Academic literature on the topic 'Machine Learning,High Energy Physics,CMS,Top physics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine Learning,High Energy Physics,CMS,Top physics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine Learning,High Energy Physics,CMS,Top physics"
Andrews, Michael, Bjorn Burkle, Shravan Chaudhari, et al. "Accelerating End-to-End Deep Learning for Particle Reconstruction using CMS open data." EPJ Web of Conferences 251 (2021): 03057. http://dx.doi.org/10.1051/epjconf/202125103057.
Full textKiehn, Moritz, Sabrina Amrouche, Paolo Calafiura, et al. "The TrackML high-energy physics tracking challenge on Kaggle." EPJ Web of Conferences 214 (2019): 06037. http://dx.doi.org/10.1051/epjconf/201921406037.
Full textQasim, Shah Rukh, Kenneth Long, Jan Kieseler, Maurizio Pierini, and Raheel Nawaz. "Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks." EPJ Web of Conferences 251 (2021): 03072. http://dx.doi.org/10.1051/epjconf/202125103072.
Full textBlance, Andrew, and Michael Spannowsky. "Quantum machine learning for particle physics using a variational quantum classifier." Journal of High Energy Physics 2021, no. 2 (2021). http://dx.doi.org/10.1007/jhep02(2021)212.
Full textFinke, Thorben, Michael Krämer, Alessandro Morandini, Alexander Mück, and Ivan Oleksiyuk. "Autoencoders for unsupervised anomaly detection in high energy physics." Journal of High Energy Physics 2021, no. 6 (2021). http://dx.doi.org/10.1007/jhep06(2021)161.
Full textKuznetsov, Valentin, Luca Giommi, and Daniele Bonacorsi. "MLaaS4HEP: Machine Learning as a Service for HEP." Computing and Software for Big Science 5, no. 1 (2021). http://dx.doi.org/10.1007/s41781-021-00061-3.
Full textFlesher, Forrest, Katherine Fraser, Charles Hutchison, Bryan Ostdiek, and Matthew D. Schwartz. "Parameter inference from event ensembles and the top-quark mass." Journal of High Energy Physics 2021, no. 9 (2021). http://dx.doi.org/10.1007/jhep09(2021)058.
Full textKhalek, Rabah Abdul, Jacob J. Ethier, Juan Rojo, and Gijs van Weelden. "nNNPDF2.0: quark flavor separation in nuclei from LHC data." Journal of High Energy Physics 2020, no. 9 (2020). http://dx.doi.org/10.1007/jhep09(2020)183.
Full textAmacker, Jacob, William Balunas, Lydia Beresford, et al. "Higgs self-coupling measurements using deep learning in the $$ b\overline{b}b\overline{b} $$ final state." Journal of High Energy Physics 2020, no. 12 (2020). http://dx.doi.org/10.1007/jhep12(2020)115.
Full textAraz, Jack Y., and Michael Spannowsky. "Quantum-inspired event reconstruction with Tensor Networks: Matrix Product States." Journal of High Energy Physics 2021, no. 8 (2021). http://dx.doi.org/10.1007/jhep08(2021)112.
Full textDissertations / Theses on the topic "Machine Learning,High Energy Physics,CMS,Top physics"
Giommi, Luca. "Prototype of machine learning “as a service” for CMS physics in signal vs background discrimination." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15803/.
Full textZoch, Knut. "Cross-section measurements of top-quark pair production in association with a hard photon at 13 TeV with the ATLAS detector." Doctoral thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-1440-C.
Full textConference papers on the topic "Machine Learning,High Energy Physics,CMS,Top physics"
Bhattacharya, Soham, Monoranjan Guchait, and Aravind H. Vijay. "Boosted Top Quark Tagging and Polarization 2 Measurement using Machine Learning." In 40th International Conference on High Energy physics. Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.390.0318.
Full text