Academic literature on the topic 'Liapunov method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liapunov method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liapunov method"
Sharma, B. "Solving the three-dimensional findpath problem via Liapunov's method." South Pacific Journal of Natural and Applied Sciences 20, no. 1 (2002): 48. http://dx.doi.org/10.1071/sp02010.
Full textTunç, Cemil. "A note on boundedness of solutions to a class of non-autonomous differential equations of second order." Applicable Analysis and Discrete Mathematics 4, no. 2 (2010): 361–72. http://dx.doi.org/10.2298/aadm100601026t.
Full textAta, Atef, Salwa Elkhoga, Mohamed Shalaby, and Shihab Asfour. "Causal inverse dynamics of a flexible hub-arm system through Liapunov's second method." Robotica 14, no. 4 (July 1996): 381–89. http://dx.doi.org/10.1017/s0263574700019779.
Full textAl-Bayaty, Intidhar Z. Mushete. "Modified Krasovskii's Method for Constructing Liapunov Function." Journal of Al-Nahrain University Science 14, no. 4 (December 1, 2011): 177–80. http://dx.doi.org/10.22401/jnus.14.4.25.
Full textRODRIGUES, HILDEBRANDO M., JIANHONG WU, and LUÍS R. A. GABRIEL. "UNIFORM DISSIPATIVENESS, ROBUST SYNCHRONIZATION AND LOCATION OF THE ATTRACTOR OF PARAMETRIZED NONAUTONOMOUS DISCRETE SYSTEMS." International Journal of Bifurcation and Chaos 21, no. 02 (February 2011): 513–26. http://dx.doi.org/10.1142/s0218127411028568.
Full textBlot, Joël, and Philippe Michel. "On the Liapunov Second Method for Difference Equations." Journal of Difference Equations and Applications 10, no. 1 (January 2004): 41–52. http://dx.doi.org/10.1080/1023619031000148795.
Full textMarchelek, K., M. Pajor, and B. Powałka. "Vibrostability of the Milling Process Described by the Time-Variable Parameter Model." Journal of Vibration and Control 8, no. 4 (April 2002): 467–79. http://dx.doi.org/10.1177/107754602028158.
Full textPan, Ying, and Tong Zhao. "Hybrid Control for Seismological Nonlinear Structures on Liapunov’s Theory." Applied Mechanics and Materials 166-169 (May 2012): 1237–40. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.1237.
Full textZhao, Jie Min. "Global Stability Analysis of Multimedia Systems." Applied Mechanics and Materials 20-23 (January 2010): 1004–8. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.1004.
Full textZhao, Jie Min. "On the Global Stability Problem of Multimedia Systems." Applied Mechanics and Materials 20-23 (January 2010): 1162–66. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.1162.
Full textDissertations / Theses on the topic "Liapunov method"
Lust, Alexander. "Eine hybride Methode zur Berechnung von Liapunow-Exponenten." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98122587X.
Full textBonomo, Wescley. "Sistemas dinâmicos discretos: estabilidade, comportamento assintótico e sincronização." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01072008-164134/.
Full textThis work is in part based on the book The Stability and Control of Discrete Processes of Joseph P. LaSalle. We studing equations as x(n+1) = T(x(n)), where T : \' R POT.m\' \' ARROW\' \' \' R POT.m\' is continuous transformation, with the associated dynamic system \'PI\' (n,x) := \' T POT.n\' (x). We provide suddicient conditions for stability of equilibria, using Liapunov direct method. We also consider nonautonomous discrete systems of the form x(n + 1) = T(n, x(n), \' lâmbda\') depending on the parameter \'lâmbda\' and present results obtaining uniform estimatives of attractors. We finally we present some simulations on synchronization of coupled systems as an application on communication systems
DAMKE, Caíke da Rocha. "Problemas Elípticos Assintoticamente Lineares." Universidade Federal de Goiás, 2012. http://repositorio.bc.ufg.br/tede/handle/tde/1950.
Full textIn this dissertation we analyze questions of existence and multiplicity of solutions for Dirichlet problem in the asymptotically linear case. To obtain our main results we use variational methods, such as Montain Pass Theorem and Linking Theorem.Moreover, we use the Liapunov-Schmidt reduction.
Nesta dissertação analisamos questões de existência e multiplicidade de soluções do problema de Dirichlet elíptico assintoticamente linear. Para obtermos os nossos principais resultados utilizamos métodos variacionais, tais como o Teorema do Passo da Montanha um Teorema de Linking. Além disso, utilizamos a redução de Liapunov-Schmidt.
Maranho, Luiz Cesar. "Aplicação do método de linearização de Lyapunov na análise de uma dinâmica não linear para controle populacional do mosquito Aedes aegypti." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/157305.
Full textApproved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-10-15T12:39:20Z (GMT) No. of bitstreams: 1 maranho_lc_me_sjrp.pdf: 5069791 bytes, checksum: 2501e6acc67bdd7103eb807f326a4c0b (MD5)
Made available in DSpace on 2018-10-15T12:39:20Z (GMT). No. of bitstreams: 1 maranho_lc_me_sjrp.pdf: 5069791 bytes, checksum: 2501e6acc67bdd7103eb807f326a4c0b (MD5) Previous issue date: 2018-08-20
O mosquito Aedes aegypti é o principal vetor responsável por diversas arboviroses como a dengue, a febre amarela, o vírus zika e a febre chikungunya. Devido a sua resistência, adaptabilidade e proximidade ao homem, o Aedes aegypti é atualmente um dos maiores problemas de saúde pública no Brasil e nas Américas. Mesmo com os avanços e investimentos em pesquisas com vacinas, monitoramento, campanhas educativas e diversos tipos de controle deste vetor, ainda não existe um método eficaz para controlar e erradicar o mosquito. Portanto, esse trabalho destina-se ao auxílio na criação de estratégias para controlar esse agente transmissor, mediante a análise do espaço de estados e a estabilidade assintótica de uma dinâmica não linear para controle populacional do Aedes aegypti via a técnica de linearização de Lyapunov, além de apresentação de formas de prevenção e combate aos criadouros do mosquito. A dinâmica não linear proposta é uma dinâmica simplificada obtida de um modelo não linear existente na literatura, proposto por Esteva e Yang em 2005 e se baseia no ciclo de vida do mosquito, que é dividido em duas fases: fase imatura ou aquática (ovos, larvas e pupas) e fase alada (mosquitos adultos). Na fase adulta, os mosquitos são divididos em machos, fêmeas imaturas e fêmeas fertilizadas, sendo que a dinâmica proposta nesta dissertação de mestrado é baseada nos estudos efetuados por Reis desde 2016, obtendo um modelo simplificado no qual a soma das densidades das populações de fêmeas imaturas e fêmeas fertilizadas serão consideradas como fêmeas adultas.
The mosquito Aedes aegypti is the main vector responsible for several arboviruses such as dengue fever, yellow fever, zika virus and chikungunya fever. Due to its resistance, adaptability and proximity to humans, Aedes aegypti is currently one of the major public health problems in Brazil and the Americas. Even with the advances and investments in research with vaccines, monitoring, educational campaigns and various types of control of this vector, there is still no effective method to control and eradicate the mosquito. Therefore, this work is intended to aid in the creation of strategies to control this transmitting agent by analyzing the state space and the asymptotic stability of a nonlinear dynamics for population control of Aedes aegypti via the Lyapunov linearization technique to present ways of preventing and combating mosquito breeding sites. The proposed nonlinear dynamics is a simplified dynamics obtained from a nonlinear model existing in the literature, proposed by Esteva and Yang in 2005 and based on the life cycle of the mosquito, which is divided into two phases: immature or aquatic phase (eggs, larvae and pupae) and winged phase (adult mosquitoes). In the adult phase, mosquitoes are divided into males, immature females and fertilized females, and the dynamics proposed in this dissertation is based on studies carried out by Reis since 2016, obtaining a simplified model in which the sum of the densities of the populations of females immature and fertilized females will be considered as adult females.
(9809531), Patrick Keleher. "Adaptive and sliding mode control of articulated robot arms using the Liapunov method incorporating constraint inequalities." Thesis, 2003. https://figshare.com/articles/thesis/Adaptive_and_sliding_mode_control_of_articulated_robot_arms_using_the_Liapunov_method_incorporating_constraint_inequalities/21721025.
Full textIn this thesis we investigate the control of rigid robotic manipulators using robust adaptive sliding mode tracking control. Physical state constraints are incorporated using a multiplicative penalty in a Liapunov function from which we obtain analytic control laws that drive the robot's endeffector into a desired fixed target within finite time.
Lust, Alexander [Verfasser]. "Eine hybride Methode zur Berechnung von Liapunow-Exponenten / vorgelegt von Alexander Lust." 2006. http://d-nb.info/98122587X/34.
Full textEl, Marhomy Abd Alla M. "Dynamic stability of elastic rotor-bearing systems via Liapunov's direct method." 1987. http://catalog.hathitrust.org/api/volumes/oclc/17853037.html.
Full textTypescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 192-201).
Books on the topic "Liapunov method"
Saad, Y. Numerical solution of large Lyapunov equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.
Find full textHalanay, Aristide. Applications of Liapunov methods in stability. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textHalanay, A. Applications of Liapunov Methods in Stability. Dordrecht: Springer Netherlands, 1993.
Find full textHalanay, A., and V. Răsvan. Applications of Liapunov Methods in Stability. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1600-8.
Full textMartyni͡uk, A. A. Stability by Liapunov's matrix function method with applications. New York: Marcel Dekker, 1998.
Find full textQualitative methods in nonlinear dynamics: Novel approaches to Liapunov's matrix functions. New York: Marcel Dekker, 2002.
Find full textRouche, Nicolas, P. Habets, and M. Laloy. Stability Theory by Liapunov's Direct Method. Springer London, Limited, 2012.
Find full textHahn, Wolfgang. Theory and Application of Liapunov's Direct Method. Dover Publications, Incorporated, 2019.
Find full textBook chapters on the topic "Liapunov method"
Mei, Zhen. "Liapunov-Schmidt Method." In Numerical Bifurcation Analysis for Reaction-Diffusion Equations, 101–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_6.
Full textMerkin, David R. "The Direct Liapunov Method. Autonomous Systems." In Texts in Applied Mathematics, 25–74. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-4046-4_3.
Full textKolmanovskii, V., and A. Myshkis. "Applications of the Direct Liapunov Method." In Introduction to the Theory and Applications of Functional Differential Equations, 359–86. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-1965-0_9.
Full textChan, Whei-Ching C., and Shui-Nee Chow. "Uniform boundness and genralized inverses in liapunov-schmidt method for subharmonics." In Lecture Notes in Mathematics, 28–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077413.
Full textMerkin, David R. "Application of the Direct Method of Liapunov to the Investigation of Automatic Control Systems." In Texts in Applied Mathematics, 265–87. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-4046-4_9.
Full textRand, Richard H., and Dieter Armbruster. "Liapunov-Schmidt Reduction." In Perturbation Methods, Bifurcation Theory and Computer Algebra, 155–214. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-1060-3_7.
Full textGandolfo, Giancarlo. "Liapunov’s Second Method." In Economic Dynamics, 407–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-06822-9_23.
Full textGandolfo, Giancarlo. "Liapunov’s Second Method." In Economic Dynamics, 401–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03871-6_22.
Full textLaSalle, J. P. "Liapunov’s Direct Method." In The Stability and Control of Discrete Processes, 7–12. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-1076-4_2.
Full textHalanay, A., and V. Răsvan. "Introduction." In Applications of Liapunov Methods in Stability, 1–13. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1600-8_1.
Full textConference papers on the topic "Liapunov method"
Stroe, Ion, and Dumitru I. Caruntu. "Systems Stability Using Weight Functions Method." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80290.
Full textMahajan, Sanjay K., and Shriram Krishnan. "A Method for State Observer Design in Bilinear Suspension Systems." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0233.
Full textJUNKINS, J., Z. RAHMAN, and H. BANG. "Near-minimum-time maneuvers of flexible vehicles - A Liapunov control law design method." In 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-663.
Full textPandiyan, R., J. S. Bibb, and S. C. Sinha. "Liapunov-Floquet Transformation: Computation and Applications to Periodic Systems." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0122.
Full textDobov'ek, Igor. "An Application of the Direct Method of Liapunov in Stability Analysis of Semilinear Systems." In 2015 International Conference on Modeling, Simulation and Applied Mathematics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/msam-15.2015.45.
Full textDale, Sanda, Helga Maria Silaghi, and Claudiu Costea. "Procedural and software development of a Liapunov-based stability analysis method for interpolative-type control systems." In 2013 17th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2013. http://dx.doi.org/10.1109/icstcc.2013.6688952.
Full textButcher, Eric A., and S. C. Sinha. "Canonical Perturbation of a Fast Time-Periodic Hamiltonian via Liapunov-Floquet Transformation." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4107.
Full textGuttalu, Ramesh S., and Henryk Flashner. "A Comparison of Analytical Methods for Studying a Single-DOF Nonlinear System." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4023.
Full textShiau, Ting Nung, Jon Li Hwang, and Yuan Bin Chang. "A Study on Stability and Response Analysis of a Nonlinear Rotor System With Mass Unbalance and Side Load." In ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-007.
Full textShiau, T. N., J. S. Rao, Y. D. Yu, and S. T. Choi. "Steady State Response and Stability of Rotating Composite Blades With Frictional Damping." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-469.
Full textReports on the topic "Liapunov method"
Grossberg, Stephen. Content-Addressable Memory Storage by Neural Networks: A General Model and Global Liapunov Method,. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada192716.
Full text