Academic literature on the topic 'Melting aluminum'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Melting aluminum.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Melting aluminum"
Mukai, Sekiya, Hisao Nakamura, and Takashi Miyajima. "Aluminum Melting Furnaces." DENKI-SEIKO[ELECTRIC FURNACE STEEL] 63, no. 4 (1992): 317–26. http://dx.doi.org/10.4262/denkiseiko.63.317.
Full textCastillo Alvarado, Fray de Landa, Jerzy H. Rutkowski, Anna Urbaniak-Kucharczyk, and Leszek Wojtczak. "Surface melting of aluminum." Thin Solid Films 317, no. 1-2 (1998): 43–47. http://dx.doi.org/10.1016/s0040-6090(97)00658-5.
Full textYang, Jinhe, Shuting Zhang, Peixuan Ouyang, et al. "The influence of aluminum content on thermal properties of copper-aluminum alloys: a first-principles calculation." Journal of Physics: Conference Series 2819, no. 1 (2024): 012013. http://dx.doi.org/10.1088/1742-6596/2819/1/012013.
Full textPrasertsook, S., P. Saranan, N. Udomsree, and N. Sukachart. "NGV. Using to be Alternative Energy in Metal Melting." Applied Mechanics and Materials 365-366 (August 2013): 1118–21. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.1118.
Full textLi, Ji Feng, Xiao Ping Zhao, and Jian Liu. "Molecular Dynamics Simulations on Melting of Aluminum." Applied Mechanics and Materials 423-426 (September 2013): 935–38. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.935.
Full textBehrens, B. A. Prof, H. Semrau, S. O. Sauke, H. Larki Harchegani, and S. Mohammadifard. "Optische Schmelzüberwachung*/Optical monitoring of the melting process in an Al-melting furnace." wt Werkstattstechnik online 106, no. 10 (2016): 738–42. http://dx.doi.org/10.37544/1436-4980-2016-10-64.
Full textAli, Maytham Mahmood, and Rabiha Saleh Yassen. "Recovery of Aluminum from Industrial Waste (Slag) by Melting and Electrorefining Processes." Al-Khwarizmi Engineering Journal 14, no. 3 (2018): 81–91. http://dx.doi.org/10.22153/https://doi.org/10.22153/kej.2018.03.002.
Full textAli, Maytham Mahmood, and Rabiha Saleh Yassen. "Recovery of Aluminum from Industrial Waste (Slag) by Melting and Electrorefining Processes." Al-Khwarizmi Engineering Journal 14, no. 3 (2018): 81–91. http://dx.doi.org/10.22153/kej.2018.03.002.
Full textRahmawati, Atiqa. "SYNTHESIS KALIUM ALUMUNIUM SULPHATE (ALUM) FROM ALUMUNIUM FOIL WASTE USING KOH AND H2SO4." Berkala Penelitian Teknologi Kulit, Sepatu, dan Produk Kulit 22, no. 1 (2024): 45–51. https://doi.org/10.58533/f4h19h54.
Full textMatsuwaka, Daisuke, Fumiaki Kudo, Hitoshi Ishida, and Tetsushi Deura. "Deoxygenation of liquid titanium with aluminum addition." MATEC Web of Conferences 321 (2020): 10002. http://dx.doi.org/10.1051/matecconf/202032110002.
Full textDissertations / Theses on the topic "Melting aluminum"
Penmetsa, Sita rama raju S. "SCALE MODELING OF ALUMINUM MELTING FURNACE." UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_theses/331.
Full textMohammadifard, Sara [Verfasser]. "Developing an innovative optical system for automatically monitoring the melting process in an aluminum melting furnace / Sara Mohammadifard." Garbsen : TEWISS - Technik und Wissen GmbH, 2019. http://d-nb.info/1204152098/34.
Full textShafyei, Najafabadi Ali. "The kinetics of dissolution of high melting point alloying elements in molten aluminum." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40249.
Full textShuster, Riley Evan. "Modeling of aluminum evaporation during electron beam cold hearth melting of titanium alloy ingots." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44553.
Full textYang, Deyu. "Rôle d'addition de magnésium sur l'occurence de la fonte naissante dans les alliages expérimentaux et commerciaux Al-Si-Cu et son influence sur la microstructure et les propriétés de traction de l'alliage = Role of magnesium addition on the occurence of incipient melting in experimental and commercial Al-Si-Cu alloys and its influence on the alloy microstructure and tensile properties /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2006. http://theses.uqac.ca.
Full textNounezi, Thomas. "Light Weight and High Strength Materials Made of Recycled Steel and Aluminum." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20523.
Full textKlein, Cândida Cristina. "A fusão zonal horizontal aplicada ao crescimento de policristais grosseiros de alumínio." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/18973.
Full textRippe, Christian M. "Burnthrough Modeling of Marine Grade Aluminum Alloy Structural Plates Exposed to Fire." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64154.
Full textBradford-Vialva, Robyn L. "Development of a Metal-Metal Powder Formulations Approach for Direct Metal Laser Melting of High-Strength Aluminum Alloys." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1620259752540201.
Full textKurian, Sachin. "Process-Structure-Property Relationship Study of Selective Laser Melting using Molecular Dynamics." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/104115.
Full textBooks on the topic "Melting aluminum"
Association, Aluminum. Guidelines & definitions: By-products of aluminum melting processes. Aluminum Association, 2000.
Find full textD, Noebe R., Kaufman M. J, and United States. National Aeronautics and Space Administration., eds. The influence of C and Si on the flow behavior of NiAl single crystals. National Aeronautics and Space Administration, 1996.
Find full textGreat Britain. Energy Efficiency Office., Harwell Laboratory. Energy Technology Support Unit., and Warren Spring Laboratory, eds. Oxy-fuel melting of secondary aluminium: A demonstration at the Brock Metal Company Ltd. ETSU, 1994.
Find full textCompany, American Aluminum, and Aluminum Corporation of America. Melting and Casting Aluminum. University Publishing House, 1995.
Find full textTaghiei, Mohammad Mehdi. Coalescence of aluminum alloy during salt melting process. 1988.
Find full textFabrication and Performance Evaluation of Mixed Fuel Fired Furnace for Aluminum Melting. Association of Scientists, Developers and Faculties, 2014.
Find full textBook chapters on the topic "Melting aluminum"
Pantke, K., V. Güley, D. Biermann, and A. E. Tekkaya. "Aluminum Scrap Recycling Without Melting." In Future Trends in Production Engineering. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24491-9_37.
Full textWilliams, Edward M., and Don Whipple. "Aluminum Melting Furnace Pressure Control." In The Minerals, Metals & Materials Series. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72284-9_135.
Full textHenderson, Richard S., David V. Neff, and Chris T. Vild. "Recent Developments in Aluminum Scrap Melting Update." In Aluminium Cast House Technology. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118806364.ch8.
Full textAlchalabi, R. M., C. S. Henkel, F. L. Meng, and I. Chalabi. "MeltSim: Melting Optimization for Aluminum Reverb Furnaces." In Recycling of Metals and Engineercd Materials. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch77.
Full textJenkins, Robert F. "Aluminum Sidewell Melting Furnace Heat Transfer Analysis." In Recycling of Metals and Engineercd Materials. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch91.
Full textGroteke, Daniel E. "Dross Reclamation at Aluminum Melting Furnace Sites." In Recycling of Metals and Engineercd Materials. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch97.
Full textNorton, John. "Waste Heat Recovery in the Aluminum Melting Furnaces." In Energy Technology 2011. John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118061886.ch5.
Full textNahr, Florian, and Michael Schmidt. "Laser Beam Melting of Metals." In Springer Tracts in Additive Manufacturing. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-78350-0_8.
Full textWynn, Andy, John Coppack, Tom Steele, and Ken Moody. "Improved Monolithic Materials for Lining Aluminum Holding & Melting Furnaces." In Light Metals 2011. Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-319-48160-9_116.
Full textForooghi, Foroozan, Nana Ofori-Opoku, and Mohsen Mohammadi. "Modeling the Interface of Aluminum Alloys in Selective Laser Melting." In Proceedings of the 63rd Conference of Metallurgists, COM 2024. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-67398-6_265.
Full textConference papers on the topic "Melting aluminum"
Keiser, James R., R. Scott Heidersbach, Donald L. Dobbs, and Warren C. Oliver. "Response of Aluminum Alloys to Erosive Particle Impacts." In CORROSION 1988. NACE International, 1988. https://doi.org/10.5006/c1988-88146.
Full textXiao, Y. S., Y. Liu, X. L. Li, C. F. Lin, and X. Y. Miu. "A Study on the Life Prediction and Structural Optimization of Pulse Thyristors Considering the Aluminum Melting Mechanism." In 2024 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627531.
Full textVinson, D. W., J. I. Mickalonis, and R. L. Sindelar. "Initial Evaluation of the Effect of Neutron Absorbers on the Corrosion of Uranium-Aluminum Alloys." In CORROSION 2001. NACE International, 2001. https://doi.org/10.5006/c2001-01146.
Full textGhazizadeh, M., H. Zebardast, and H. Ghazizadeh. "Influence of AIN Formation on Corrosioon Behavior and High-Temperature Oxidation Resistance Using Tungsten Inert Gas Process." In CORROSION 2009. NACE International, 2009. https://doi.org/10.5006/c2009-09231.
Full textWojtuszewski, Radoslaw, Aleksander Banas, and Mateusz Oliwa. "Selective Laser Melting of Aluminum Based Materials." In Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14631.
Full textChhabildas, Lalit C. "Shock induced melting in aluminum: Wave profile measurements." In Shock compression of condensed matter. AIP, 2000. http://dx.doi.org/10.1063/1.1303430.
Full textHollenbeck, Michael, Karl Wamick, Clinton Cathey, Janos Opra, and Robert Smith. "Selective Laser Melting aluminum waveguide attenuation at K-band." In 2017 IEEE/MTT-S International Microwave Symposium - IMS 2017. IEEE, 2017. http://dx.doi.org/10.1109/mwsym.2017.8058605.
Full textPuri, Puneesh, and Vigor Yang. "Molecular Dynamics Study of Melting of Nano Aluminum Particles." In 45th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1429.
Full textBrehm, Johnathon, Jessica Buckner, Christina Profazi, and Alex Hickman. "Failure Analysis of Incipient Melting in 7075 Aluminum Alloy." In Proposed for presentation at the International Materials Applications & Technologies held September 12-15, 2022 in New Orleans, LA. US DOE, 2022. http://dx.doi.org/10.2172/2004410.
Full textMartinez Lucci, Jose, R. S. Amano, Pradeep Rohatgi, and Benjamin Schultz. "Experiment and Computational Analysis of Self-Healing in an Aluminum Alloy." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68304.
Full textReports on the topic "Melting aluminum"
Han, Q., and S. K. Das. Scaleable Clean Aluminum Melting Systems. Office of Scientific and Technical Information (OSTI), 2008. http://dx.doi.org/10.2172/940312.
Full textD'Agostini, M. D. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/765375.
Full textNevins, Thomas, Flint Pierce, Joel Clemmer, John Tencer, and Elizabeth Jones. Methodology for Digital Image Correlation and Infrared Measurement of Melting Aluminum Bars. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2430259.
Full textSikka, V. K., C. R. Howell, F. Hall, and J. Valykeo. Part A - low-aluminum-content iron-aluminum alloys. Part B - commercial-scale melting and processing of FAPY alloy. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/450763.
Full textDale E. Brown and Puja B. Kadolkar. Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/878541.
Full textKadolkar, Puja, and Ronald D. Ott. Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/930713.
Full textKeiser, James R., Gorti B. Sarma, Arvind Thekdi, et al. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/919037.
Full textWeiss, David C., and Gerald A. Gegal. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1131418.
Full textFasoyinu, Yemi, and John A. Griffin. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1131409.
Full textDr. John J. Moore and Dr. Jianliang Lin. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1050628.
Full text