Academic literature on the topic 'Linear Algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear Algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear Algorithms"
Patel, Roshni V., and Jignesh S. Patel. "Optimization of Linear Equations using Genetic Algorithms." Indian Journal of Applied Research 2, no. 3 (October 1, 2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.
Full textEaves, B. Curtis, and Uriel G. Rothblum. "Linear Problems and Linear Algorithms." Journal of Symbolic Computation 20, no. 2 (August 1995): 207–14. http://dx.doi.org/10.1006/jsco.1995.1047.
Full textLAWLOR, DAVID, YANG WANG, and ANDREW CHRISTLIEB. "ADAPTIVE SUB-LINEAR TIME FOURIER ALGORITHMS." Advances in Adaptive Data Analysis 05, no. 01 (January 2013): 1350003. http://dx.doi.org/10.1142/s1793536913500039.
Full textGalperin, E. A. "Linear time algorithms for linear programming." Computers & Mathematics with Applications 37, no. 4-5 (February 1999): 199–208. http://dx.doi.org/10.1016/s0898-1221(99)00069-3.
Full textAskar, S. S., and A. A. Karawia. "On Solving Pentadiagonal Linear Systems via Transformations." Mathematical Problems in Engineering 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/232456.
Full textČiegis, Raimondas, Remigijus Čiegis, Alexander Jakušev, and Gailė Šaltenienė. "PARALLEL VARIATIONAL ITERATIVE LINEAR SOLVERS." Mathematical Modelling and Analysis 12, no. 1 (March 31, 2007): 1–16. http://dx.doi.org/10.3846/1392-6292.2007.12.1-16.
Full textSilva, Jair, Carla T. L. S. Ghidini, Aurelio R. L. Oliveira, and Marta I. V. Fontova. "A Comparison Among Simple Algorithms for Linear Programming." TEMA (São Carlos) 19, no. 2 (September 12, 2018): 305. http://dx.doi.org/10.5540/tema.2018.019.02.305.
Full textPackel, Edward W. "Do Linear Problems Have Linear Optimal Algorithms?" SIAM Review 30, no. 3 (September 1988): 388–403. http://dx.doi.org/10.1137/1030091.
Full textCreutzig, Jakob, and P. Wojtaszczyk. "Linear vs. nonlinear algorithms for linear problems." Journal of Complexity 20, no. 6 (December 2004): 807–20. http://dx.doi.org/10.1016/j.jco.2004.05.003.
Full textPloskas, Nikolaos, Nikolaos Samaras, and Jason Papathanasiou. "A Decision Support System for Solving Linear Programming Problems." International Journal of Decision Support System Technology 6, no. 2 (April 2014): 46–62. http://dx.doi.org/10.4018/ijdsst.2014040103.
Full textDissertations / Theses on the topic "Linear Algorithms"
Wilbanks, John W. (John Winston). "Linear Unification." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc500971/.
Full textRettes, Julio Alberto Sibaja. "Robust algorithms for linear regression and locally linear embedding." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/22445.
Full textSubmitted by Weslayne Nunes de Sales (weslaynesales@ufc.br) on 2017-03-30T13:15:27Z No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-04-04T11:10:44Z (GMT) No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5)
Made available in DSpace on 2017-04-04T11:10:44Z (GMT). No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5) Previous issue date: 2017
Nowadays a very large quantity of data is flowing around our digital society. There is a growing interest in converting this large amount of data into valuable and useful information. Machine learning plays an essential role in the transformation of data into knowledge. However, the probability of outliers inside the data is too high to marginalize the importance of robust algorithms. To understand that, various models of outliers are studied. In this work, several robust estimators within the generalized linear model for regression framework are discussed and analyzed: namely, the M-Estimator, the S-Estimator, the MM-Estimator, the RANSAC and the Theil-Sen estimator. This choice is motivated by the necessity of examining algorithms with different working principles. In particular, the M-, S-, MM-Estimator are based on a modification of the least squares criterion, whereas the RANSAC is based on finding the smallest subset of points that guarantees a predefined model accuracy. The Theil Sen, on the other hand, uses the median of least square models to estimate. The performance of the estimators under a wide range of experimental conditions is compared and analyzed. In addition to the linear regression problem, the dimensionality reduction problem is considered. More specifically, the locally linear embedding, the principal component analysis and some robust approaches of them are treated. Motivated by giving some robustness to the LLE algorithm, the RALLE algorithm is proposed. Its main idea is to use different sizes of neighborhoods to construct the weights of the points; to achieve this, the RAPCA is executed in each set of neighbors and the risky points are discarded from the corresponding neighborhood. The performance of the LLE, the RLLE and the RALLE over some datasets is evaluated.
Na atualidade um grande volume de dados é produzido na nossa sociedade digital. Existe um crescente interesse em converter esses dados em informação útil e o aprendizado de máquinas tem um papel central nessa transformação de dados em conhecimento. Por outro lado, a probabilidade dos dados conterem outliers é muito alta para ignorar a importância dos algoritmos robustos. Para se familiarizar com isso, são estudados vários modelos de outliers. Neste trabalho, discutimos e analisamos vários estimadores robustos dentro do contexto dos modelos de regressão linear generalizados: são eles o M-Estimator, o S-Estimator, o MM-Estimator, o RANSAC e o Theil-Senestimator. A escolha dos estimadores é motivada pelo principio de explorar algoritmos com distintos conceitos de funcionamento. Em particular os estimadores M, S e MM são baseados na modificação do critério de minimização dos mínimos quadrados, enquanto que o RANSAC se fundamenta em achar o menor subconjunto que permita garantir uma acurácia predefinida ao modelo. Por outro lado o Theil-Sen usa a mediana de modelos obtidos usando mínimos quadradosno processo de estimação. O desempenho dos estimadores em uma ampla gama de condições experimentais é comparado e analisado. Além do problema de regressão linear, considera-se o problema de redução da dimensionalidade. Especificamente, são tratados o Locally Linear Embedding, o Principal ComponentAnalysis e outras abordagens robustas destes. É proposto um método denominado RALLE com a motivação de prover de robustez ao algoritmo de LLE. A ideia principal é usar vizinhanças de tamanhos variáveis para construir os pesos dos pontos; para fazer isto possível, o RAPCA é executado em cada grupo de vizinhos e os pontos sob risco são descartados da vizinhança correspondente. É feita uma avaliação do desempenho do LLE, do RLLE e do RALLE sobre algumas bases de dados.
Li, Zhentao. "Tree decompositions and linear time algorithms." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107654.
Full textCette thèse traite de décompositions arborescentes. Les arbres font partie des classes de graphes les mieux comprises. La décomposition arborescente d'un graphe améliore notre compréhension de ce dernier. Par exemple, grâce aux travaux de Robertson et Seymour sur les mineurs d'un graphe, nous savons qu'il existe, pour des problèmes qui sont en général NP-difficiles, un algorithme linéaire pour les graphes admettant une certaine décomposition arborescente. Nous classons les décompositions arborescentes connues et déterminons les propiétés qui rendent cette décomposition unique.Comme premier résultat, nous donnons un algorithme linéaire pour construire une décomposition arborescente d'un graphe sans mineur du graphe complet K_5. Notre deuxième resultat repose sur une modification de cet algorithme afin d'obtenir un autre algorithme linéaire. Ce dernier permet la construction d'une décomposition arborescente d'un graphe qui ne contient pas deux chemins à sommets disjoints entre deux paires de sommets données (s_1, t_1) et (s_2, t_2).Nous utilisons ces deux décompositions pour améliorer le temps de calcul des algorithmes existants et modifions des algorithmes pour graphes planaires pour leur permettre de prendre comme donnée des graphes sans mineur K_5.
Lee, Richard. "3D non-linear image restoration algorithms." Thesis, University of East Anglia, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338227.
Full textTORTORELLI, MARCUS MAGNO FERNANDES. "CENTRAL PATH ALGORITHMS FOR LINEAR PROGRAMMING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9405@1.
Full textWe study here the Interior Points Algorithms for Linear Programming, developed after Karmarkar s Algorithm, which follow the Central Path. Both Primal and Primal-dual Algorithms are considered and also the efficiency of applying a bidirecional Search procedure is verified. These methods were implemented and tested solving a set of randomly generated problems. Comparing these results we analyze the performance of the methodologies.
Yodpinyanee, Anak. "Sub-linear algorithms for graph problems." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120411.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 189-199).
In the face of massive data sets, classical algorithmic models, where the algorithm reads the entire input, performs a full computation, then reports the entire output, are rendered infeasible. To handle these data sets, alternative algorithmic models are suggested to solve problems under the restricted, namely sub-linear, resources such as time, memory or randomness. This thesis aims at addressing these limitations on graph problems and combinatorial optimization problems through a number of different models. First, we consider the graph spanner problem in the local computation algorithm (LCA) model. A graph spanner is a subgraph of the input graph that preserves all pairwise distances up to a small multiplicative stretch. Given a query edge from the input graph, the LCA explores a sub-linear portion of the input graph, then decides whether to include this edge in its spanner or not - the answers to all edge queries constitute the output of the LCA. We provide the first LCA constructions for 3 and 5-spanners of general graphs with almost optimal trade-offs between spanner sizes and stretches, and for fixed-stretch spanners of low maximum-degree graphs. Next, we study the set cover problem in the oracle access model. The algorithm accesses a sub-linear portion of the input set system by probing for elements in a set, and for sets containing an element, then computes an approximate minimum set cover: a collection of an approximately-minimum number of sets whose union includes all elements. We provide probe-efficient algorithms for set cover, and complement our results with almost tight lower bound constructions. We further extend our study to the LP-relaxation variants and to the streaming setting, obtaining the first streaming results for the fractional set cover problem. Lastly, we design local-access generators for a collection of fundamental random graph models. We demonstrate how to generate graphs according to the desired probability distribution in an on-the-fly fashion. Our algorithms receive probes about arbitrary parts of the input graph, then construct just enough of the graph to answer these probes, using only polylogarithmic time, additional space and random bits per probe. We also provide the first implementation of random neighbor probes, which is a basic algorithmic building block with applications in various huge graph models.
by Anak Yodpinyanee.
Ph. D.
Kong, Seunghyun. "Linear programming algorithms using least-squares method." Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-04012007-010244/.
Full textMartin Savelsbergh, Committee Member ; Joel Sokol, Committee Member ; Earl Barnes, Committee Co-Chair ; Ellis L. Johnson, Committee Chair ; Prasad Tetali, Committee Member.
Jamieson, Alan C. "Linear-time algorithms for edge-based problems." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1193079463/.
Full textAmir-Azizi, Siamak. "Linear filtering algorithms for Monte Carlo simulations." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280859.
Full textPullan, Malcolm Craig. "Separated continuous linear programs : theory and algorithms." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260693.
Full textBooks on the topic "Linear Algorithms"
Sima, Vasile. Algorithms for linear-quadratic optimization. New York: M. Dekker, 1996.
Find full textKontoghiorghes, Erricos John. Parallel Algorithms for Linear Models. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4571-2.
Full textLee, P. Synthesizing linear-array algorithms from nested for loop algorithms. New York: Courant Institute of Mathematical Sciences, New York University, 1988.
Find full textPanik, Michael J. Linear programming: Mathematics, theory and algorithms. Dordrecht: Kluwer Academic, 1996.
Find full textAbdullah, Jalaluddin. Fixed point algorithms for linear programming. Birmingham: University of Birmingham, 1992.
Find full textservice), SpringerLink (Online, ed. Max-linear Systems: Theory and Algorithms. London: Springer-Verlag London Limited, 2010.
Find full textLinear network optimization: Algorithms and codes. Cambridge, Mass: MIT Press, 1991.
Find full textPanik, Michael J., ed. Linear Programming: Mathematics, Theory and Algorithms. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-3434-7.
Full textButkovič, Peter. Max-linear Systems: Theory and Algorithms. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-299-5.
Full textBook chapters on the topic "Linear Algorithms"
Kall, Peter, and János Mayer. "Algorithms." In Stochastic Linear Programming, 285–382. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7729-8_4.
Full textBitan, Sara, and Shmuel Zaks. "Optimal linear broadcast." In Algorithms, 368–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52921-7_86.
Full textKorte, Bernhard, and Jens Vygen. "Linear Programming." In Algorithms and Combinatorics, 53–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56039-6_3.
Full textRival, Ivan. "Linear Extensions." In Algorithms and Order, 481–82. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2639-4_17.
Full textKorte, Bernhard, and Jens Vygen. "Linear Programming." In Algorithms and Combinatorics, 49–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-21708-5_3.
Full textKorte, Bernhard, and Jens Vygen. "Linear Programming." In Algorithms and Combinatorics, 49–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-21711-5_3.
Full textKorte, Bernhard, and Jens Vygen. "Linear Programming." In Algorithms and Combinatorics, 51–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24488-9_3.
Full textPadberg, Manfred. "Simplex Algorithms." In Linear Optimization and Extensions, 49–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-12273-0_5.
Full textPadberg, Manfred. "Projective Algorithms." In Linear Optimization and Extensions, 239–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-12273-0_8.
Full textPadberg, Manfred. "Ellipsoid Algorithms." In Linear Optimization and Extensions, 309–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-12273-0_9.
Full textConference papers on the topic "Linear Algorithms"
Kalina, Jan, and Jurjen Duintjer Tebbens. "Algorithms for Regularized Linear Discriminant Analysis." In International Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005234901280133.
Full textPatt-Shamir, Boaz, and Evyatar Yadai. "Non-Linear Ski Rental." In SPAA '20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3350755.3400280.
Full textEvans, B. L., and J. H. McClellan. "Algorithms for symbolic linear convolution." In Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers. IEEE Comput. Soc. Press, 1994. http://dx.doi.org/10.1109/acssc.1994.471600.
Full textFREDET, A. "ALGORITHMS AROUND LINEAR DIFFERENTIAL EQUATIONS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770752_0018.
Full textHelmicki, A. J., C. A. Jacobson, and C. N. Nett. "Identification in H∞: linear algorithms." In 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4791160.
Full textCalvetti, Daniela, Salvatore Cuomo, Monica Pragliola, Erkki Somersalo, and Gerardo Toraldo. "Computational issues in linear multistep method particle filtering." In NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965321.
Full textBodwin, Greg. "Linear Size Distance Preservers." In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611974782.39.
Full textGrosslinger, Armin, and Stefan Schuster. "On Computing Solutions of Linear Diophantine Equations with One Non-linear Parameter." In 2008 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 2008. http://dx.doi.org/10.1109/synasc.2008.33.
Full textCheung, Ho Yee, Lap Chi Lau, and Kai Man Leung. "Algebraic Algorithms for Linear Matroid Parity Problems." In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2011. http://dx.doi.org/10.1137/1.9781611973082.105.
Full textIwata, Yoichi, Keigo Oka, and Yuichi Yoshida. "Linear-Time FPT Algorithms via Network Flow." In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973402.127.
Full textReports on the topic "Linear Algorithms"
Stechel, E. B. Linear scaling algorithms: Progress and promise. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/285454.
Full textSubasi, Yigit. Quantum algorithms for linear systems of equations [Slides]. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1774402.
Full textQi, Liqun, and Egon Balas. Linear-Time Separation Algorithms for the Three-Index Assignment Polytope. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada228854.
Full textTapia, R. A., and Yin Zhang. An Optimal Basis Identification Technique for Interior-Point Linear Programming Algorithms. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada455258.
Full textKlema, V. Numerical Algorithms and Mathematical Software for Linear Control and Estimation Theory. Fort Belvoir, VA: Defense Technical Information Center, May 1985. http://dx.doi.org/10.21236/ada157525.
Full textAriyawansa, K. A. Parallel algorithms for stochastic linear programs: A summary of research performed. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6541143.
Full textLeininger, Matthew L., Ida Marie B. Nielsen, and Curtis L. Janssen. Scalable fault tolerant algorithms for linear-scaling coupled-cluster electronic structure methods. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/920444.
Full textCarey, G. F., and D. M. Young. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10134847.
Full textBrown, Ross, Jason Pusey, Muthuvel Murugan, and Dy Le. Comparison of Performance Effectiveness of Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada543109.
Full textDemeure, Cedric J., and Louis L. Scharf. Lattice Algorithms for Computing QR and Cholesky Factors in the Least Squares Theory of Linear Prediction. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada196454.
Full text