulačního prostředí QISKit. Pro simulaci jsme použili QASM Simulator a State vector Simulator Aer backends a ukázali, že získané výsledky korelují s dříve diskutovanými teoretickými poznatky. Toto ukazuje, že Groverův algoritmus umožňuje kvadratické zrychlení oproti klasickému nekvantovému vyhledávacímu algoritmu, Použitelnost algoritmu stejně jako ostatních kvantových algoritmů je ale stále omezena několika faktory, mezi které patří vysoké úrovně dekoherence a chyby hradla.
APA, Harvard, Vancouver, ISO, and other styles
9

Furrow, Bartholomew. "A panoply of quantum algorithms." Thesis, University of British Columbia, 2006. http://hdl.handle.net/2429/75.

Full text
Abstract:
This thesis’ aim is to explore improvements to, and applications of, a fundamental quantum algorithm invented by Grover. Grover’s algorithm is a basic tool that can be applied to a large number of problems in computer science, creating quantum algorithms that are polynomially faster than fastest known and fastest possible classical algorithms that solve the same problems. Our goal in this thesis is to make these techniques readily accessible to those without a strong background in quantum physics: we achieve this by providing a set of tools, each of which makes use of Grover’s algorithm or similar techniques, that can be used as subroutines in many quantum algorithms. The tools we provide are carefully constructed: they are easy to use, and they are asymptotically faster than the best tools previously available. The tools that we supersede include algorithms by Boyer, Brassard, Hoyer and Tapp, Buhrman, Cleve, de Witt and Zalka and Durr and Hoyer. After creating our tools, we create several new quantum algorithms, each of which is faster than the fastest known classical algorithm that accomplishes the same aim, and some of which are faster than the fastest possible classical algorithm. These algorithms come from graph theory, computational geometry and dynamic programming. We discuss a breadth-first search that is faster than (edges) (the classical limit) in a dense graph, maximum-points-on-a-line in (N3/2 lgN) (faster than the fastest classical algorithm known), as well as several other algorithms that are similarly illustrative of solutions in some class of problem. Through these new algorithms we illustrate the use of our tools, working to encourage their use and the study of quantum algorithms in general.
APA, Harvard, Vancouver, ISO, and other styles
10

Lutze, David. "Solving Chromatic Number with Quantum Search and Quantum Counting." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2342.

Full text
Abstract:
This thesis presents a novel quantum algorithm that solves the Chromatic Number problem. Complexity analysis of this algorithm revealed a run time of O(2n/2n2(log2n)2). This is an improvement over the best known algorithm, with a run time of 2nnO(1) [1]. This algorithm uses the Quantum Search algorithm (often called Grover's Algorithm), and the Quantum Counting algorithm. Chromatic Number is an example of an NP-Hard problem, which suggests that other NP-Hard problems can also benefit from a speed-up provided by quantum technology. This has wide implications as many real world problems can be framed as NP-Hard problems, so any speed-up in the solution of these problems is highly sought after. A bulk of this thesis consists of a review of the underlying principles of quantum mechanics and quantum computing, building to the Quantum Search and Quantum Counting algorithms. The review is written with the assumption that the reader has no prior knowledge on quantum computing. This culminates with a presentation of algorithms for generating the quantum circuits required to solve K-Coloring and Chromatic Number.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!