Books on the topic 'Mathematical optimization. Programming (Mathematics) Convex programming'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Mathematical optimization. Programming (Mathematics) Convex programming.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Foundations of optimization. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Șandru, Ovidiu-Ilie. Noneuclidean convexity: Applications in the programming theory. București: Editura Tehnică, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rubinov, Aleksandr Moiseevich. Abstract convexity and global optimization. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joaquim António dos Santos Gromicho. Quasiconvex optimization and location theory. Dordrecht: Kluwer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joaquim António dos Santos Gromicho. Quasiconvex optimization and location theory. Amsterdam: Thesis Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hiriart-Urruty, Jean-Baptiste. Fundamentals of convex analysis. Berlin: Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1944-, Lemaréchal Claude, ed. Fundamentals of convex analysis. Berlin: Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Convex analysis and global optimization. Dordrecht: Kluwer Academic Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xiaoqi, Yang, ed. Lagrange-type functions in constrained non-convex optimization. Boston: Kluwer Academic Publishers, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, David Yang. Duality principles in nonconvex systems: Theory, methods, and applications. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

A, Krysov I͡U︡, ed. Sovmestnoe agregirovanie v parametricheskikh zadachakh vypuklogo programmirovanii͡a︡ i mnogokriterialʹnoĭ optimizat͡s︡ii. Moskva: Vychislitelʹnyĭ t͡s︡entr AN SSSR, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

1929-, Ponstein Jacob, ed. Convexity and duality in optimization: Proceedings of the Symposium on Convexity and Duality in Optimization held at the University of Groningen, the Netherlands, June 22, 1984. Berlin: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Renegar, James. A mathematical view of interior-point methods in convex optimization. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

N, Iusem Alfredo, ed. Totally convex functions for fixed points computation and infinite dimensional optimization. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bolti͡anskiĭ, V. G. Geometric methods and optimization problems. Dordrecht: Kluwer Academic Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Barbu, Viorel. Convexity and optimization in Banach spaces. 2nd ed. București, Romania: Editura Academiei, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

1941-, Precupanu Theodor, ed. Convexity and optimization in banach spaces. 4th ed. Dordrecht: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Komlósi, S. Second order conditions of generalized convexity and local optimality in nonlinear programming: The quasi-Hessian approach. Pécs [Hungary]: Janus Pannonius Tudományegyetem, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

M, Teboulle, ed. Asymptotic cones and functions in optimization and variational inequalities. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hiriart-Urruty, Jean-Baptiste. Convex analysis and minimization algorithms. 2nd ed. Berlin: Springer-Verlag, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hiriart-Urruty, Jean-Baptiste. Convex analysis and minimization algorithms. Berlin: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jeter, Melvyn W. Mathematical programming: An introduction to optimization. New York: M. Dekker, Inc., 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Grötschel, Martin. Geometric algorithms and combinatorial optimization. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Grötschel, Martin. Geometric algorithms and combinatorial optimization. 2nd ed. Berlin: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mathematical programming: An introduction to optimization. New York: M. Dekker, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stable parametric programming. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Peressini, Anthony L. The mathematics of nonlinear programming. New York: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

E, Sullivan Francis, and Uhl J. J, eds. The mathematics of nonlinear programming. 2nd ed. New York: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Reemtsen, Rembert. Semi-Infinite Programming. Boston, MA: Springer US, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dempe, Stephan. Foundations of bilevel programming. New York: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Foundations of bilevel programming. Dordrecht: Kluwer Academic, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

A first course in optimization theory. Cambridge: Cambridge University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Optimization in industry. New Brunswick: AldineTransaction, A Division of Transaction Publishers, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rardin, Ronald L. Optimization in operations research. Upper Saddle River, N.J: Prentice Hall, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Optimization in operations research. Upper Saddle River, N.J: Prentice Hall, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Integrated methods for optimization. New York: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Stützle, Thomas, Vittorio Maniezzo, and Stefan Voss. Matheuristics: Hybridizing metaheuristics and mathematical programming. New York: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Optimization theory with applications. New York: Dover Publications, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Optimization theory and related topics: Israel mathematical conference proceedings, a workshop in memory of Dan Butnariu, January 11-14, 2010, Haifa, Israel. Providence, R.I: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Venkataraman, P. Applied optimization with MAtLAB programming. 2nd ed. Hoboken, N.J: John Wiley & Sons, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Faigle, Ulrich. Algorithmic Principles of Mathematical Programming. Dordrecht: Springer Netherlands, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Razumikhin, Boris Sergeevich. Classical principles and optimization problems. Dordrecht: D. Reidel Pub. Co., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Fuzzy sets and interactive multiobjective optimization. New York: Plenum, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Optimization techniques in statistics. Boston: Academic Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kurdila, Andrew. Robust optimization-directed design. New York: Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stancu-Minasian, I. M. Fractional Programming: Theory, Methods and Applications. Dordrecht: Springer Netherlands, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Steuer, Ralph E. Multiple criteria optimization: Theory, computation, and application. New York: Wiley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Multiple criteria optimization: Theory, computation, and application. Malabar, Fla: Krieger, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Richard, Cottle, ed. The basic George B. Dantzig. Stanford, Calif: Stanford Business Books, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kimms, Alf. Mathematical Programming and Financial Objectives for Scheduling Projects. Boston, MA: Springer US, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography