Academic literature on the topic 'Linear optical position sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear optical position sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear optical position sensor"
Aiestaran, P., V. Dominguez, J. Arrue, and J. Zubia. "A fluorescent linear optical fiber position sensor." Optical Materials 31, no. 7 (May 2009): 1101–4. http://dx.doi.org/10.1016/j.optmat.2007.12.022.
Full textKitazono, Yuhki, Shota Nakashima, Li Feng Zhang, and Serikawa Seiichi. "Proposal of an Optical Linear Sensor Using One-Side Frosted Glass." Applied Mechanics and Materials 36 (October 2010): 370–75. http://dx.doi.org/10.4028/www.scientific.net/amm.36.370.
Full textTantau, Mathias, Paul Morantz, and Paul Shore. "Position sensor for active magnetic bearing with commercial linear optical encoders." CIRP Annals 70, no. 1 (2021): 419–22. http://dx.doi.org/10.1016/j.cirp.2021.04.092.
Full textSeco, Fernando, José Miguel Martín, Antonio Ramón Jiménez, and Leopoldo Calderón. "A high accuracy magnetostrictive linear position sensor." Sensors and Actuators A: Physical 123-124 (September 2005): 216–23. http://dx.doi.org/10.1016/j.sna.2005.02.026.
Full textLin, Chih-Hong. "Precision Motion Control of a Linear Permanent Magnet Synchronous Machine Based on Linear Optical-Ruler Sensor and Hall Sensor." Sensors 18, no. 10 (October 7, 2018): 3345. http://dx.doi.org/10.3390/s18103345.
Full textDhawan, Ravi, Rushal Shah, Nitin Kawade, and Biswaranjan Dikshit. "Design and development of linear optical fiber array based remote position sensor." Optik 139 (June 2017): 355–65. http://dx.doi.org/10.1016/j.ijleo.2017.04.036.
Full textSeco, Fernando, José Miguel Martín, José Luis Pons, and Antonio Ramón Jiménez. "Hysteresis compensation in a magnetostrictive linear position sensor." Sensors and Actuators A: Physical 110, no. 1-3 (February 2004): 247–53. http://dx.doi.org/10.1016/j.sna.2003.09.031.
Full textQin, Bo Ying, and Xian Kun Lin. "Application of Integer-Coded Genetic Algorithm to Optimal Sensor Placement." Advanced Materials Research 271-273 (July 2011): 1114–19. http://dx.doi.org/10.4028/www.scientific.net/amr.271-273.1114.
Full textLiu, Han Bing, Chun Li Wu, and Jing Wang. "Sensor Optimal Placement for Bridge Structure Based on Single Parents Genetic Algorithm with Different Fitness Functions." Key Engineering Materials 456 (December 2010): 115–24. http://dx.doi.org/10.4028/www.scientific.net/kem.456.115.
Full textWang, Wen Hua, and Xin Sheng Jiang. "Influence of the Q Point on the Extrinsic Fabry-Perot Interferometer Fiber-Optic Sensors with a Diaphragm." Applied Mechanics and Materials 303-306 (February 2013): 78–81. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.78.
Full textDissertations / Theses on the topic "Linear optical position sensor"
Pavliš, Jakub. "Využití optického odměřovacího systému Renishaw pro snímače a komparátory." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417745.
Full textKinney, Stuart. "The development of an optical position sensor." Virtual Press, 1998. http://liblink.bsu.edu/uhtbin/catkey/1115421.
Full textDepartment of Physics and Astronomy
Wong, Francis Yee-Hon. "Inductive position/velocity sensor design and servo control of linear motor." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36084.
Full textMäkynen, A. (Anssi). "Position-sensitive devices and sensor systems for optical tracking and displacement sensing applications." Doctoral thesis, University of Oulu, 2000. http://urn.fi/urn:isbn:9514257804.
Full textMateen, Mala. "Development and Verification of the non-linear Curvature Wavefront Sensor." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/581277.
Full textLabicane, Robert Edward. "Position control of a two massed linear actuator used in an optical disk drive system." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276878.
Full textSargeant, Ramon Bradley. "A multi-axial optical fibre and linear polarizer based force and torque sensor for dexterous robotic fingertips." Thesis, King's College London (University of London), 2014. http://kclpure.kcl.ac.uk/portal/en/theses/a-multiaxial-optical-fibre-and-linear-polarizer-based-force-and-torque-sensor-for-dexterous-robotic-fingertips(a9c419a3-901e-4a56-9b02-00648539d17e).html.
Full textJesus, Sidney Nogueira Pereira de. "Controlador de posição linear hidro-pneumático." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-30052008-125213/.
Full textThis research presents a technological innovation for applications in machine / device position control: the Hydro-Pneumatic Linear Position controller. In cases where great efforts are combined with small dislocations, this task is normally accomplished by means of Servo Hydraulic Systems that, due to particular characteristics of the market envisaged by the present proposition, represent elevated costs, when compared to those of the hydro-pneumatic solution described here. This work presents an analytical numerical model for the devise as well as an experimental prototype. It worth noting the infra-structure simplicity required for this alternative implementation, and also the reduction in energy waste when compared to the traditional servo-hydraulic technology. The prototype experimental tests demonstrated the system excellent behavior in what concerns answer speed and position resolution whose values were respectively in range 0.05 s and 0,01 mm. The small physical size obtained with this technology is another relevant item, which allows the device use in places of reduced available space. Numerical simulation and experimental test results are presented as well as perspectives of future developments
Bergenblad, Jonas. "Validation study of a portable accelerometer to measure muscular power output : Correlation between the Beast Sensor and the linear encoder MuscleLab." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-34823.
Full textAbstrakt Bakgrund: Förmågan att producera hög effektutveckling (power) kan avgöra vilken idrottare som vinner eller förlorar en tävling. Effektutveckling kan mätas i övningar som knäböj och bänkpress. Detta kan göras med hjälp av en kraftplatta, eller en kraftplatta parad med en linear position transducer. Dessa metoder anses vara ”gold standard”, men linear position transducers eller linear encoders har också ansetts vara valida metoder. Effektutveckling kan även mätas med hjälp av en accelerometer. Syfte: Syftet med denna studie var att mäta samtidig validitet hos accelerometern Beast Sensor genom att mäta genomsnittlig effektutveckling i explosiva knäböj och bänkpressar vid 40 % och 80 % av en repetition max (1RM). MuscleLab, en linear encoder, användes som referensvärde. Metod: 17 försökspersoner, fem kvinnor och tolv män (medelålder 28 år) rekryterades. Femton av försökspersonerna fullföljde deltagande. Vid det första testtillfället mättes 1RM. Det andra tillfället ägde rum 7-14 dagar senare och mätte genomsnittlig effektutveckling i explosiva knäböj och bänkpressar vid 40 % och 80 % av försökspersonernas uppmätta 1RM. Två set av tre repetitioner mättes vid 40 % och 80 % av 1RM i både knäböj och bänkpress. Repetitionerna mättes samtidigt av MuscleLab och Beast Sensor. För att Beast Sensor skulle anses vara valid behövde en korrelationskoefficient på 0.9 eller högre uppnås. Resultat: Beast Sensor uppvisade höga eller väldigt höga korrelationer med MuscleLab för genomsnittlig effektutveckling i explosiva knäböj vid 40 % av 1RM (rs = 0.91) och explosiva bänkpressar vid 40 % (rs = 0.86) och 80 % av 1RM (rs = 0.74). Dock uppmättes en låg korrelation för de explosiva knäböjen vid 80 % av 1RM (rs = 0.42). Alla korrelationer var statistiskt signifikanta med p-värden på < 0.01. Beast Sensor ansågs vara valid för att mäta effektutveckling vid 40 % av 1RM i knäböj, men varken vid 80 % av 1RM i knäböj, eller vid 40 % eller 80 % av 1RM i bänkpressar. Slutsats: Beast Sensor visade höga eller väldigt höga korrelationer med referensvärdet från MuscleLab för tre av de fyra uppmätta variablerna. Endast korrelationen för genomsnittlig effektutveckling i explosiva knäböj vid 40 % av 1RM uppnådde den korrelationskoefficient på 0.9 eller högre som krävdes för att Beast Sensor skulle anses vara valid. Förutom vid 40 % av 1RM i knäböj, missade Beast Sensor en väsentlig andel repetitioner. Därför finns det ett behov av fler studier som undersöker reliabiliteten hos Beast Sensor.
Dikmen, Serkan. "Development of Star Tracker Attitude and Position Determination System for Spacecraft Maneuvering and Docking Facility." Thesis, Luleå tekniska universitet, Rymdteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-60166.
Full textBook chapters on the topic "Linear optical position sensor"
Weir, K., A. W. Palmer, and K. T. V. Grattan. "An Optical Fibre Linear Position Sensor with Centimetre Scan Utilising White Light Interferometry and Two Light Sources of Widely Separated Wavelengths." In Applications of Photonic Technology, 379–82. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9247-8_72.
Full textChen, S., and B. T. Meggitt. "Intrinsic position sensing using optical fiber and coherence domain polarimetry." In Optical Fiber Sensor Technology, 241–56. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6077-4_9.
Full textBosselmann, T. "Multimode-Fiber Coupled White-Light Interferometric Position Sensor." In Optical Fiber Sensors, 429–32. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3611-9_28.
Full textMatei, Alexander, and Stefan Ulbrich. "Detection of Model Uncertainty in the Dynamic Linear-Elastic Model of Vibrations in a Truss." In Lecture Notes in Mechanical Engineering, 281–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_22.
Full textHouška, P., T. Březina, and L. Březina. "Design and Implementation of the Absolute Linear Position Sensor for the Stewart Platform." In Recent Advances in Mechatronics, 347–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05022-0_59.
Full textWerneck, Nicolau Leal, and Anna Helena Reali Costa. "Mapping with Monocular Vision in Two Dimensions." In Nature-Inspired Computing Design, Development, and Applications, 364–74. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1574-8.ch022.
Full textTakamasu, Kiyoshi, Atushi Kobaru, Ryousyu Furutani, and Sigeo Ozono. "Three Dimensional Position Sensor Using Optical Collimator for Nanometer Resolution." In International Progress in Precision Engineering, 62–65. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-7506-9484-1.50011-7.
Full textThomas, Michael E. "Propagation Background and Noise." In Optical Propagation in Linear Media. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195091618.003.0016.
Full textMalik, N. N. N. Abd, M. Esa, S. K. S. Yusof, S. A. Hamzah, and M. K. H. Ismail. "Optimisation of Radiation Beam in Linear Nodes Array of Wireless Sensor Network for Improved Performance." In Multidisciplinary Computational Intelligence Techniques, 215–25. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1830-5.ch013.
Full textVETTURI, D., A. DELLI CARRI, M. LANCINI, and I. BODINI. "MATHEMATICAL METHOD FOR THE DEFINITION OF A NON LINEAR MULTI INPUT-ONE OUTPUT CALIBRATION DIAGRAM FOR A LASER POSITION SENSOR." In Series on Advances in Mathematics for Applied Sciences, 396–404. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814397957_0049.
Full textConference papers on the topic "Linear optical position sensor"
Duplain, G., C. Belleville, S. Bussière, and P. A. Bélanger. "Absolute Fiber-Optic Linear Position and Displacement Sensor." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.otud5.
Full textLaClair, Robert D., William B. Spillman, Jr., W. W. Kuhns, and Mark S. Miller. "Long stroke optical fiber linear position sensor for the FLASH program." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Daniel B. Thompson and Robert J. Baumbick. SPIE, 1996. http://dx.doi.org/10.1117/12.254223.
Full textMcCorvey III, Donald L., and Fernando Dones. "Environmental testing of a linear time-division-multiplexed optical position sensor." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Eric Udd and Deepak Varshneya. SPIE, 1994. http://dx.doi.org/10.1117/12.188842.
Full textWibbing, D., J. Binder, W. Schinköthe, Ch Pauly, C. Gachot, and F. Mücklich. "1.1 - SensMiLi: Optical Absolute Position-Encoder by Single-Track, Q-ary Pseudo-Random-Sequences for Miniature Linear Motors." In SENSOR+TEST Conferences 2011. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2011. http://dx.doi.org/10.5162/opto11/o1.1.
Full textSeshadri, Aravind, and Prabhakar R. Pagilla. "Optimal Control of Web Guides Using a New Fiber Optic Edge Sensor." In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2242.
Full textMihalachi, M., and P. Mutschler. "Position acquisition for linear drives a comparison of optical and capacitive sensors." In IECON 2008 - 34th Annual Conference of IEEE Industrial Electronics Society. IEEE, 2008. http://dx.doi.org/10.1109/iecon.2008.4758438.
Full textLimanova, Natalya I. "Multichannel fiber optic sensors for precision measurements of vibration and linear position." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Ramon P. DePaula and John W. Berthold III. SPIE, 1996. http://dx.doi.org/10.1117/12.255369.
Full textTomita, Masatoshi, and Soichi Ibaraki. "Measurement of 2D Positioning “Error Map” of a SCARA-Type Robot Over the Entire Workspace by Using a Laser Interferometer and a PSD Sensor." In 2020 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/isfa2020-9656.
Full textMishra, Shatadal, and Wenlong Zhang. "Hybrid Low Pass and De-Trending Filter for Robust Position Estimation of Quadcopters." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9921.
Full textKnowles, Gareth, and Bruce Bower. "High Dynamic Range Colocated Sensoriactuator for Control of High-Speed Optical Systems." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21491.
Full textReports on the topic "Linear optical position sensor"
Garcia, F. N. Design of software and hardware components for a six-degrees of freedom optical position sensor. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/623045.
Full textKuznetsov, Victor, Vladislav Litvinenko, Egor Bykov, and Vadim Lukin. A program for determining the area of the object entering the IR sensor grid, as well as determining the dynamic characteristics. Science and Innovation Center Publishing House, April 2021. http://dx.doi.org/10.12731/bykov.0415.15042021.
Full text