Journal articles on the topic 'Mathematical optimization. Programming (Mathematics) Convex programming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mathematical optimization. Programming (Mathematics) Convex programming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ceria, Sebastián, and João Soares. "Convex programming for disjunctive convex optimization." Mathematical Programming 86, no. 3 (December 1, 1999): 595–614. http://dx.doi.org/10.1007/s101070050106.
Full textFu, J. Y., and Y. H. Wang. "Arcwise Connected Cone-Convex Functions and Mathematical Programming." Journal of Optimization Theory and Applications 118, no. 2 (August 2003): 339–52. http://dx.doi.org/10.1023/a:1025451422581.
Full textLewis, Adrian S., and Michael L. Overton. "Eigenvalue optimization." Acta Numerica 5 (January 1996): 149–90. http://dx.doi.org/10.1017/s0962492900002646.
Full textZhou, XueGang, and JiHui Yang. "Global Optimization for the Sum of Concave-Convex Ratios Problem." Journal of Applied Mathematics 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/879739.
Full textThuy, Le Quang, Nguyen Thi Bach Kim, and Nguyen Tuan Thien. "Generating Efficient Outcome Points for Convex Multiobjective Programming Problems and Its Application to Convex Multiplicative Programming." Journal of Applied Mathematics 2011 (2011): 1–21. http://dx.doi.org/10.1155/2011/464832.
Full textXu, Z. K., and S. C. Fang. "Unconstrained convex programming approach to linear programming." Journal of Optimization Theory and Applications 86, no. 3 (September 1995): 745–52. http://dx.doi.org/10.1007/bf02192167.
Full textfang, S. C., and H. S. J. Tsao. "An unconstrained convex programming approach to solving convex quadratic programming problems." Optimization 27, no. 3 (January 1993): 235–43. http://dx.doi.org/10.1080/02331939308843884.
Full textSenchukov, Viktor. "The solution of optimization problems in the economy by overlaying integer lattices: applied aspect." Economics of Development 18, no. 1 (June 10, 2019): 44–55. http://dx.doi.org/10.21511/ed.18(1).2019.05.
Full textTrujillo-Cortez, R., and S. Zlobec. "Bilevel convex programming models." Optimization 58, no. 8 (November 2009): 1009–28. http://dx.doi.org/10.1080/02331930701763330.
Full textGil-González, Walter, Oscar Danilo Montoya, Luis Fernando Grisales-Noreña, Fernando Cruz-Peragón, and Gerardo Alcalá. "Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization." Energies 13, no. 7 (April 3, 2020): 1703. http://dx.doi.org/10.3390/en13071703.
Full textJarre, Florian. "Interior-point methods for convex programming." Applied Mathematics & Optimization 26, no. 3 (November 1992): 287–311. http://dx.doi.org/10.1007/bf01371086.
Full textZarichnyi, M. "FUNCTORS AND SPACES IN IDEMPOTENT MATHEMATICS." Bukovinian Mathematical Journal 9, no. 1 (2021): 171–79. http://dx.doi.org/10.31861/bmj2021.01.14.
Full textGao, Yuelin, and Siqiao Jin. "A Global Optimization Algorithm for Sum of Linear Ratios Problem." Journal of Applied Mathematics 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/276245.
Full textDong, Lei, Ai Zhong Tian, Tian Jiao Pu, Zheng Fan, and Ting Yu. "Reactive Power Optimization for Distribution Network with Distributed Generators Based on Semi-Definite Programming." Advanced Materials Research 1070-1072 (December 2014): 809–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.809.
Full textTseng, P. "Linearly constrained convex programming as unconstrained differentiable concave programming." Journal of Optimization Theory and Applications 85, no. 2 (May 1995): 489–94. http://dx.doi.org/10.1007/bf02192238.
Full textWang, Lei, and Hong Luo. "Robust Linear Programming with Norm Uncertainty." Journal of Applied Mathematics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/209239.
Full textJung, Jin Hyuk, Dianne P. O’Leary, and André L. Tits. "Adaptive constraint reduction for convex quadratic programming." Computational Optimization and Applications 51, no. 1 (March 9, 2010): 125–57. http://dx.doi.org/10.1007/s10589-010-9324-8.
Full textFukushima, Masao, Mounir Haddou, Hien Van Nguyen, Jean-Jacques Strodiot, Takanobu Sugimoto, and Eiki Yamakawa. "A parallel descent algorithm for convex programming." Computational Optimization and Applications 5, no. 1 (January 1996): 5–37. http://dx.doi.org/10.1007/bf00429749.
Full textZillober, Ch, K. Schittkowski, and K. Moritzen. "Very large scale optimization by sequential convex programming." Optimization Methods and Software 19, no. 1 (February 2004): 103–20. http://dx.doi.org/10.1080/10556780410001647195.
Full textPei, Pei, and Jiang Wang. "A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming." Mathematical Problems in Engineering 2021 (January 30, 2021): 1–15. http://dx.doi.org/10.1155/2021/6618351.
Full textCarlone, L., V. Srivastava, F. Bullo, and G. C. Calafiore. "Distributed Random Convex Programming via Constraints Consensus." SIAM Journal on Control and Optimization 52, no. 1 (January 2014): 629–62. http://dx.doi.org/10.1137/120885796.
Full textAlvarez, Felipe, Jérôme Bolte, and Olivier Brahic. "Hessian Riemannian Gradient Flows in Convex Programming." SIAM Journal on Control and Optimization 43, no. 2 (January 2004): 477–501. http://dx.doi.org/10.1137/s0363012902419977.
Full textGlazos, Michael P., Stefen Hui, and Stanislaw H. Zak. "Sliding Modes in Solving Convex Programming Problems." SIAM Journal on Control and Optimization 36, no. 2 (March 1998): 680–97. http://dx.doi.org/10.1137/s0363012993255880.
Full textGoldbach, R. "Some Randomized Algorithms for Convex Quadratic Programming." Applied Mathematics and Optimization 39, no. 1 (January 2, 1999): 121–42. http://dx.doi.org/10.1007/s002459900101.
Full textde Oliveira, Welington. "Sequential Difference-of-Convex Programming." Journal of Optimization Theory and Applications 186, no. 3 (August 4, 2020): 936–59. http://dx.doi.org/10.1007/s10957-020-01721-x.
Full textChen, Wei, Atul Sahai, Achille Messac, and Glynn J. Sundararaj. "Exploration of the Effectiveness of Physical Programming in Robust Design." Journal of Mechanical Design 122, no. 2 (March 1, 2000): 155–63. http://dx.doi.org/10.1115/1.533565.
Full textChan, Timothy M. "Deterministic Algorithms for 2-d Convex Programming and 3-d Online Linear Programming." Journal of Algorithms 27, no. 1 (April 1998): 147–66. http://dx.doi.org/10.1006/jagm.1997.0914.
Full textLuo, Z. Q., J. F. Sturm, and S. Zhang. "Conic convex programming and self-dual embedding." Optimization Methods and Software 14, no. 3 (January 2000): 169–218. http://dx.doi.org/10.1080/10556780008805800.
Full textWeir, T., and B. Mond. "Proper efficiency and duality for vector valued optimization problems." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 43, no. 1 (August 1987): 21–34. http://dx.doi.org/10.1017/s1446788700028937.
Full textKanno, Yoshihiro. "Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach." Computational Optimization and Applications 71, no. 2 (June 9, 2018): 403–33. http://dx.doi.org/10.1007/s10589-018-0013-3.
Full textSumin, Mikhail Iosifovich. "WHY REGULARIZATION OF LAGRANGE PRINCIPLE AND PONTRYAGIN MAXIMUM PRINCIPLE IS NEEDED AND WHAT IT GIVES." Tambov University Reports. Series: Natural and Technical Sciences, no. 124 (2018): 757–75. http://dx.doi.org/10.20310/1810-0198-2018-23-124-757-775.
Full textAsgharian, M., and S. Zlobec. "Convex Parametric Programming in Abstract Spaces." Optimization 51, no. 6 (August 2002): 841–61. http://dx.doi.org/10.1080/0233193021000015659.
Full textVoronkov, O., O. Baistryk, and A. Danylyuk. "MATHEMATICAL MODELING OF OPTIMAL HEIGHTS OF EXTERNAL GEODESIC SIGNS." Municipal economy of cities 1, no. 161 (March 26, 2021): 109–15. http://dx.doi.org/10.33042/2522-180-2021-1-161-109-115.
Full textOliveira, Rúbia M., and Paulo A. V. Ferreira. "A convex analysis approach for convex multiplicative programming." Journal of Global Optimization 41, no. 4 (December 21, 2007): 579–92. http://dx.doi.org/10.1007/s10898-007-9267-5.
Full textHori, Yutaka, and Hiroki Miyazako. "Analysing diffusion and flow-driven instability using semidefinite programming." Journal of The Royal Society Interface 16, no. 150 (January 2019): 20180586. http://dx.doi.org/10.1098/rsif.2018.0586.
Full textDolatnezhadsomarin, Azam, Esmaile Khorram, and Latif Pourkarimi. "Efficient algorithms for solving nonlinear fractional programming problems." Filomat 33, no. 7 (2019): 2149–79. http://dx.doi.org/10.2298/fil1907149d.
Full textChen, Liang, Xiaokai Chang, and Sanyang Liu. "A Three-Operator Splitting Perspective of a Three-Block ADMM for Convex Quadratic Semidefinite Programming and Beyond." Asia-Pacific Journal of Operational Research 37, no. 04 (May 19, 2020): 2040009. http://dx.doi.org/10.1142/s0217595920400096.
Full textLi, Lifeng, Sanyang Liu, and Jianke Zhang. "Univex Interval-Valued Mapping with Differentiability and Its Application in Nonlinear Programming." Journal of Applied Mathematics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/383692.
Full textChirre, Andrés, Valdir Pereira Júnior, and David de Laat. "Primes in arithmetic progressions and semidefinite programming." Mathematics of Computation 90, no. 331 (April 2, 2021): 2235–46. http://dx.doi.org/10.1090/mcom/3638.
Full textKostyukova, O. I., and T. V. Tchemisova. "Sufficient optimality conditions for convex semi-infinite programming." Optimization Methods and Software 25, no. 2 (April 2010): 279–97. http://dx.doi.org/10.1080/10556780902992803.
Full textKozma, Attila, Christian Conte, and Moritz Diehl. "Benchmarking large-scale distributed convex quadratic programming algorithms." Optimization Methods and Software 30, no. 1 (May 12, 2014): 191–214. http://dx.doi.org/10.1080/10556788.2014.911298.
Full textKebaili, Zahira, and Mohamed Achache. "Solving nonmonotone affine variational inequalities problem by DC programming and DCA." Asian-European Journal of Mathematics 13, no. 03 (December 17, 2018): 2050067. http://dx.doi.org/10.1142/s1793557120500679.
Full textYang, X. M. "On E-Convex Sets, E-Convex Functions, and E-Convex Programming." Journal of Optimization Theory and Applications 109, no. 3 (June 2001): 699–704. http://dx.doi.org/10.1023/a:1017532225395.
Full textDahiya, Kalpana, Surjeet Kaur Suneja, and Vanita Verma. "Convex programming with single separable constraint and bounded variables." Computational Optimization and Applications 36, no. 1 (November 21, 2006): 67–82. http://dx.doi.org/10.1007/s10589-006-0396-4.
Full textLin, Ming-Hua, Jung-Fa Tsai, Nian-Ze Hu, and Shu-Chuan Chang. "Design Optimization of a Speed Reducer Using Deterministic Techniques." Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/419043.
Full textVirgili-Llop, Josep, Costantinos Zagaris, Richard Zappulla, Andrew Bradstreet, and Marcello Romano. "A convex-programming-based guidance algorithm to capture a tumbling object on orbit using a spacecraft equipped with a robotic manipulator." International Journal of Robotics Research 38, no. 1 (December 10, 2018): 40–72. http://dx.doi.org/10.1177/0278364918804660.
Full textGil-González, Walter, Alexander Molina-Cabrera, Oscar Danilo Montoya, and Luis Fernando Grisales-Noreña. "An MI-SDP Model for Optimal Location and Sizing of Distributed Generators in DC Grids That Guarantees the Global Optimum." Applied Sciences 10, no. 21 (October 30, 2020): 7681. http://dx.doi.org/10.3390/app10217681.
Full textHauser, Kris. "Semi-infinite programming for trajectory optimization with non-convex obstacles." International Journal of Robotics Research 40, no. 10-11 (January 10, 2021): 1106–22. http://dx.doi.org/10.1177/0278364920983353.
Full textHassan, Mansur, and Adam Baharum. "Modified Courant-Beltrami penalty function and a duality gap for invex optimization problem." International Journal for Simulation and Multidisciplinary Design Optimization 10 (2019): A10. http://dx.doi.org/10.1051/smdo/2019010.
Full textShen, Feichao, Ying Zhang, and Xueyong Wang. "An Accelerated Proximal Algorithm for the Difference of Convex Programming." Mathematical Problems in Engineering 2021 (April 24, 2021): 1–9. http://dx.doi.org/10.1155/2021/9994015.
Full text