Journal articles on the topic 'Indole functionalization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Indole functionalization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sharma, Upendra, Inder Kumar, and Rakesh Kumar. "Recent Advances in the Regioselective Synthesis of Indoles via C–H Activation/Functionalization." Synthesis 50, no. 14 (2018): 2655–77. http://dx.doi.org/10.1055/s-0037-1609733.
Full textChen, Jing-Biao, and Yi-Xia Jia. "Recent progress in transition-metal-catalyzed enantioselective indole functionalizations." Organic & Biomolecular Chemistry 15, no. 17 (2017): 3550–67. http://dx.doi.org/10.1039/c7ob00413c.
Full textZhang, Yong-Sheng, Xiang-Ying Tang, and Min Shi. "Divergent synthesis of indole-fused polycycles via Rh(ii)-catalyzed intramolecular [3 + 2] cycloaddition and C–H functionalization of indolyltriazoles." Organic Chemistry Frontiers 2, no. 11 (2015): 1516–20. http://dx.doi.org/10.1039/c5qo00216h.
Full textTrubitsõn, Dmitri, and Tõnis Kanger. "Enantioselective Catalytic Synthesis of N-alkylated Indoles." Symmetry 12, no. 7 (2020): 1184. http://dx.doi.org/10.3390/sym12071184.
Full textOsipov, Sergey, and Daria Vorobyeva. "Selective Synthesis of 2- and 7-Substituted Indole Derivatives via Chelation-Assisted Metallocarbenoid C–H Bond Functionalization." Synthesis 50, no. 02 (2017): 227–40. http://dx.doi.org/10.1055/s-0036-1591498.
Full textNagaraju, Karre, and Dawei Ma. "Oxidative coupling strategies for the synthesis of indole alkaloids." Chemical Society Reviews 47, no. 21 (2018): 8018–29. http://dx.doi.org/10.1039/c8cs00305j.
Full textKaldas, Sherif J., Alexandre Cannillo, Terry McCallum, and Louis Barriault. "Indole Functionalization via Photoredox Gold Catalysis." Organic Letters 17, no. 11 (2015): 2864–66. http://dx.doi.org/10.1021/acs.orglett.5b01260.
Full textPirovano, Valentina. "Gold-Catalyzed Functionalization Reactions of Indole." European Journal of Organic Chemistry 2018, no. 17 (2018): 1925–45. http://dx.doi.org/10.1002/ejoc.201800125.
Full textWu, Wang, Zhang, and Jin. "Urea-Derivative Catalyzed Enantioselective Hydroxyalkylation of Hydroxyindoles with Isatins." Molecules 24, no. 21 (2019): 3944. http://dx.doi.org/10.3390/molecules24213944.
Full textCai, Yan, Yuming Li, Minxuan Zhang, Jiaxin Fu та Zhiwei Miao. "Regioselective BF3·Et2O-catalyzed C–H functionalization of indoles and pyrrole with reaction of α-diazophosphonates". RSC Advances 6, № 73 (2016): 69352–56. http://dx.doi.org/10.1039/c6ra15329a.
Full textMo, Zu-Yu, Xin-Yu Wang, Yu-Zhen Zhang, Li Yang, Hai-Tao Tang, and Ying-Ming Pan. "Electrochemically enabled functionalization of indoles or anilines for the synthesis of hexafluoroisopropoxy indole and aniline derivatives." Organic & Biomolecular Chemistry 18, no. 20 (2020): 3832–37. http://dx.doi.org/10.1039/d0ob00157k.
Full textXu, Lanting, Lushi Tan, and Dawei Ma. "Rhodium-Catalyzed Regioselective C7-Functionalization of Indole Derivatives with Acrylates by Using an N-Imino Directing Group." Synlett 28, no. 20 (2017): 2839–44. http://dx.doi.org/10.1055/s-0036-1588530.
Full textSerdyuk, Olga, Igor Trushkov, Maxim Uchuskin, and Vladimir Abaev. "Indolylvinyl Ketones: Building Blocks for the Synthesis of Natural Products and Bioactive Compounds." Synthesis 51, no. 04 (2019): 787–815. http://dx.doi.org/10.1055/s-0037-1611702.
Full textMoriyama, Katsuhiko, Tsukasa Hamada, Kazuma Ishida, and Hideo Togo. "1,3-Iodo-amination of 2-methyl indoles via Csp2–Csp3 dual functionalization with iodine reagent." Chemical Communications 54, no. 34 (2018): 4258–61. http://dx.doi.org/10.1039/c8cc00352a.
Full textIwao, Masatomo, and Tsutomu Fukuda. "Efficient Functionalization of Indole Ring via Regioselective Lithiations." Journal of Synthetic Organic Chemistry, Japan 60, no. 7 (2002): 691–700. http://dx.doi.org/10.5059/yukigoseikyokaishi.60.691.
Full textSzatmári, István, Judit Sas, and Ferenc Fülöp. "C-3 Functionalization of Indole Derivatives with Isoquinolines." Current Organic Chemistry 20, no. 20 (2016): 2038–54. http://dx.doi.org/10.2174/1385272820666160325202857.
Full textKaldas, Sherif J., Alexandre Cannillo, Terry McCallum, and Louis Barriault. "ChemInform Abstract: Indole Functionalization via Photoredox Gold Catalysis." ChemInform 46, no. 43 (2015): no. http://dx.doi.org/10.1002/chin.201543172.
Full textZhang, Wenzheng, Guangyang Xu, Lin Qiu, and Jiangtao Sun. "Gold-catalyzed C5-alkylation of indolines and sequential oxidative aromatization: access to C5-functionalized indoles." Organic & Biomolecular Chemistry 16, no. 21 (2018): 3889–92. http://dx.doi.org/10.1039/c8ob00826d.
Full textGardner, Eric D., Dustin A. Dimas, Matthew C. Finneran, Sara M. Brown, Anthony W. Burgett, and Shanteri Singh. "Indole C6 Functionalization of Tryprostatin B Using Prenyltransferase CdpNPT." Catalysts 10, no. 11 (2020): 1247. http://dx.doi.org/10.3390/catal10111247.
Full textBeccalli, Egle M., Michael S. Christodoulou, Francesca Foschi, and Sabrina Giofrè. "Pd-Catalyzed Domino Reactions Involving Alkenes To Access Substituted Indole Derivatives." Synthesis 52, no. 19 (2020): 2731–60. http://dx.doi.org/10.1055/s-0040-1707123.
Full textDalpozzo, Renato. "Strategies for the asymmetric functionalization of indoles: an update." Chemical Society Reviews 44, no. 3 (2015): 742–78. http://dx.doi.org/10.1039/c4cs00209a.
Full textMessaoud, Mohamed Yacine Ameur, Ghenia Bentabed-Ababsa, Madani Hedidi, et al. "Deproto-metallation of N-arylated pyrroles and indoles using a mixed lithium–zinc base and regioselectivity-computed CH acidity relationship." Beilstein Journal of Organic Chemistry 11 (August 24, 2015): 1475–85. http://dx.doi.org/10.3762/bjoc.11.160.
Full textKumar, Pravin, Prajyot Jayadev Nagtilak, and Manmohan Kapur. "Transition metal-catalyzed C–H functionalizations of indoles." New Journal of Chemistry 45, no. 31 (2021): 13692–746. http://dx.doi.org/10.1039/d1nj01696b.
Full textSong, Jinhua J., Jonathan T. Reeves, Daniel R. Fandrick, Zhulin Tan, Nathan K. Yee, and Chris H. Senanayake. "Construction of indole nucleus through C-H functionalization reactions." Arkivoc 2010, no. 1 (2010): 390–449. http://dx.doi.org/10.3998/ark.5550190.0011.110.
Full textSar, Saibal, Ranajit Das, Dhiraj Barman, et al. "A sustainable C–H functionalization of indoles, pyrroles and furans under a blue LED with iodonium ylides." Organic & Biomolecular Chemistry 19, no. 35 (2021): 7627–32. http://dx.doi.org/10.1039/d1ob01219c.
Full textSherikar, Mahadev Sharanappa, Raja Kapanaiah, Veeranjaneyulu Lanke, and Kandikere Ramaiah Prabhu. "Rhodium(iii)-catalyzed C–H activation at the C4-position of indole: switchable hydroarylation and oxidative Heck-type reactions of maleimides." Chemical Communications 54, no. 79 (2018): 11200–11203. http://dx.doi.org/10.1039/c8cc06264a.
Full textBroggini, Gianluigi, Egle M. Beccalli, Andrea Fasana, and Silvia Gazzola. "Palladium-catalyzed dual C–H or N–H functionalization of unfunctionalized indole derivatives with alkenes and arenes." Beilstein Journal of Organic Chemistry 8 (October 11, 2012): 1730–46. http://dx.doi.org/10.3762/bjoc.8.198.
Full textCheng, Jian, Jun Sun, Jiekuan Yan, et al. "Carbene-Catalyzed Indole 3-Methyl C(sp3)–H Bond Functionalization." Journal of Organic Chemistry 82, no. 24 (2017): 13342–47. http://dx.doi.org/10.1021/acs.joc.7b02436.
Full textMiley, Galen P., Jennifer C. Rote, Richard B. Silverman, Neil L. Kelleher, and Regan J. Thomson. "Total Synthesis of Tambromycin Enabled by Indole C–H Functionalization." Organic Letters 20, no. 8 (2018): 2369–73. http://dx.doi.org/10.1021/acs.orglett.8b00700.
Full textIwao, Masatomo, and Tsutomu Fukuda. "ChemInform Abstract: Efficient Functionalization of Indole Ring via Regioselective Lithiations." ChemInform 33, no. 48 (2010): no. http://dx.doi.org/10.1002/chin.200248236.
Full textPetrini, Marino. "New Perspectives in the Indole Ring Functionalization using 2‐Indolylmethanols." Advanced Synthesis & Catalysis 362, no. 6 (2020): 1214–32. http://dx.doi.org/10.1002/adsc.201901245.
Full textMishra, Neeraj Kumar, Miji Choi, Hyeim Jo, et al. "Direct C–H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis." Chemical Communications 51, no. 97 (2015): 17229–32. http://dx.doi.org/10.1039/c5cc07767b.
Full textSchollmeyer, Dieter, Young-Shin Kim, and Ulf Pindur. "Synthesis and Crystal Structures of Indole Derivatives and Indolo[2,3-a]carbazoles as Building Blocks to or as Protein Kinase C Inhibitors." Zeitschrift für Naturforschung B 52, no. 10 (1997): 1251–58. http://dx.doi.org/10.1515/znb-1997-1017.
Full textLima, Rafaely N., José A. C. Delgado, Darlon I. Bernardi, et al. "Post-synthetic functionalization of tryptophan protected peptide sequences through indole (C-2) photocatalytic alkylation." Chemical Communications 57, no. 47 (2021): 5758–61. http://dx.doi.org/10.1039/d1cc01822a.
Full textYang, Xing, Guoyong Luo, Liejin Zhou, et al. "Enantioselective Indole N–H Functionalization Enabled by Addition of Carbene Catalyst to Indole Aldehyde at Remote Site." ACS Catalysis 9, no. 12 (2019): 10971–76. http://dx.doi.org/10.1021/acscatal.9b03163.
Full textRadini, Ibrahim, Hussein El-Kashef, Norbert Haider, and Abdel-Rahman Farghaly. "Synthesis and functionalization of some new pyridazino[4,5-b]indole derivatives." Arkivoc 2016, no. 5 (2016): 101–17. http://dx.doi.org/10.3998/ark.5550190.p009.763.
Full textFeldman, Ken S., Inanllely Y. Gonzalez, and Jocelyn E. Brown. "Functionalization of 2-bromo-N-benzyl indole via lithium–bromide exchange." Tetrahedron Letters 56, no. 23 (2015): 3564–66. http://dx.doi.org/10.1016/j.tetlet.2015.01.032.
Full textYu, Yi, Jun‐Song Zhong, Kai Xu, Yaofeng Yuan, and Ke‐Yin Ye. "Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives." Advanced Synthesis & Catalysis 362, no. 11 (2020): 2102–19. http://dx.doi.org/10.1002/adsc.201901520.
Full textMa, Dengke, Zhihan Zhang, Min Chen, Zhenyang Lin, and Jianwei Sun. "Organocatalytic Enantioselective Functionalization of Unactivated Indole C(sp 3 )−H Bonds." Angewandte Chemie International Edition 58, no. 44 (2019): 15916–21. http://dx.doi.org/10.1002/anie.201909397.
Full textMa, Dengke, Zhihan Zhang, Min Chen, Zhenyang Lin, and Jianwei Sun. "Organocatalytic Enantioselective Functionalization of Unactivated Indole C(sp 3 )−H Bonds." Angewandte Chemie 131, no. 44 (2019): 16063–68. http://dx.doi.org/10.1002/ange.201909397.
Full textTayu, Masanori, Kazuya Nomura, Koki Kawachi, Kazuhiro Higuchi, Nozomi Saito, and Tomomi Kawasaki. "Direct C2-Functionalization of Indoles Triggered by the Generation of Iminium Species from Indole and Sulfonium Salt." Chemistry - A European Journal 23, no. 45 (2017): 10925–30. http://dx.doi.org/10.1002/chem.201702338.
Full textDing, Yingcai, Wei Wu, Wannian Zhao, et al. "Generation of thioethers via direct C–H functionalization with sodium benzenesulfinate as a sulfur source." Organic & Biomolecular Chemistry 14, no. 4 (2016): 1428–31. http://dx.doi.org/10.1039/c5ob02073e.
Full textGrenet, Erwann, Ashis Das, Paola Caramenti, and Jérôme Waser. "Rhodium-catalyzed C–H functionalization of heteroarenes using indoleBX hypervalent iodine reagents." Beilstein Journal of Organic Chemistry 14 (May 25, 2018): 1208–14. http://dx.doi.org/10.3762/bjoc.14.102.
Full textBhattacharjee, Prantika, and Utpal Bora. "Organocatalytic dimensions to the C–H functionalization of the carbocyclic core in indoles: a review update." Organic Chemistry Frontiers 8, no. 10 (2021): 2343–65. http://dx.doi.org/10.1039/d0qo01466d.
Full textLu, Beili, Xianyan Li, and Yongmei Lin. "Recent Development of Indole Synthesis by Transition Metal Catalyzed C—H Functionalization." Chinese Journal of Organic Chemistry 35, no. 11 (2015): 2275. http://dx.doi.org/10.6023/cjoc201505031.
Full textLeitch, Jamie A., Yunas Bhonoah, and Christopher G. Frost. "Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole." ACS Catalysis 7, no. 9 (2017): 5618–27. http://dx.doi.org/10.1021/acscatal.7b01785.
Full textHiguchi, Kazuhiro, Masanori Tayu та Tomomi Kawasaki. "Active thionium species mediated functionalization at the 2α-position of indole derivatives". Chemical Communications 47, № 23 (2011): 6728. http://dx.doi.org/10.1039/c1cc11645b.
Full textSayyed, Iliyas Ali, Karolin Alex, Annegret Tillack, et al. "Selective reduction and functionalization of diethyl 1-alkyl-1H-indole-2,3-dicarboxylates." Tetrahedron 64, no. 20 (2008): 4590–95. http://dx.doi.org/10.1016/j.tet.2008.03.011.
Full textCai, Yue, Qing Gu, and Shu-Li You. "Chemoselective N–H functionalization of indole derivatives via the Reissert-type reaction catalyzed by a chiral phosphoric acid." Organic & Biomolecular Chemistry 16, no. 33 (2018): 6146–54. http://dx.doi.org/10.1039/c8ob01863d.
Full textZhang, Jun, Yun Hu, Haiyu Wang, et al. "Regioselective Functionalization of 4-Methyl-1H-indole for Scalable Synthesis of 2-Cyano-5-formyl-4-methyl-1H-indole." Organic Process Research & Development 22, no. 1 (2018): 97–102. http://dx.doi.org/10.1021/acs.oprd.7b00370.
Full text