Academic literature on the topic 'Menelaus' theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Menelaus' theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Menelaus' theorem"

1

Sandi, Selva Amelia, Mashadi Mashadi, and Sri Gemawati. "PENGEMBANGAN TEOREMA MENELAUS PADA SEGILIMA." JURNAL MATHEMATIC PAEDAGOGIC 3, no. 1 (2018): 57. http://dx.doi.org/10.36294/jmp.v3i1.311.

Full text
Abstract:
AbstractMenelaus's theorem is basically for triangles. Some authors have developed in quadrilateral. In this paper the authors develop Menelaus’s theorem for the pentagon. The proofing process is done in a very simple way that is using Menelaus's theorem on the triangle by partitioning the pentagon into several triangles, wide comparison of the triangle, and similarity. The results obtained are the five points on the sides or the extension of the sides in line (colinear). Keywords: pentagon, Menelaus’s theorem, Menelaus transversal. AbstrakTeorema Menelaus pada dasarnya adalah untuk segitiga. Beberapa penulis sudah mengembangkan dalam segiempat. Dalam tulisan ini penulis mengembangkan teorema Menelaus untuk segilima. Proses pembuktiannya dilakukan dengan cara yang sangat sederhana yaitu menggunakan teorema Menelaus pada segitiga dengan mempartisi segilima tersebut menjadi beberapa segitiga, perbandingan luas pada segitiga, dan kesebangunan. Hasil yang diperoleh adalah kelima titik yang berada pada sisi-sisi atau perpanjangan sisi-sisinya segaris (colinear).Kata kunci: segilima, teorema Menelaus, transversal Menelaus.
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, Fred. "Four-bubble clusters and Menelaus’ theorem." American Journal of Physics 70, no. 10 (2002): 986–91. http://dx.doi.org/10.1119/1.1495407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shminke, Boris A. "Routh’s, Menelaus’ and Generalized Ceva’s Theorems." Formalized Mathematics 20, no. 2 (2012): 157–59. http://dx.doi.org/10.2478/v10037-012-0018-9.

Full text
Abstract:
Summary The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.
APA, Harvard, Vancouver, ISO, and other styles
4

Hoehn, Larry. "A Menelaus-Type Theorem for the Pentagram." Mathematics Magazine 66, no. 2 (1993): 121. http://dx.doi.org/10.2307/2691122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoehn, Larry. "A Menelaus-Type Theorem for the Pentagram." Mathematics Magazine 66, no. 2 (1993): 121–23. http://dx.doi.org/10.1080/0025570x.1993.11996096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adrian Chun Pong Chu. "Dihedral Angle of the Regular n-Simplex via Menelaus’ Theorem." American Mathematical Monthly 124, no. 9 (2017): 826. http://dx.doi.org/10.4169/amer.math.monthly.124.9.826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Konopelchenko, B. G., and W. K. Schief. "Menelaus$apos$ theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy." Journal of Physics A: Mathematical and General 35, no. 29 (2002): 6125–44. http://dx.doi.org/10.1088/0305-4470/35/29/313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Erdem, Ccedil ekmez. "Using menelaus theorem and dynamic mathematics software to convey the meanings of indeterminate forms to students." Educational Research and Reviews 11, no. 6 (2016): 277–87. http://dx.doi.org/10.5897/err2015.2647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Papadopoulos, Athanase. "Three Theorems of Menelaus." American Mathematical Monthly 126, no. 7 (2019): 610–19. http://dx.doi.org/10.1080/00029890.2019.1604052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klamkin, Murray S., and Andy Liu. "Simultaneous Generalizations of the Theorems of Ceva and Menelaus." Mathematics Magazine 65, no. 1 (1992): 48. http://dx.doi.org/10.2307/2691362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!