Academic literature on the topic 'Insular cortex'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Insular cortex.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Insular cortex"

1

Kalani, M. Yashar S., Maziyar A. Kalani, Ryder Gwinn, Bart Keogh, and Victor C. K. Tse. "Embryological development of the human insula and its implications for the spread and resection of insular gliomas." Neurosurgical Focus 27, no. 2 (2009): E2. http://dx.doi.org/10.3171/2009.5.focus0997.

Full text
Abstract:
The human insular cortex, or the lobus insularis, is considered the developmentally most primitive lobe of the telencephalon. Covered by an overlying cortical lid, the insula has functions that are distinct from yet related to those of the adjacent temporal lobe and deep limbic structures. In the first part of this paper the authors outline the development of the human insula, including the cellular heterogeneity comprising the various parts of the insular lobe. Using the understanding gained from the development of the insula they then address implications of insular development for cortical development and connection as well as for tumorigenesis and tumor spread from the insula to other cortical structures, most notably the temporal lobe. An understanding of cortico-insular development and interconnection allows for both a better understanding of insular pathology and also facilitates planning of resection of cortico-insular gliomas to avoid damage to eloquent structures.
APA, Harvard, Vancouver, ISO, and other styles
2

Salado, Anne Laure, Laurent Koessler, Gabriel De Mijolla, et al. "sEEG is a Safe Procedure for a Comprehensive Anatomic Exploration of the Insula: A Retrospective Study of 108 Procedures Representing 254 Transopercular Insular Electrodes." Operative Neurosurgery 14, no. 1 (2017): 1–8. http://dx.doi.org/10.1093/ons/opx106.

Full text
Abstract:
Abstract BACKGROUND The exploration of the insula in pre-surgical evaluation of epilepsy is considered to be associated with a high vascular risk resulting in an incomplete exploration of the insular cortex. OBJECTIVE To report a retrospective observational study of insular exploration using stereoelectroencephalography (sEEG) with transopercular and parasagittal oblique intracerebral electrodes from January 2008 to January 2016. The first purpose of this study was to evaluate the surgical risks of insular cortex sEEG exploration. The second purpose was to define the ability of placing intracerebral contacts in the whole insular cortex. METHODS Ninety-nine patients underwent 108 magnetic resonance imaging (MRI)-guided stereotactic implantations of intracerebral electrodes in the context of preoperative assessment of drug-resistant epilepsy, including at least 1 electrode placed in the insular cortex. On postoperative computed tomography images co-registered with MRI, followed by MRI segmentation and application of a transformation matrix, intracerebral contact coordinates of the insular electrodes’ contacts were anatomically localized in the Talairach space. Finally, dispersion and clustering analysis was performed. RESULTS There was no morbidity, in particular hemorrhagic complications, or mortality related to insular electrodes. Statistical comparison of intracerebral contact positions demonstrated that whole insula exploration is possible on the left and right sides. In addition, the clustering analysis showed the homogeneous distribution of the electrodes within the insular cortex. CONCLUSION In the presurgical evaluation of drug-resistant epilepsy, the insular cortex can be explored safely and comprehensively using transopercular sEEG electrodes. Parasagittal oblique trajectories may also be associated to achieve an optimal exploration.
APA, Harvard, Vancouver, ISO, and other styles
3

Afif, Afif, Guillaume Becq, and Patrick Mertens. "Definition of a Stereotactic 3-Dimensional Magnetic Resonance Imaging Template of the Human Insula." Operative Neurosurgery 72, no. 1 (2012): ons35—ons46. http://dx.doi.org/10.1227/neu.0b013e31826cdc57.

Full text
Abstract:
Abstract Background: This study proposes a 3-dimensional (3-D) template of the insula in the bicommissural reference system with posterior commissure (PC) as the center of coordinates. Objective: Using the bicommissural anterior commissure (AC)-PC reference system, this study aimed to define a template and design a method for the 3-D reconstruction of the human insula that may be used at an individual level during stereotactic surgery. Methods: Magnetic resonance imaging (MRI)-based morphometric analysis was performed on 100 cerebral cortices with normal insulae based on a 3-step procedure: Step 1: AC-PC reference system-based reconstruction of the insula from the 1-mm thick 3-D T1-weighted MRI slices. Step 2: Digitalization and superposition of the data obtained in the 3 spatial planes. Step 3: Representation of pixels as colors on a scale corresponding to the probability of localization of each insular anatomic component. Results: The morphometric analysis of the insula confirmed our previously reported findings of a more complex shape delimited by 4 peri-insular sulci. A very significant correlation between the coordinates of the main insular structures and the length of AC-PC was demonstrated. This close correlation allowed us to develop a method that allows the 3-D reconstruction of the insula from MRI slices and only requires the localization of AC and PC. This process defines an area deemed to contain insula with 100% probability. Conclusion: This 3-D reconstruction of the insula should be useful to improve its localization and other cortical areas and allow the differentiation of insular cortex from opercular cortex.
APA, Harvard, Vancouver, ISO, and other styles
4

Di Stefano, Vincenzo, Maria Vittoria De Angelis, Chiara Montemitro, et al. "Clinical presentation of strokes confined to the insula: a systematic review of literature." Neurological Sciences 42, no. 5 (2021): 1697–704. http://dx.doi.org/10.1007/s10072-021-05109-1.

Full text
Abstract:
Abstract Background and purpose The insular cortex serves a wide variety of functions in humans, ranging from sensory and affective processing to high-level cognition. Hence, insular dysfunction may result in several different presentations. Ischemic strokes limited to the insular territory are rare and deserve a better characterization, to be quickly recognized and to receive the appropriate treatment (e.g. thrombolysis). Methods We reviewed studies on patients with a first-ever acute stroke restricted to the insula. We searched in the Medline database the keywords “insular stroke” and “insular infarction”, to identify previously published cases. Afterwards, the results were divided depending on the specific insular region affected by the stroke: anterior insular cortex (AIC), posterior insular cortex (PIC) or total insula cortex (TIC). Finally, a review of the clinical correlates associated with each region was performed. Results We identified 25 reports including a total of 49 patients (59.7 ± 15.5 years, 48% male) from systematic review of the literature. The most common clinical phenotypes were motor and somatosensory deficits, dysarthria, aphasia and a vestibular-like syndrome. Atypical presentations were also common and included dysphagia, awareness deficits, gustatory disturbances, dysautonomia, neuropsychiatric or auditory disturbances and headache. Conclusions The clinical presentation of insular strokes is heterogeneous; however, an insular stroke should be suspected when vestibular-like, somatosensory, speech or language disturbances are combined in the same patient. Further studies are needed to improve our understanding of more atypical presentations.
APA, Harvard, Vancouver, ISO, and other styles
5

Levitt, Michael R., Jeffrey G. Ojemann, and John Kuratani. "Insular epilepsy masquerading as multifocal cortical epilepsy as proven by depth electrode." Journal of Neurosurgery: Pediatrics 5, no. 4 (2010): 365–67. http://dx.doi.org/10.3171/2009.11.peds09169.

Full text
Abstract:
The insular cortex is an uncommon epileptogenic location from which complex partial seizures may arise. Seizure activity in insular epilepsy may mimic temporal, parietal, or other cortical areas. Semiology, electroencephalography, and even surface electrocorticography recordings may falsely localize other cortical foci, leading to inaccurate diagnosis and treatment. The use of insular depth electrodes allows more precise localization of seizure foci. The authors describe the case of a young girl with seizures falsely localized to the cortex, with foci arising from the insula, as proven by depth electrode recordings. Resection of the insula yielded seizure control.
APA, Harvard, Vancouver, ISO, and other styles
6

Nachtergaele, Pieter, Ahmed Radwan, Stijn Swinnen, et al. "The temporoinsular projection system: an anatomical study." Journal of Neurosurgery 132, no. 2 (2020): 615–23. http://dx.doi.org/10.3171/2018.11.jns18679.

Full text
Abstract:
OBJECTIVEConnections between the insular cortex and the amygdaloid complex have been demonstrated using various techniques. Although functionally well connected, the precise anatomical substrate through which the amygdaloid complex and the insula are wired remains unknown. In 1960, Klingler briefly described the “fasciculus amygdaloinsularis,” a white matter tract connecting the posterior insula with the amygdala. The existence of such a fasciculus seems likely but has not been firmly established, and the reported literature does not include a thorough description and documentation of its anatomy. In this fiber dissection study the authors sought to elucidate the pathway connecting the insular cortex and the mesial temporal lobe.METHODSFourteen brain specimens obtained at routine autopsy were dissected according to Klingler’s fiber dissection technique. After fixation and freezing, anatomical dissections were performed in a stepwise progressive fashion.RESULTSThe insula is connected with the opercula of the frontal, parietal, and temporal lobes through the extreme capsule, which represents a network of short association fibers. At the limen insulae, white matter fibers from the extreme capsule converge and loop around the uncinate fasciculus toward the temporal pole and the mesial temporal lobe, including the amygdaloid complex.CONCLUSIONSThe insula and the mesial temporal lobe are directly connected through white matter fibers in the extreme capsule, resulting in the appearance of a single amygdaloinsular fasciculus. This apparent fasciculus is part of the broader network of short association fibers of the extreme capsule, which connects the entire insular cortex with the temporal pole and the amygdaloid complex. The authors propose the term “temporoinsular projection system” (TIPS) for this complex.
APA, Harvard, Vancouver, ISO, and other styles
7

Afif, Afif, Stephan Chabardes, Lorella Minotti, Philippe Kahane, and Dominique Hoffmann. "Safety and Usefulness of Insular Depth Electrodes Implanted Via an Oblique Approach in Patients with Epilepsy." Operative Neurosurgery 62, suppl_5 (2008): ONS471—ONS480. http://dx.doi.org/10.1227/01.neu.0000326037.62337.80.

Full text
Abstract:
Abstract Objective: This study investigates the feasibility, safety, and usefulness of depth electrodes stereotactically implanted within the insular cortex. Methods: Thirty patients with suspected insular involvement during epileptic seizure underwent presurgical stereotactic electroencephalographic recordings using 10 to 16 depth electrodes per patient. Among these, one or two electrodes were implanted via an oblique approach to widely sample the insular cortex. Results: Thirty-five insular electrodes were implanted in the 30 patients without morbidity. A total of 226 recording contacts (mean, 7.5 contacts/patient) explored the insular cortex. Stereotactic electroencephalographic recordings of seizures allowed the differentiation into groups: Group 1, 10 patients with no insular involvement; Group 2, 15 patients with secondary insular involvement; and Group 3, five patients with an initial insular involvement. In temporal epilepsy (n = 17), the insula was never involved at the seizure onset but was frequently involved during the seizures (11 out of 17). In fron-totemporal or frontal epilepsy, the insula was involved at the onset of seizure in five out of 13 patients. All patients in Groups 1 and 2 underwent surgery, with a seizure-free outcome in 76.2% of patients. In Group 3, only two of the five patients underwent surgery, with a poor outcome. In temporal lobe epilepsy, surgical outcome tended to be better in Group 1 compared with Group 2 in this small series: results were good in 83.3% (Engel I) versus 72.7%. Conclusion: Insula can be safely explored with oblique electrodes. In temporal lobe epilepsy, insular involvement does not significantly modify the short-term postoperative outcome. Future larger studies are necessary to clarify the long-term prognostic value of insular spread.
APA, Harvard, Vancouver, ISO, and other styles
8

Alexeeva, N. T., S. V. Klochkova, D. A. Sokolov, and D. B. Nikityuk. "Contemporary data on the structural and functional organization of the insular lobe of cerebral hemispheres." Journal of Anatomy and Histopathology 13, no. 2 (2024): 79–92. http://dx.doi.org/10.18499/2225-7357-2024-13-2-79-92.

Full text
Abstract:
The article presents an analysis of contemporary literature data on the structural and functional organization of the insular lobe of cerebral hemispheres. In adults, the insular lobe is located deep in the lateral sulcus under the frontoparietal and temporal opercula and is divided by the central sulcus of insula into two lobes – anterior and posterior. The relief of the sulci and gyri of the insula has individual variability. The insula receives blood supply from the M2 segment of the middle cerebral artery. The description of the cytoarchitectonics of the insular cortex according to different authors has significant differences. It is believed that the insular cortex is a transitional area from the paleocortex to the neocortex. In the domestic literature, two main cytoarchitectonic fields are described – 13, corresponding to the posterior parts of the insula and 14, occupying the anterior central gyrus of the insula, its short gyri, as well as a number of subregions. In foreign literature, seven cytoarchitectonic zones are distinguished: Ia1, Ig3, Id2, Id3, Id4, Id5, Id6. The insular lobe receives afferent projections from the thalamic nuclei and a number of parts of the cerebral cortex responsible for the perception of sensory stimuli. There are connections with the amygdala and some structures of the limbic system, the associative cortex. Efferent projections of the insular cortex diverge both to the structures of the brainstem and to the subcortical formations: the lateral hypothalamus, amygdala, pontine nuclei, bed nuclei of the stria terminalis, the nucleus of the solitary tract and a number of other formations associated with the control of autonomic functions. In functional terms, four sections are distinguished in the insula: sensorimotor, socioemotional, cognitive, chemosensory. The sensorimotor department ensures a number of visceral reactions, which indicates its participation in the regulation of the autonomic functions of the body. It ensures the perception of somatically sensitive impulses from the face and upper limbs. The role of the insula in thermo- and nociception is described. It is known about the participation of the insular cortex in functioning of the auditory analyzer, processing of taste sensations, vestibular signals, and olfaction. It is believed that the anterior-ventral part of the insula plays a key role in the formation of emotions and subjective sensations, as well as in making decisions associated with risk. The anterior-dorsal department is responsible for the integration of sensory stimuli from the external environment with internal data on the state of the body and the emotional state in order to coordinate the work of brain networks and initiate switching between the network of the passive mode of brain operation and the network of operational problem solving.
APA, Harvard, Vancouver, ISO, and other styles
9

Uddin, Lucina Q., Joshua Kinnison, Luiz Pessoa, and Michael L. Anderson. "Beyond the Tripartite Cognition–Emotion–Interoception Model of the Human Insular Cortex." Journal of Cognitive Neuroscience 26, no. 1 (2014): 16–27. http://dx.doi.org/10.1162/jocn_a_00462.

Full text
Abstract:
Functional MRI studies report insular activations across a wide range of tasks involving affective, sensory, and motor processing, but also during tasks of high-level perception, attention, and control. Although insular cortical activations are often reported in the literature, the diverse functional roles of this region are still not well understood. We used a meta-analytic approach to analyze the coactivation profiles of insular subdivisions—dorsal anterior, ventral anterior, and posterior insula—across fMRI studies in terms of multiple task domains including emotion, memory, attention, and reasoning. We found extensive coactivation of each insular subdivision, with substantial overlap between coactivation partners for each subdivision. Functional fingerprint analyses revealed that all subdivisions cooperated with a functionally diverse set of regions. Graph-theoretical analyses revealed that the dorsal anterior insula was a highly “central” structure in the coactivation network. Furthermore, analysis of the studies that activate the insular cortex itself showed that the right dorsal anterior insula was a particularly “diverse” structure in that it was likely to be active across multiple task domains. These results highlight the nuanced functional profiles of insular subdivisions and are consistent with recent work suggesting that the dorsal anterior insula can be considered a critical functional hub in the human brain.
APA, Harvard, Vancouver, ISO, and other styles
10

Ranjan, M., Y. Starreveld, L. Bello-Espinosa, S. Wiebe, S. Singh, and WJ Hader. "D.06 Insular involvement in intractable epilepsy: results of invasive EEG data." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 43, S2 (2016): S14. http://dx.doi.org/10.1017/cjn.2016.79.

Full text
Abstract:
Background: Exploration of the insular cortex is now commonly considered in patients with refractory epilepsy requiring invasive EEG investigations. The safety and yield of routine insular exploration is uncertain. Methods: All patients (pediatric and adult) who had invasive EEG (iEEG) with insular depth electrode placement, either through SEEG or open implantation, were reviewed. Ictal insular involvement was characterized as primary, secondary or not involved. Results of insular resections were recorded. Results: A total of 173 patients had iEEG of which 26 included insular electrodes (SEEG-18, Open - 8). No complications of placement were identified. Insular involvement was seen in 20 (76%) patients. Primary ictal involvement was identified in 9 (33 %) patients, while secondary spread was noted in 11 (42 %) patients. Six patients went on to have resections including the insular cortex of which 5 patients achieved good seizure control (Engle class I/II). Conclusions: Insular depth electrode placement is a safe and effective adjunct to invasive EEG investigations. Ictal involvement of the insular cortex was commonly identified in our series leading to inclusion of the insula in cortical resections with good seizure control, which may not have been considered without iEEG evidence.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Insular cortex"

1

Rogers-Carter, Morgan M. "TheRole of the Insular Cortex in Rodent Social Affective Behavior:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108375.

Full text
Abstract:
Thesis advisor: John P. Christianson<br>In social species, animals must detect, evaluate and respond to the states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate such social information with environmental cues and internal physiology to general social behavioral responses via a process called social decision-making. The mechanisms and anatomical correlates of social decision-making, particularly those that allow behavioral responses to others’ emotional states, are not fully known. Therefore, the objective of this dissertation is to broaden the anatomical understanding of social decision-making by investigating the role of the insular cortex in social behaviors that depend upon others’ emotional state. Using a novel behavioral paradigm, I present causal evidence that implicates the insular cortex and its projections to the nucleus accumbens in social affective behavior. These findings are consistent with evidence from the literature that suggests insular cortex is positioned to convey sensory cues to social brain structures to produce flexible and appropriate behavioral responses to social affective cues<br>Thesis (PhD) — Boston College, 2019<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipline: Psychology
APA, Harvard, Vancouver, ISO, and other styles
2

Tensaouti, Yacine. "Contribution of the rat insular cortex to stimulus-guided action." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0216.

Full text
Abstract:
Chaque jour, nous sommes confrontés à de nombreuses décisions qui façonnent nos comportements. Les facteurs influençant ces choix sont multiples. Les besoins et désirs immédiats jouent souvent un rôle important dans la sélection des actions, guidés par la valeur du but. Cependant, il est essentiel de reconnaître l'impact des stimuli environnementaux. Par exemple, les stimuli alimentaires peuvent non seulement nous orienter vers la nourriture, mais aussi déclencher des envies, même en l'absence de faim. Afin d’identifier le rôle du cortex insulaire (CI) du rat dans les actions guidées par des stimuli et visant à obtenir des aliments, nous avons utilisé le paradigme du transfert Pavlovien-Instrumental (PIT). Étant donné le rôle bien établi du CI dans l'encodage et la surveillance des attentes générales et spécifiques, et sa contribution critique dans le choix guidé par la valeur spécifique d’un but, nous avons émis l'hypothèse d'un rôle du CI pendant le test de transfert PIT où les actions sont influencées par des stimuli prédictifs de récompense. Grâce à une approche chimiogénétique, nous avons démontré que l'inhibition du CI pendant les tests de transfert généraux et spécifiques abolissait la capacité des stimuli prédictifs de récompense pavloviens à stimuler la réponse instrumentale et à orienter spécifiquement le choix de l'action vers la même récompense que le stimulus prédictif présenté, respectivement. Ces résultats démontrent pour la première fois le rôle critique du CI dans le choix guidé par stimulus, englobant à la fois les propriétés motivationnelles générales acquises par les stimuli pavloviens et leur capacité à orienter spécifiquement la sélection de l'action vers des résultats spécifiques. De plus, nos résultats préliminaires suggèrent que cette dernière peut dépendre de façon critique d'une voie cortico-thalamique intacte impliquant la partie médiodorsale du thalamus<br>Every day, individuals are faced with numerous decisions that shape their behavior. The factors influencing these choices are multifaceted and encompass a range of considerations. Immediate needs and desires often play a significant role in action selection, guided by the value of the outcome. However, it is crucial to recognize the impact of environmental stimuli. For instance, stimuli associated with food can not only direct us toward nourishment but also trigger cravings, even in the absence of hunger. To uncover the role of the rat insular cortex (IC) in stimulus-guided actions directed towards obtaining food outcomes, we used the Pavlovian-to-Instrumental Transfer (PIT) paradigm. Given the well-established role of IC in encoding and tracking general and specific outcome-expectancies, and its critical contribution in choice guided by specific-outcome values, we hypothesized a role of the IC during the PIT transfer test where actions are influenced by reward-predictive stimuli. Using chemogenetics, we demonstrated that IC inhibition during both general and specific transfer tests abolished the ability of Pavlovian reward-predictive stimuli to energize instrumental responding, and to specifically bias action selection towards the same outcome as the presented predictive stimulus, respectively. These results demonstrated for the first time the critical role of the IC in stimulus-guided choice, encompassing both the general motivational properties acquired by Pavlovian stimuli and their ability to specifically bias action selection towards specific outcomes. Moreover, preliminary results suggest that the latter may critically depend on an intact cortico-thalamic pathway involving the mediodorsal part of the thalamus. In conclusion, we provide the first evidence that the GC is required for both general and specific forms of PIT, with the latter depending on an intact cortico-thalamic pathway
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Catherine Louise. "The role of insular cortex in the integration of emotion, perception and cognition." Thesis, University of Brighton, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590010.

Full text
Abstract:
Influential models highlight that insular cortex integrates cognitive, affective, sensorimotor and autonomic signals to create unified perceptual experiences or "feeling states". One challenge in developing a satisfactory neuropsychological model of insula function is to account for its involvement across these different domains which require access across multiple functional circuits. This thesis combines behavioural, psychophysiological, functional neuroimaging and lesion methods to inform and extend current models of integration in the insula. In the first two experimental chapters, the integration of cognitive and emotional signals in risky decision making and autonomic regulation and feedback are investigated. In the final two experimental chapters the role of the insula in combining sensory information in the creation of perceptual illusions is explored. I find that the insula mediates urgent decision making, that damage to the insula can disrupt integrative processes in the context of multisensory integration and that the affective elements of synaesthetic illusions are associated with insula engagement. Together these findings shape our understanding of how the insula acts to integrate signals across different contexts and make an important and novel contribution in the development of a potentially unitary account of insula function.
APA, Harvard, Vancouver, ISO, and other styles
4

Couderc, Yoni. "Dopaminergic modulation of the insular cortex in anxiety-related behaviors and emotional valence." Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0017.

Full text
Abstract:
L'anxiété est une réponse adaptative des individus exposés à un contexte potentiellement menaçant. Cependant, des niveaux d'anxiété peuvent rester élevés de manière persistante, indépendamment de l'environnement, et devenir pathologiques. Bien que les troubles anxieux soient les affections psychiatriques les plus répandues – caractérisés par des niveaux chroniques élevés d'anxiété et un biais attentionnel envers les stimuli à valence négative – les mécanismes neurobiologiques sous-jacents restent encore mal compris. De nombreuses études, menées chez l'humain et dans des modèles précliniques, ont mis en évidence l'implication de différents neuromodulateurs, notamment la sérotonine, la noradrénaline, mais aussi la dopamine. Des études d'imagerie fonctionnelle ont montré que le cortex insulaire (ou insula), en particulier sa région antérieure, est hyperactivé chez les individus souffrant de troubles anxieux en réponse à des stimuli saillants ou négatifs. Bien que la neurotransmission dopaminergique soit connue pour réguler l'anxiété chez l'humain et dans les modèles animaux, ses effets spécifiques sur l'insula antérieure restent largement inexplorés.Cette thèse vise à explorer le rôle de la transmission dopaminergique dans le cortex insulaire dans la modulation de l'anxiété et de la valence émotionnelle chez la souris. À travers une approche multifactorielle, cette recherche a permis de révéler comment la dopamine module la fonction de l'insula antérieure dans les comportements liés à l’anxiété et à la valence émotionnelle, selon trois niveaux d’analyse clés. (1) Tout d’abord, nous avons cartographié le système dopaminergique insulaire et identifié une forte densité de neurones exprimant les récepteurs dopaminergiques de type 1 (D1), particulièrement marquée dans l’insula antérieure, et sept fois supérieure à celle des neurones exprimant les récepteurs de type 2 (D2). De plus, l’activation pharmacologique des récepteurs D1 dans l’insula antérieure s’est révélée anxiogène, établissant un lien direct entre la signalisation dopaminergique insulaire et les comportements associés à l’anxiété. (2) Par photométrie en fibre, nous avons montré que l’amplitude de la libération de dopamine sur les neurones D1-positifs de l’insula antérieure augmentait lorsque les souris étaient exposées à des espaces anxiogènes ou à des chocs électriques légers. Cette libération de dopamine était positivement corrélée avec le niveau d'anxiété intrinsèque des souris, renforçant l'idée que la dopamine joue un rôle central dans la modulation des réponses anxieuses. (3) Enfin, grâce à l’analyse par intelligence artificielle des dynamiques de population neuronale et des enregistrements de neurones unitaires dans l’insula antérieure, nous avons identifié des propriétés de codage neuronal distinctes pour les environnements anxiogènes et protégés, ainsi que pour les stimuli gustatifs à valence positive ou négative. De façon intéressante, l’activation systémique des récepteurs D1, qui augmente les comportements de type anxieux, perturbe cette dichotomie de codage en rendant le codage des espaces protégés plus variable et celui des espaces anxiogènes plus spécifique. De plus, le codage des espaces anxiogènes était corrélé positivement au niveau d’anxiété intrinsèque des souris. Nous avons également observé une tendance à une corrélation positive entre la spécificité du codage des stimuli gustatifs négatifs et le niveau d'anxiété des souris.En conclusion, ces résultats mettent en lumière un nouveau modèle de codage neuronal dans l’insula antérieure, en lien avec l’anxiété et la valence émotionnelle. Ils dévoilent également des mécanismes de codage dépendant des récepteurs D1 dans l’insula antérieure de la souris, ouvrant ainsi de nouvelles perspectives pour comprendre et traiter les troubles anxieux<br>Anxiety is an adaptive response of individuals exposed to a potentially threatening context. However, anxiety levels can be persistently high independently of the environment and become pathological. Although anxiety disorders represent the most prevalent psychiatric conditions - characterized by chronic high levels of anxiety and an attentional bias towards negative valence - the underlying neurobiology remains poorly understood. Numerous studies in humans and in preclinical models revealed the implication of different neuromodulators including serotonin, norepinephrine, but also dopamine. Imaging studies have shown that the insular cortex (or insula), particularly its anterior region, is hyperactivated in individuals with anxiety disorders in response to salient or negative stimuli. Although dopamine neurotransmission is known to regulate anxiety in humans and animal models, its specific regulatory effects on the anterior insula have remained largely unexplored.This PhD dissertation aims to investigate the role of dopamine transmission in the insular cortex in shaping anxiety and emotional valence in mice. Through a multifaceted approach, this research uncovered how dopamine modulates anterior insula function in anxiety and valence processing at three key levels of analysis. (1) First, we mapped the dopaminergic system of the insular cortex and revealed a high density of neurons expressing type-1 dopamine receptors (D1) in the insula, particularly important in the anterior insula, and seven times greater than the density of neurons expressing type-2 dopamine receptors (D2). Then, we found that pharmacological activation of D1 in the anterior insula is anxiogenic, suggesting a direct link between insular dopamine signaling and anxiety-related behaviors. (2) Using fiber-photometry, we identified that the amplitude of dopamine release onto D1+ neurons in the anterior insula while mice were in anxiogenic spaces or receiving mild foot shocks was both positively correlated with mice level of trait anxiety. (3) Finally, population dynamics and deep-learning analyses of anterior insula single-unit recordings uncovered distinct coding patterns of anxiety-provoking and safe environments, as well as tastants of positive and negative valence. Remarkably, systemic D1 activation, which heightens anxiety-related behaviors, dampens this coding dichotomy by increasing coding variability for protected spaces while increasing the coding specificity for anxiogenic spaces. Interestingly, the coding reliability of anxiogenic areas was positively correlated with mice level of trait anxiety, and we observed a trend towards a positive correlation between the coding reliability of a negative tastants, and mice level of anxiety.Altogether, our findings provide a new model of neural population coding of anxiety and emotional valence and unravel D1-dependent coding mechanisms in the mouse anterior insula
APA, Harvard, Vancouver, ISO, and other styles
5

Gehrlach, Daniel [Verfasser], and Rüdiger [Akademischer Betreuer] Klein. "Anatomical and functional characterization of the mouse insular cortex / Daniel Gehrlach ; Betreuer: Rüdiger Klein." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1216039178/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dupin, Alice. "Insular Cortex neurons projecting to the vagal complex : characterization and roles in behavior and inflammation." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS192.

Full text
Abstract:
Les interactions entre le cerveau et le reste du corps sont cruciales pour la survie de l'organisme. Le cerveau reçoit et intègre une multitude d'informations externes et internes et régule diverses fonctions physiologiques en permanence. Notamment, le système nerveux interagit étroitement avec le système immunitaire. En cas d'infection, les caractéristiques uniques du cerveau permettent une régulation optimisée des réponses immunitaires. Cela inclut la capacité du cerveau à détecter les signaux environnementaux, à anticiper les situations à venir et à transmettre rapidement des signaux à travers un vaste réseau de neurones innervant l'ensemble du corps en quelques millisecondes. Le nerf vague, reliant le cerveau aux organes viscéraux, est un support important de cette communication bidirectionnelle. Il est composé de branches sensorielles et motrices. Les afférences relaient les informations périphériques au complexe vagal dans le cerveau, qui transmet les signaux aux structures cérébrales plus profondes, tandis que les efférences motrices transmettent les réponses générées vers les organes cibles. Dans le traitement des informations intéroceptives, le cortex insulaire émerge comme un hub multimodal essentiel. En tant que cortex sensoriel, il reçoit diverses entrées des systèmes de détection externes tels que les cortex somatosensoriels et olfactifs, tout en étant densément interconnecté avec les régions comme le complexe vagal, traitant les signaux internes tels que les stimuli inflammatoires. Cela permet au cortex insulaire d'intégrer les informations extéroceptives et intéroceptives et de jouer un rôle central dans le ‘salient network'. Au sein de l'organisme, il peut optimiser les réponses à des situations spécifiques en régulant l'activité cardiaque ou intestinale, ainsi que les réponses immunitaires, mais les circuits qui médient ces fonctions ne sont pas bien connus. Compte tenu de l'importance du nerf vague dans la transmission d'informations entre le cerveau et la périphérie, ainsi que l'existence de projections du cortex insulaire vers le complexe vagal (InsCtxVC), nous émettons l'hypothèse que certaines fonctions du cortex insulaire sont médiées par le nerf vague. Pour étudier le rôle de l'InsCtxVC, nous avons d'abord caractérisé ces neurones anatomiquement à l'aide d'un virus rétrograde permettant leur marquage. Nous avons constaté que les neurones InsCtxVC sont principalement situés dans le cortex insulaire postérieur-intermédiaire dans la couche V, et expriment CTIP, un effecteur en aval de la voie Fezf2. Ensuite, nous avons examiné les entrées et sorties de ces neurones en utilisant des marqueurs viraux. Nos expériences ont révélé qu'au sein du complexe vagal, les neurones InsCtxVC établissent préférentiellement des synapses avec le NTS médian (plutôt que le NTS caudal ou le DMN), ainsi qu'avec l'amygdale centrale et le noyau parasubthalamique. De plus, nous avons analysé leurs entrées présynaptiques, mettant en évidence une innervation prédominante des cortex sensoriels, y compris le cortex insulaire lui-même, et les cortex somatosensoriels et olfactifs. Sur la base de nos résultats anatomiques et de la littérature, nous avons examiné divers contextes susceptibles de recruter l'InsCtxVC. Grace à des manipulations chemogénétiques et optogénétiques spécifiques de ces neurones, nous avons constaté que l'InsCtxVC n'est pas impliqué dans les comportements anxieux ou l'aversion gustative conditionnée neuro-immunitaire. Cependant, l'activation chemogénétique des neurones InsCtxVC lors d'une inflammation induite par le LPS exacerbe le comportement de maladie, incluant une perte de poids accrue, une élévation des cytokines pro-inflammatoires et de la corticostérone dans le sang.En conclusion, nos résultats caractérisent une population neuronale non décrite précédemment reliant le cortex insulaire à un centre parasympathique majeur régulant les réponses immunitaires périphériques<br>Brain-body interactions are crucial for organisms survival; the brain constantly receives external and internal information that it integrates to regulate various physiological function. Notably, the nervous system closely interacts with the immune system. In the case of inflammation, the brain's features enable an optimized regulation of immune responses. These features include the brain's ability to sense environmental cues, anticipate outcomes, and transmit signals rapidly through an extensive network of neurons innervating the entire body within milliseconds. The vagus nerve, linking the brain to visceral organs, is an important support of this bidirectional communication. It is composed of sensory and motor branches. Sensory afferences carry peripheral information to the vagal complex in the brain which transmits the signals to deeper brain structures, while motor efferences mediate the generated responses to targeted organs.In processing internal information, the insular cortex emerges as a critical multimodal hub. As a sensory cortex, it receives various inputs from external-sensing systems such as somatosensory, and olfactory cortices, while also being densely interconnected with regions processing internal cues such as inflammatory threats, such as the vagal complex. This allows the insular cortex to integrate exteroceptive and interoceptive information and play a pivotal role in the salience network. Within the organism, it can optimize responses to specific situations by regulating cardiac or intestinal activity, as well as immune responses, but the underlying circuits are poorly understood. Given the role played by the vagus nerve in transmitting information between the brain and the periphery, along with the presence of projections from the insular cortex to the vagal complex (InsCtxVC), we hypothesize that some of the insular cortex functions are mediated through the vagus nerve.To investigate the role of InsCtxVC, we first characterized these neurons anatomically using viral retrograde labeling. We found that InsCtxVC are predominantly located within the posterior-intermerdiate InsCtx, mainly in layer V, and express CTIP, a downstream effector of the Fezf2 pathway. Next, we examined the connectivity of these neurons using viral labeling of outputs and inputs. Our experiments revealed that within the vagal complex, InsCtxVC neurons preferentially synapse with the medial NTS (rather than caudal NTS or DMN), and the central amygdala and parasubthalamic nucleus. Additionally, we analyzed their presynaptic inputs, highlighting a predominant innervation from sensory cortices including the insula itself, the somatosensory and olfactory cortices. Based on our anatomical findings and existing litterature, we screened various contexts likely to recruit the InsCtxVC. Through specific chemogenetic and optogenetic manipulation of these neurons, we found that InsCtxVC are not involved in anxiety behaviors or neuroimmune conditionned taste aversion. However, chemogenetic activation of InsCtxVC neurons during early LPS-induced inflammation exacerbates sickness behavior, including increased weight loss, elevated blood proinflammatory cytokines and corticosterone response. Taken together, our results characterize a previsouly undefined neuronal population linking the insular cortex to a major parasympathetic center, which regulates immune responses in the periphery
APA, Harvard, Vancouver, ISO, and other styles
7

Cosme, Caitlin Victoria. "The role of the prefrontal cortex in cocaine and heroin seeking following extinction training." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5924.

Full text
Abstract:
The prefrontal cortex (PFC) is considered a critical node in the neural circuitry underlying drug-seeking behaviors. However, the mechanisms by which this region influences drug seeking and whether or not the lateral PFC mediates cocaine or heroin seeking are questions that have yet to be answered. To expand on the role of the PFC in drug seeking, rats were trained on either heroin or cocaine self-administration for a minimum of 12 days before undergoing extinction training and subsequent reinstatement tests (cued and drug-prime). All pharmacological manipulations were delivered immediately prior to reinstatement testing and were targeted at either the ventral region of the medial PFC, the infralimbic cortex (IL), the anterior portion of the medial PFC, the medial orbitofrontal cortex (mOFC), the anterior region of the insular cortex, the dorsal agranular insular cortex (AId), or the posterior region of the insular cortex, the posterior insular cortex (PIc). In chapter 1, D1 and D2 antagonists were administered into the IL and mOFC prior to cued and cocaine-prime reinstatement. Although previous studies found that the IL inhibits cocaine seeking, blocking D1 receptor activity in this region reduced cued reinstatement and had no effect on cocaine-prime reinstatement, indicating that the IL can promote cocaine seeking under certain circumstances. In contrast, blocking D1 receptors in the mOFC reduced all forms of reinstatement that were examined. Blocking D2 receptors in either region had no effect on cocaine seeking. Our data are the first to demonstrate a role for the mOFC in cocaine seeking and suggest that although the IL and mOFC lie immediately adjacent to one another, they play distinct roles in mediating cocaine seeking. In chapter 2, we pharmacologically inactivated the AId and PIc via a GABA agonist administered immediately prior to both cocaine and food seeking. Reversible inactivation of the AId reduced cued reinstatement but had no effect on cocaine-prime reinstatement. In contrast, inactivating the PIc had no effect on any form of cocaine seeking. Additionally, blocking the AId during cued and food-prime reinstatement had no effect on food seeking, indicating the role of the AId in reinstatement is specific to cocaine seeking and not general motivated behavior. Additionally, blocking CRF1 receptors in the AId blocked cued reinstatement, suggesting a possible mechanism whereby the AId is influencing cocaine seeking. These data are the first to establish a role for the AId in cocaine seeking and demonstrate that although the PIc influences alcohol and nicotine seeking, it does not mediate cocaine seeking. Chapter 3 further examined the role of the AId in cocaine seeking and expanded the influence of the insular cortex in drug seeking to heroin. AId D1 receptor blockade reduced both cued and cocaine-prime reinstatement following extinction training, whereas D2 receptor blockade had no effect on cocaine seeking. These results establish a role for the AId in cocaine-prime reinstatement, as pharmacological inactivation showed no role for the AId in cocaine-induced drug seeking. Additionally, blocking the AId during heroin seeking potentiated cued reinstatement whereas blocking the PIc during heroin seeking reduced cued reinstatement. These results demonstrate a role for the insular cortex in heroin seeking that has never been shown before and further explain how the AId may be influencing cocaine seeking.
APA, Harvard, Vancouver, ISO, and other styles
8

Almashaikhi, Talal. "Electrical brain stimulation and human insular connectivity." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10174/document.

Full text
Abstract:
Le cortex insulaire est le cinquième lobe du cerveau en charge de l'intégration de nombreuses fonctions cognitives, sous-tendues par une organisation cytoarchitectonique etune connectivité aussi riche que complexe. Ce travail vise à évaluer la connectivité fonctionnelle insulaire du cerveau humain par le biais de stimulation électrique intra-cérébrale et de potentiels évoqués cortico-corticaux (PECC) réalisés chez des patients explorés en stéréoélectroencéphalographie (SEEG) pour une épilepsie partielle réfractaire. Nous avons développé un protocole automatisé permettant destimuler successivement l’ensemble des bipoles d’enregistrement intracérébraux (deux plots contigus d’une même électrode) disponibles chez les patients explorés en SEEG. Deux sériesde 20 stimulations monophasiques d’une durée unitaire de 1 ms et d’une intentisté de 1 mA, étaient délivrés à une fréquence de 0,2 Hz au niveau de chaque bipole (105 en moyenne,produisant un total d’environ 11.000 PECC par patient). Un premier travail a consisté dans lamise au point d’une méthode fiable d’analyse statistique objective des PECC significatifs, encomplement de l’analyse visuelle, sur un échantillon de 33017 enregistrements chez trois patients. L’analyse a porté sur les quatre fenêtres temporelles post-stimulation suivantes: 10-100 ms, 100-300 ms, 300-500 ms, 500-1000 ms. La seconde partie de notre thèse a appliquéces méthodes à l’étude des connections intra-insulaires sur un échantillon de10 patients présentant au moins deux éléctrodes intra-insulaires. La dernière partie de notre travail s’est intéressé aux efférences insulaires sur un échantillon de 11 patients. L’étude des PECC apporte des éléments de connectivité fonctionnelle derésolution spatiale et temporelle inégalée, complémentaires de ceux découlant des techniquesde neuroimagerie. La gestion complexe du volume de données à gérer pour chaque patientpeut être résolu par des procédures d’analyse statistiques automatisée de sensibilité etspécificité satisfaisante. Le pattern des connections intra- et extra-insulaires révélé par cetteapproche permet une meilleure compréhension de la physiologie de l’insula chez l’Homme etdes modalités de propagations des décharges épileptiques impliquant ce lobe<br>The insular cortex is the fifth lobe of the brain and is in charge of the integration of many cognitive functions, underpinned by a rich cytoarchitectonic organization and a complex connectivity. Our work aims to evaluate the insular functional connectivity of the human brain using intracerebral electrical stimulation and recording of cortico-cortical evoked potentials (CCEPs) in patients investigated with stereoelectroencephalography (SEEG) for refractory partial epilepsy. We first developed an automated protocol to stimulate successively all intracerebral recorded bipoles (two contiguous leads of the same electrode) available in patients undergoing SEEG. Two sets of 20 monophasic stimulation of 1 ms duration and 1mA intensity were delivered at a frequency of 0.2 Hz at each bipole (105 on average, producing a total of about 11,000 recordings per patient). We then develop a reliable and objective statistical method to detect significant CCEPs as a complement to visual analysis, and validate this approach on a sample of 33017 recordings in three patients. The analysis was performed over four distinct post-stimulus epochs: 10-100 ms, 100-300 ms, 300-500 ms, 500-1000 ms. In the second part of our thesis, we applied these methods to the study of intrainsular connections on a sample of 10 patients with at least two intra-insular electrodes. The last part of our work used the same approach to investigate insular efferents in a sample of 11 patients. The study of CCEPs provides novel and important findings regarding the human brain functional connectivity, with unmatched spatial and temporal resolutions as compared to neuroimaging techniques. The complex management of large volume of data in each patient can be solved by automated statistical analysis procedures with satisfactory sensitivity and specificity. The pattern of connections within and outside the insula revealed by this approach provides a better understanding of the physiology of the Human insula as well as of the propagation of epileptic discharges involving this lobe
APA, Harvard, Vancouver, ISO, and other styles
9

Butti, Camilla. "Organization of the cetacean frontal and insular cortices: cytoarchitecture,chemoarchitecture, and neuronal specializations." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426496.

Full text
Abstract:
The brain of cetaceans is very large in both absolute and relative size and possesses an extremely convoluted cortex. The understanding of how the brain of these mammals fully adapted to an aquatic life is organized is important to shed light on the processes that shaped the evolution of the mammalian brain in general, including humans. Three cortical regions, the anterior cingulate (ACC), anterior insular (AI), and frontopolar cortices (FPC) have been shown to be involved in high-level cognitive function in primates and thus, the understanding of their structural organization in cetaceans is particularly meaningful given the wide evidence of their cognitive abilities. Cytoarchitecture, chemoarchitecture based on the distribution of the calcium binding (CaBP) protein calretinin, glia/neuron ratio, and neuronal specializations were assessed in the ACC, AI, and FPC of a series of cetaceans representative of the main families such as the bottlenose dolphin (Tursiops truncatus, Odontoceti, Delphinidae), Risso’s dolphin (Grampus griseus, Odontoceti, Delphinidae), harbor porpoise (Phocoena phocoena, Odontoceti, Phocoenidae), killer whale, (Orcinus orca, Odontoceti, Delphinidae), beluga whale (Delphinapterus leucas, Odontoceti, Monodontidae), sperm whale (Physeter macrocephalus, Odontoceti, Physeteridae), pigmy sperm whale (Kogia simus, Odontoceti, Kogiidae), Amazon river dolphin (Inia geoffrensis, Odontoceti, Iniidae), minke whale (Balaenoptera acutorostrata, Mysticeti, Balaenopteridae), and humpback whale (Megaptera novaeangliae, Mysticeti, Balaenopteridae). Other species including the pigmy hippopotamus (Hexaprotodon liberiensis, Cetartiodactyla, Hippopotamidae), Florida manatee (Trichecus manatus latirostris, Sirenia, Trichechidae), Atlantic walrus (Odobenus rosmarus rosmarus, Carnivora, Odobenidae), African savannah elephant (Loxodonta africana, Proboscidea, Elephantidae), black rhinoceros (Diceros bicornis, Perissodactyla, Rhinocerotidae), rock hyrax (Procavia capensis, Hyracoidea, Procavidae), lowland streaked tenrec (Hemicentetes semispinosus, Afrosoricida, Tenrecidae), and black and rufous elephant shrew (Rhynchocyon petersi, Macroscelidea, Macroscelididae), were used for comparative purposes in different parts of this study. The results show that 1) Order-specific differences in the organization of the neocortex occur among cetaceans; 2) Cetaceans share structural features of the neocortex with the artiodactyls, both at a structural and neurochemical level; 3) The glia-neuron ratio of the cetacean neocortex corresponds to what is expected for their brain size; 4) The specific cortical regions investigated contain, in most of the available cetaceans species, a neuronal specialization observed with the same pattern of distribution only in great apes and humans, the Von Economo neurons. Overall these results are further evidence for an organization of the cetacean neocortex, which, although very different from that of primates, displays complexity, challenging the classical view of its homogeneous and simple structure. Specifically, the extended development of regions involved in high-level cognitive processes such as the ACC, AI, and FPC, their diverse cortical organization, and the presence of a specific neuronal specialization, all suggest that specific evolutionary selective pressures acted on these cortical regions and thus on their functions. Based on the evidence reported in the present thesis, the brain of cetaceans can be considered of a complexity comparable to that of primates, and an evolutionary alternative to the generation of complex behaviors.<br>L’encefalo dei cetacei è caratterizzato dal notevole volume e dalla complessità ed estensione della superficie neocorticale. La conoscenza dell’organizzazione delle strutture cerebrali di questi mammiferi completamente adattati alla vita acquatica è di primaria importanza per comprendere i meccanismi che stanno alla base dell’evoluzione del sistema nervoso centrale dei mammiferi, incluso l’uomo. In particolare, le tre regioni corticali costitute dalla corteccia cingolata anteriore (ACC), dalla insula anteriore (AI) e dalla corteccia frontopolare (FPC) hanno un ruolo primario nei processi di alto livello cognitivo nei primati e, quindi, lo studio della loro organizzazione corticale nei cetacei assume una particolare importanza in ragione delle capacità cognitive ampiamente documentate in queste specie. La citoarchitettura, la chemoarchitettura basata sulla distribuzione della proteina legante il calcio (CaBP) calretinina (CR), il rapporto cellule della glia-neuroni (GNI) e le specializzazioni neuronali di ACC, AI e FPC sono state studiate in alcune specie, rappresentanti delle maggiori famiglie di cetacei, che includono il tursiope (Tursiops truncatus, Odontoceti, Delphinidae), il grampo (Grampus griseus, Odontoceti, Delphinidae), la focena (Phocoena phocoena, Odontoceti, Phocoenidae), l’orca (Orcinus orca, Odontoceti, Delphinidae), il beluga (Delphinapterus leucas, Odontoceti, Monodontidae), il capodoglio (Physeter macrocephalus , Odontoceti, Physeteridae), il capodoglio nano (Kogia simus, Odontoceti, Kogiidae), l’inia (Inia geoffrensis, Odontoceti, Iniidae), la balenottera minore (Balaenoptera acutorostrata, Mysticeti, Balaenopteridae) e la megattera (Megaptera novaeangliae, Mysticeti, Balaenopteridae). Specie selezionate che includono l’ippopotamo nano (Hexaprotodon liberiensis, Cetartiodactyla, Hippopotamidae), il lamantino della Florida (Trichecus manatus latirostris, Sirenia, Trichechidae), il tricheco (Odobenus rosmarus rosmarus Carnivora, Odobenidae), l’elefante africano (Loxodonta africana, Proboscidea, Elephantidae), il rinoceronte nero (Diceros bicornis, Perissodactyla, Rhinocerotidae), la procavia (Procavia capensis, Hyracoidea, Procavidae), il tenrec striato di pianura, (Hemicentetes semispinosus, Afrosoricida, Tenrecidae), e il toporagno elefante di Peters (Rhynchocyon petersi, Macroscelidea, Macroscelididae) sono state utilizzate, in una prospettiva comparata, in diverse parti della presente tesi. I risultati qui riportati dimostrano che 1) Esistono differenze ordine-specifiche nell’organizzazione corticale dei cetacei; 2) Esistono similitudini strutturali e chimiche nell’organizzazione corticale di cetacei e artiodattili; 3) Il rapporto cellule della glia-neuroni nella corteccia dei cetacei è conforme a quanto previsto sulla base delle dimensioni dell’encefalo; 4) Le specifiche regioni corticali esaminate nella presente tesi contengono, nella maggior parte delle specie di cetacei, una particolare specializzazione neuronale, osservata con la medesima distribuzione solo nell’elefante e nelle scimmie antropomorfe filogeneticamente più vicine all’uomo: i neuroni di Von Economo. In conclusione, i risultati qui riportati costituiscono una ulteriore evidenza del fatto che l’organizzazione corticale dei cetacei, anche se molto diversa da quella dei primati, è caratterizzata da una specifica complessità che sfida la visione di semplicità e monotonia classicamente associata alla struttura della corteccia cerebrale di questi mammiferi marini. In particolare, il notevole sviluppo di regioni corticali associate a complessi processi cognitivi, quali ACC, AI e FPC, l’ eterogeneità dell’organizzazione corticale, e la presenza di definite specializzazioni neuronali, suggeriscono che queste regioni corticali, e le loro funzioni, siano state plasmate da specifici processi evolutivi. Sulla base dei risultati riportati nella presente tesi, l’encefalo dei cetacei può essere considerato di complessità paragonabile a quella dei primati, ed una alternativa evoluzionistica per la produzione di comportamenti strutturati.
APA, Harvard, Vancouver, ISO, and other styles
10

Landron, Thelma. "Substrats cérébraux des choix basés sur les préférences : électrophysiologie et neuropsychologie." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS063.

Full text
Abstract:
Lorsque l'on fait face à plusieurs alternatives, la théorie de la décision postule que l'on choisit l'option qui présente la plus grande valeur attendue. Le choix comporte donc deux étapes : l'estimation pour chaque option de sa valeur attendue, qui intègre les potentiels coûts et bénéfices, et la sélection de la meilleure option, qui repose sur la comparaison des valeurs attendues. L'objectif de cette thèse est d'éclairer les mécanismes de la décision, au moyen de l'électrophysiologie intracérébrale, chez des patients souffrant d'épilepsie pharmacorésistante, et de la neuropsychologie, chez des patients souffrant de lésions vasculaires, dont on étudie le comportement. Les deux études expérimentales se concentrent sur le rôle de trois régions centrales pour la prise de décision et l'arbitrage entre coûts et bénéfices : le cortex orbitofrontal, le cortex préfrontal dorsomédian et le cortex insulaire antérieur. Selon le modèle dominant, le cortex orbitofrontal (OFC) implémente la comparaison des valeurs, formalisée par une compétition entre populations neuronales représentant les options au choix. Dans le cas d'un choix binaire, la simulation de ce réseau de neurones produit une activité globale qui signale d'abord la somme des valeurs puis la différence entre l'option choisie et l'option non choisie. Cette signature spécifique de la comparaison des valeurs a été identifiée dans les basses fréquences de l'activité en provenance de l'OFC recueillie par magnétoencéphalographie. Afin de mettre à l'épreuve cette conclusion, la première étude de cette thèse s'est focalisée sur l'analyse des données électrophysiologiques enregistrées dans l'OFC de 26 patients implantés pour repérage des foyers épileptogènes, pendant que ceux-ci choisissaient leurs préférées parmi des récompenses alimentaires présentées deux par deux. L'analyse des oscillations basses fréquences de l'OFC a reproduit les résultats antérieurs, mais a également identifié plusieurs propriétés du signal qui ne sont pas compatibles avec le modèle dominant. Les résultats sont en revanche compatibles avec la théorie selon laquelle l'OFC estime d'une part la valeur de chaque option et d'autre part la confiance dans le choix effectué.Si l'OFC signale les bénéfices (la valeur des récompenses), il a été suggéré que cortex insulaire antérieur signale les coûts, et que le cortex préfrontal dorsomédian intègre les coûts et les bénéfices. Afin de tester ces relations anatomo-fonctionnelles, la deuxième étude de cette thèse a testé le comportement de patients présentant des lésions vasculaires, soit dans le cortex préfrontal médian (mPFC, n = 18), soit dans le cortex insulaire (IC, n = 16). Les tests comportementaux comprenaient des items appartenant à trois catégories (récompense, punition et effort) et demandaient aux patients d'effectuer des évaluations, des choix binaires et des compromis coûts-bénéfices. Les résultats ont montré que les lésions du mPFC conduisent à sous-estimer la valeur des récompenses et à surestimer le coût des efforts, pouvant expliquer la réduction des comportements (l'apathie) observée chez ces patients. Les lésions du IC, au contraire, rendent les patients plus enclins à accepter les coûts (effort et punition) afin d'obtenir les bénéfices associés aux comportements. En conclusion, ce travail permet de préciser les rôles de l'OFC, du mPFC et de l'IC dans les choix basés sur les préférences, notamment dans l'estimation des valeurs et dans le compromis coût/bénéfice qui sous-tendent la motivation du comportement<br>When faced with several alternatives, decision theory posits that the option with the highest expected value is chosen. Making a choice involves two stages: first, estimating the expected value of each option, by integrating prospective costs and benefits, and then second, selecting the best option, based on a comparison of the resulting expected values. The primary goal of this dissertation is to elucidate those mechanisms in two specific patient cohorts whose behavior is being studied: intracerebral electrophysiology is employed in patients with pharmaco-resistant epilepsy, while neuropsychology is utilized in individuals with vascular lesions. The presented experimental studies focus on the role of three central regions in decision-making and cost-benefit trade-offs: the orbitofrontal cortex, the dorsomedial prefrontal cortex and the anterior insular cortex.According to the prevailing model, the orbitofrontal cortex (OFC) implements value comparison as a competition between neuronal populations representing choice options. In the case of a binary choice, simulations of this neural network generate global activity that initially signals the sum of the option values, before signaling the difference between the chosen option value and the unchosen option value. This specific signature of value comparison was previously identified in the low frequencies of magnetoencephalographic activity recorded from the OFC. In order to test this prevailing model, the first study analyzed intracerebral electrophysiological data collected from the OFC of 26 patients, while choosing between food rewards presented in pairs. The analysis of the OFC low-frequency oscillations replicated previous findings, but also revealed several properties of the signal that conflicts with the dominant model. Nonetheless, the results align with the theory that the OFC estimates the value of each option on the one hand, and confidence in the choice that is being made on the other.While the OFC signals benefits (the expected value of rewards), it has been suggested that the anterior insular cortex signals costs, and that the dorsomedial prefrontal cortex integrates costs and benefits. To investigate these anatomical-functional relationships further, the second study tested the behavior of patients who had vascular lesions in either the medial prefrontal cortex (mPFC, n = 18) or the insular cortex (IC, n = 16). Behavioral tests included items from three categories (reward, punishment and effort) and required patients to perform ratings, binary choices and cost-benefit trade-offs. The results showed that lesions of the mPFC lead to an underestimation of the value of rewards and an overestimation of the cost of effort, which may explain the reduction in behavior (apathy) observed in these patients. Conversely, patients with IC lesions were more willing to endure costs (effort and punishment) in order to obtain the benefits associated with the options.In summary, this work clarifies the roles of the OFC, the mPFC, and the IC in value-based decision-making, particularly in the estimation of value and in the cost-benefit trade-off that drives the motivation of behavior
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Insular cortex"

1

Vignovich, Martin Nicholas. Integration of Taste and Odor in Agranular Insular Cortex. [publisher not identified], 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Portillo, Gustavo Adolofo Orellana. Antecedentes y análisis del acuerdo especial entre Guatemala y Belice para someter el reclamo territorial, insular y marítimo de Guatemala a la Corte Internacional de Justicia. [publisher not identified], 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. Congress. House. Committee on Interior and Insular Affairs. Subcommittee on General Oversight and Investigations. Theft of Indian artifacts from archeological sites: Oversight hearing before the Subcommittee on General Oversight and Investigations of the Committee on Interior and Insular Affairs of the House of Representatives, One Hundredth Congress, first session ... hearing held in Cortez, CO, October 19, 1987. U.S. G.P.O., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nguyen, Dang, Jean Isnard, and Philippe Kahane, eds. Insular Epilepsies. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781108772396.

Full text
Abstract:
The role of the insular cortex in epilepsy has been largely neglected until very recently. With growing interest in insular epilepsies, this book provides unique, in-depth coverage of the condition from childhood to adulthood. Detailed description of the anatomy, vascularization, connectivity, and functions of the insula along with complete description of the semiology, neurophysiology, and neuroimaging of insular epilepsy helps clinicians better recognize the condition. Up-to-date treatment avenues are explored, guiding the management of patients, including drug-resistant cases suitable for neurosurgery. Authors come from a range of backgrounds, providing a multidisciplinary perspective essential to all health professionals involved in epilepsy diagnosis and treatment. A scratch-off code in the inside cover allow users access to an online equivalent of the book, featuring videos illustrating the semiology of the various forms of insular seizures. This authoritative overview provides clinicians with the necessary information to treat this under-recognized condition.
APA, Harvard, Vancouver, ISO, and other styles
5

Articles on Homeostasis, Including: Le Chatelier's Principle, Baroreceptor, Homeorhesis, Insular Cortex, Predictive Homeostasis, Allostasis, Enantiost. Hephaestus Books, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wittmann, Marc, and Karin Meissner. The embodiment of time: How interoception shapes the perception of time. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198811930.003.0004.

Full text
Abstract:
Within the framework of the embodiment of time, this chapter presents accumulating evidence of how interoception and associated brain networks process time. Functional MRI studies have shown that climbing neural activation in the posterior insular cortex correlates with stimulus duration in a time-estimation task in the multiple-second range. Given the close connection between the insular cortex and ascending body signals, the authors suggest that the accumulation of physiological changes in body states is the basis for the subjective impression of duration. Psychophysiological findings reveal linearly increasing cardiac periods and decreasing skin-conductance levels during duration-estimation tasks in the multiple-second range. Accordingly, the feeling for the passage of time at the present moment is based on the perception of the bodily self.
APA, Harvard, Vancouver, ISO, and other styles
7

Bechara, Antoine. Impulse Control Disorders in Neurological Settings. Edited by Jon E. Grant and Marc N. Potenza. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780195389715.013.0126.

Full text
Abstract:
This chapter will argue that impulse control disorders, including addiction, are the product of an imbalance between two separate but interacting neural systems: (1) an impulsive amygdala-striatum–dependent neural system that promotes automatic and habitual behaviors and (2) a reflective prefrontal cortex–dependent neural system for decision making, forecasting the future consequences of a behavior, and inhibitory control. The reflective system controls the impulsive system via several mechanisms. However, this control is not absolute; hyperactivity within the impulsive system can override the reflective system. While most prior research has focused on the impulsive system (especially the ventral striatum and its mesolimbic dopamine projection) in promoting the motivation and drive to seek drugs, or on the reflective system (prefrontal cortex) and its mechanisms for decision making and impulse control, more recent evidence suggests that a largely overlooked structure, namely the insula, plays a key role in maintaining poor impulse control, including addiction. This review highlights the potential functional role the insula plays in addiction. We propose that the insula translates bottom-up, interoceptive signals into what subjectively may be experienced as an urge or craving, which in turn potentiates the activity of the impulsive system and/or weakens or hijacks the goal-driven cognitive resources that are needed for the normal operation of the reflective system.
APA, Harvard, Vancouver, ISO, and other styles
8

Arnsten, Amy F. T., Min J. Wang, and Constantinos D. Paspalas. The Neuroscience of Cognition and Cognitive Enhancing Compounds. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190214401.003.0002.

Full text
Abstract:
Higher cognitive disorders involve insults to the neural circuits of the newly evolved association cortices. Although these cortices comprise the majority of the human cortex, little is understood about their molecular modulation. Research on the primate dorsolateral prefrontal cortex (dlPFC) indicates that the newly evolved layer III circuits underlying mental representation are regulated at the molecular level in a manner that is fundamentally different from classic synapses. These mechanisms must be respected to create effective treatments for human disorders, where a major goal is to optimize the network connectivity needed for persistent and precise neural representations. Understanding the needs of dlPFC circuits has led to the successful translation of guanfacine (Intuniv) for treating cognitive disorders, supporting this research strategy.
APA, Harvard, Vancouver, ISO, and other styles
9

Denny, Bryan T., and Kevin N. Ochsner. Minding the Emotional Thermostat. Edited by Christian Schmahl, K. Luan Phan, Robert O. Friedel, and Larry J. Siever. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199362318.003.0005.

Full text
Abstract:
This chapter takes a social cognitive affective neuroscience approach to describe the processes and systems to give rise to emotion and the volitional control of emotion. It provides a detailed description of the processes that underlie the regulation of emotion. It introduces and synthesizes the brain structures involved in emotion processing and regulation. There is a particular focus on the role of the ventrolateral, dorsolateral and dorsomedial prefrtonal cortex, amgydala, ventral striatum and insula, and on cognitive strategies such as reappraisal. It provides a critical framework for understanding the underlying behavioral and neural basis for the affect dysregulation observed across personality disorders, and summarizes future directions for this area of investigation.
APA, Harvard, Vancouver, ISO, and other styles
10

Modir, Shahla J., and George E. Muñoz. The Future of Addiction and Recovery Healing Arts. Edited by Shahla J. Modir and George E. Muñoz. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190275334.003.0032.

Full text
Abstract:
This chapter peers into the future of addiction treatment. It begins with an exploration of repetitive transcranial magnetic brain stimulation or rTMS as a treatment for SUD. The evidence and clinical data is reviewed. Findings include outcome data on the use of rTMS. Furthermore, important brain regions central to the development of SUD are examined: the ventral tegmental area and ventral striatum appear to play a central role in the binge/intoxication stage, the extended amygdala in the withdrawal/negative affect stage, and the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula in craving. The role of genomics and gene-wide associations to deliver future personalized addiction treatments is discussed as is advanced functional neural imaging. Technology for patients and consumers, including relapse prevention apps and bidirectional biometric reading is mentioned. Breakthroughs in addiction immunology, both generalized and substance specific, are discussed as potential points of future study and interventions.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Insular cortex"

1

Jaiswal, Manish. "Insular Cortex Epilepsy." In Island of Reil (Insula) in the Human Brain. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75468-0_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Montalbano, Michael J., and R. Shane Tubbs. "Lateralization of the Insular Cortex." In Island of Reil (Insula) in the Human Brain. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75468-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stevenson, Richard J., Heather M. Francis, and Cameron J. Ragg. "Gustatory Areas Within the Insular Cortex." In Island of Reil (Insula) in the Human Brain. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75468-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Uyanikgil, Yigit, Turker Cavusoglu, Servet Celik, Kubilay Dogan Kilic, and Mehmet Turgut. "The Insular Cortex: Histological and Embryological Evaluation." In Island of Reil (Insula) in the Human Brain. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75468-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jumah, Fareed. "Role of the Insular Cortex in Emotional Awareness." In Island of Reil (Insula) in the Human Brain. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75468-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ogawa, H., K. Hasegawa, S. Otawa, and T. Nakamura. "Taste Information Processing in the Insular Cortex of Rats." In Olfaction and Taste XI. Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Casey, Kenneth L., and Diep Tuan Tran. "Insular Cortex, Neurophysiology, and Functional Imaging of Nociceptive Processing." In Encyclopedia of Pain. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_1982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hanamori, T., T. Kunitake, K. Hirota, and H. Kannan. "Convergence of Afferent Inputs from Tongue, Pharynx, and Larynx in the Insular Cortex of the Rat." In Olfaction and Taste XI. Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smirnitskaya, I. A. "The Reinforcement Learning Theory, Value Function, and the Nature of Value Function Calculation by the Insular Cortex." In Studies in Computational Intelligence. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19032-2_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bermúdez-Rattoni, Federico, Martha L. Escobar, Ana Luisa Piña, Ricardo Tapia, Juan Carlos López-García, and Marcia Hiriart. "Effects of Nerve Growth Factor on the Recovery of Conditioned Taste Aversion in the Insular Cortex Lesioned Rats." In Chemical Signals in Vertebrates 6. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9655-1_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Insular cortex"

1

Liang, Yongsheng, Shiqi Xia, Daohong Song, and Zhigang Chen. "Demonstration of minimal higher-order topological insulators in strained photonic graphene." In CLEO: Fundamental Science. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw4m.4.

Full text
Abstract:
We propose and experimentally demonstrate higher-order topological insulator (HOTI) states in strained photonic graphene, representing a two-band minimal HOTI model, where zero-energy corner and edge states are degenerated due to preserved inversion and chiral symmetries.
APA, Harvard, Vancouver, ISO, and other styles
2

Monteiro, Jander Moreira, Victor Matheus Olaves Marques, Danna Gomes Mateus, et al. "Insular Glioma Surgery: Seven Rules - A case study." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.352.

Full text
Abstract:
Background: The best treatment for insular gliomas is surgical resection. The surgical treatment complexity of these lesions is due to the anatomy of the insula, and its proximity to functional cortical and subcortical structures, and to vascular structures. Efforts to preserve the integrity of these structures based exclusively on microsurgical anatomy do not guarantee that the patient will not present motor or language deficit in the postoperative period. Objectives: To present seven rules to achieve greater therapeutic success, aiming at increasing disease-free survival and the patient’s quality of life. Methods: Review article based on the senior author experience in insular microsurgical anatomy dissections, and 45 microsurgeries for insular gliomas, performed between 2006 and 2018. Results: There are 4 anatomical rules (fronto-orbital branch of the facial nerve, insular cortex, sylvian fissure and lenticulostriate arteries) and 3 functional rules (cortical mapping, subcortical mapping and internal capsule). Conclusions: Primarily, one must have a great anatomical domain and expertise in neurophysiological monitoring to obtain satisfactory results in the surgery of insular gliomas.
APA, Harvard, Vancouver, ISO, and other styles
3

Nascimento, Jeddson Rêgo, and Adélia Maria Miranda Henriques-Souza. "Insular cortex epilepsy in Rasmussen Syndrome: a case report." In SBN Conference 2022. Thieme Revinter Publicações Ltda., 2023. http://dx.doi.org/10.1055/s-0043-1774525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Bae Hwan, Minjee Kwon, and Ran Won. "Microinjection Technique to Relieve Neuropathic Pain by Infusion of Rapamycin into the Insular Cortex." In The 2nd World Congress on Electrical Engineering and Computer Systems and Science. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icbes16.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sodre, Maria Eduarda Japyassu, Maria Izabel Wanderley Bezerra, Juliana Oliveira Costa, Diego Shelman de souza Rosado Amaral, Vinicius Guedes Lima Bahia, and Maria Isabel Dantas Bezerra Lyra. "Association between religious practices impact on cerebral neurophysiology and radiological expression: a systematic review." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.667.

Full text
Abstract:
Introduction: Debates around the correlation between neurophysiological processes and religious habits have gained ground in the research in neuroscience. Objective: To evaluate the impact of religious practices on brain physiology and correlate such behaviors and neuroimaging. Design and setting: It’s a systematic review without metanalysis in PUBMED database. Method: Data carried out in the period 2009 and 2020. Descriptors used: “neural correlates of religious, mystical experience” and “religious belief and neuroimaging”, combined with the Boolean operator “and”. Results: It was noted that the belief is associated with a greater signal in the ventromedial prefrontal cortex, important place for self-representation, emotional associations, reward and goal-directed behavior. Neuroimaging indicated regions associated with these behaviors: pre-cuneiform, anterior insula, ventral striatum, anterior cingulate cortex and posterior medial cortex; nonreligious belief, conversely, registers more signs of memory in the left cerebral hemisphere. Additionally, there is an association between absence of religious practices and depression, anxiety, psychosis, pain disorders; it may have a beneficial impact on the pathogenesis and treatment of these conditions. Conclusion: Although it can be said that the impact exists, more research on the topic is necessary for interventions to have scientific plausibility. The results suggest brain regions involved in religious experience and the phenomenon must be perceived from a multidimensional perspective.
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Yang, and Gennady Shvets. "Zero-energy Corner States in a Non-Hermitian Quadrupole Insulator." In CLEO: Applications and Technology. OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jw2d.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iacovella, Vittorio, and Uri Hasson. "Magnitude of task-induced deactivation of insula and anterior cingulate cortex is related to inter-individual differences in RMSSD." In 2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO). IEEE, 2014. http://dx.doi.org/10.1109/esgco.2014.6847565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Teixeira, Igor de Lima e., Marina Battaglini, Tarcisio Alvarenga, and Patrick Sousa Santos. "Descartes’ error”: evidences for the role of brain regions and their connections in introspective thoughts and self-identity." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.668.

Full text
Abstract:
Introduction: René Descartes was a French philosopher, considered the father of rationalism and one of the most important thinkers in history. Based on his methodical doubts’ technique, the author concluded that he exists as a thinking thing, that if “I think, therefore I am”. He establishes that he had no more doubts that he really existed as thought and as a body, however, he could not think that thought and body were two equal substances, since they had certain different properties, therefore, the author came to believe that mind and body were distinct substances. Since the 17th century, advances in neuroscience have helped to clarify which brain regions are involved in introspective and self-referential thinking. Methods: We reviewed through searches in PubMed, MEDLINE, SciELO and Scopus the brain regions involved in the self-referential and introspective thinking. Results: Recent studies show that self-referential and introspective thinking are located mainly in regions related especially to the Default Mode Network, mainly located in the frontal regions. Especially the “autobiographical self” shows greater activity in memory-related regions (hippocampus and posterior cingulate cortices), medial prefrontal cortex, and insula cortices, but the establishment of the “self” as the individual’s relationship to the world around it, uses regions related to exteroception, such as secondary and tertiary sensitive areas. For self-referenced thinking, there is greater engagement of the medial frontal cortex regions, more specifically in Brodmann’s area 10, and this structure is also related to the DMN. Conclusion: The advancement of neuroscience has allowed demonstrating that mental processes and thoughts happen as consequences of certain brain connections and processes. Thus, we ask poetic license to the great philosopher to say “the brain connections exist, therefore we think”.
APA, Harvard, Vancouver, ISO, and other styles
9

Souza, Leonardo de, Maxime Bertoux, Luciano Mariano, et al. "MENTALIZING IN FRONTOTEMPORAL DEMENTIA AND PROGRESSIVE SUPRANUCLEAR PALSY." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda015.

Full text
Abstract:
Background: Mentalizing and emotion recognition are impaired in behavioral variant frontotemporal dementia (bvFTD). It is not clear whether these abilities are disturbed in progressive supranuclear palsy (PSP). Objective: To investigate social cognition (SC) between bvFTD and PSP. The neural basis of SC in PSP and bvFTD groups were also investigated by neuroimaging. Methods: Data from the notification sheet were collected and patients were classified according to current clinical and pathological criteria. Results: Groups did not differ on age, schooling and sex. Compared to controls, bvFTD and PSP patients had reduced scores in all tests of SC. bvFTD and PSP did not differ on measures of SC. PSP and bvFTD had cerebral atrophy in critical regions for SC. The cortical correlates of emotion recognition overlapped in bvFTD and PSP, correlating with frontal medial cortex, insula and limbic structures. PSP and bvFTD patients also displayed similar patterns of brain correlations (anterior temporal lobes) for social norms. The neural correlates of mentalizing were associated with frontal and temporal poles bilaterally, in both bvFTD and PSP. Conclusion:PSP patients exhibit impairment in mentalizing. PSP and bvFTD share clinical, cognitive and neuroimaging features.
APA, Harvard, Vancouver, ISO, and other styles
10

Zheng, Qi, Imad Hasan, DeGui Sun, Sawsan Abdul-Majid, and Trevor J. Hall. "Performance comparison between silicon-on-insulator curved waveguides and corner turning mirrors." In Photonics North 2011, edited by Raman Kashyap, Michel Têtu, and Rafael N. Kleiman. SPIE, 2011. http://dx.doi.org/10.1117/12.905699.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Insular cortex"

1

Hansen, P. M. Safety Core Insulator Failures Reliability Analysis. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada458910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

El papel de los puertos en la transición energética. Universidad de Deusto, 2022. http://dx.doi.org/10.18543/rvso1446.

Full text
Abstract:
Los puertos actúan como punto de intersección entre la tierra y el mar, garantizan la continuidad territorial, dan servicio al tráfico marítimo regional y local y unen áreas periféricas e insulares. Son nodos desde los que se pueden organizar los flujos logísticos multimodales, utilizando enlaces de transporte marítimo de corta distancia (short sea shipping, SSS), ferrocarriles y vías navegables interiores para minimizar la congestión de las carreteras y el consumo de energía. Debido a su emplazamiento los puertos pueden desempeñar un rol fundamental en la agenda de descarbonización de los países y, en particular, de las cadenas logísticas internacionales y facilitar el crecimiento económico entre regiones y países. Este documento tiene como objetivo evaluar el papel de los puertos en la transición energética, desde una doble perspectiva, el puerto como impulsor de la actividad portuaria y como eslabón de los clústeres marítimo-portuarios. Para ello, tras revisar las principales tendencias actuales del sector, se analizan algunas de las principales directrices a las que se acogen tanto los puertos como los medios de transporte que estos conectan. Se presentan los puertos como actores que han evolucionado desde tener una preocupación medioambiental hasta convertirse en puertos resilientes. Se desarrolla un modelo de análisis sobre la base de parámetros para comparar el avance en la transición energética de los puertos y se aplica al caso del puerto de Bilbao, Valencia, Rotterdam y Los Ángeles. El documento termina con un apartado de conclusiones.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!